数学全等三角形教案
(精)人教版数学八年级上册《全等三角形》全单元教案

第十二章《全等三角形》单元备课一、教学分析1、内容分析:本章主要内容是学习全等三角形的概念、性质以及判定方法,应用全等三角形的性质和判定探索角平分线的性质,能够应用全等三等三角形的性质和判定以及角平分线的性质解决简单的几何总是,初步掌握推理证明的方法。
2、教材分析:学生已经学过线段、角、相交线、平行线、有关三角形的一些知识,通过本章的学习可以丰富和加深学生对已学图形的认识,同时为学习其它图形打好基础,教材力求创设与生活场景相近的、有趣的问题情境引入,使学生经历了从现实生活探索并抽象出几何模型,并应用几何模型解决实际问题的过程,在内容上重点探索三角形全等的判定方法经及应用,至于角平分线的改天换地的两上互逆定理,只要求学生了解其条件与结论之间的关系,不必介绍互逆定理的概念,通过结合具体问题,使学生理解证明的基本过程,初步掌握推理、证明的正确的方法是本章的难点,初步培养学生的推理能力。
二、教科书内容和课程学习目标(一)本章知识结构框图:(二)本章的学习目标:1.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素。
2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式。
3.利用尺规作图作一个角等于已知角、作一个角的角平分线。
4、经历角平分线的性质和判定方法的探究过程,灵活应用角平分线的性质和判定解决问题.三、本章教学建议(一)注重探索结论(二)注重推理能力的培养1.注意减缓坡度,循序渐进。
2.在不同的阶段,安排不同的练习内容,突出一个重点,每个阶段都提出明确要求,便于教师掌握。
3.注重分析思路,让学生学会思考问题,注重书写格式,让学生学会清楚地表达思考的过程。
(三)注重联系实际三、几个值得关注的问题(一)关于内容之间的联系(二)关于证明一般情况下,证明一个几何中的命题有以下步骤:(1)明确命题中的已知和求证;(2)根据题意,画出图形,并用数学符号表示已知和求证;(3)经过分析,找出由已知推出求证的途径,写出证明过程。
全等三角形教案(教学设计)

全等三角形【教学目标】1.知识技能:(1)了解全等形及全等三角形的概念。
(2)理解掌握全等三角形的性质。
(3)能够准确辩认全等三角形的对应元素。
2.过程与方法:(1)在图形变换以用操作的过程中发展空间观念,培养几何直觉。
(2)在观察发现生活中的全等形和实际操作中获得全等三角形的体验。
3.情感态度与价值观:在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。
【教学重难点】1.全等三角形的性质。
2.找全等三角形的对应边、对应角。
【教学过程】引入新课:师:同学们好。
十一单元的学习我们认识了三角形,掌握三角形的边,角的关系,角平分线等。
这节课我们开始学习全等三角形。
出示学习目标。
新知介绍。
一、提出问题,创设情境。
师:下列的图形有什么特点。
(1)(2)(3)生:这几个图形是两两完全重合的。
师:那同学们能举出现实生活中能够完全重合的图形的例子吗?生:同一张底片洗出的同大小照片是能够完全重合的。
移动或折叠后可以得到完全重合的图形。
板书:形状与大小都完全相同的两个图形就是全等形。
师:请观察下面两组图形,它们是不是全等图形有?为什么,与同伴进行交流。
(1)形状相同,但大小不同。
(2)大小相同,但形状不同。
生:全等图形的特征:全等图形的形状和大小都相同。
师:全等形包括规则图形和不规则图形全等。
二、获取概念。
学生自己动手(同桌两名同学配合):取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样。
让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号。
能够完全重合的两个三角形,叫全等三角形。
(1)“全等”用符号“≌”来表示,读作“全等于”。
(2)记作:△ABC≌△DEF,读作:△ABC全等于△DEF。
(3)互相重合的顶点叫做对应顶点。
A D;B E;C F。
(4)互相重合的边叫做对应边。
AB与DE;BC与EF;AC与DF。
(5)互相重合的角叫做对应角。
三角形判定定理教案(3篇)

第1篇一、教学目标1. 知识与技能:理解并掌握三角形全等的判定定理,包括SSS、SAS、ASA、AAS,并能运用这些定理解决实际问题。
2. 过程与方法:通过动手操作、小组讨论、合作探究等方式,培养学生观察、分析、解决问题的能力。
3. 情感态度与价值观:激发学生对几何图形的学习兴趣,培养学生的逻辑思维能力和空间想象力。
二、教学重难点1. 重点:掌握三角形全等的判定定理,并能运用这些定理解决实际问题。
2. 难点:理解并区分三角形全等判定定理的适用条件。
三、教学过程(一)导入新课1. 回顾全等三角形的定义和性质,引导学生思考如何判断两个三角形全等。
2. 提出问题:如何运用已学知识判断两个三角形全等?(二)讲授新知1. 介绍三角形全等的判定定理:a. SSS(Side-Side-Side):三边分别相等的两个三角形全等。
b. SAS(Side-Angle-Side):两边和它们夹角分别相等的两个三角形全等。
c. ASA(Angle-Side-Angle):两角和它们夹边分别相等的两个三角形全等。
d. AAS(Angle-Angle-Side):两角和其中一角的对边分别相等的两个三角形全等。
2. 通过实例讲解每个判定定理的适用条件和证明过程。
3. 引导学生理解并区分不同判定定理的适用条件。
(三)课堂练习1. 学生独立完成以下练习题:a. 判断两个三角形是否全等,并说明理由。
b. 利用全等三角形判定定理证明两个三角形全等。
2. 教师巡视指导,解答学生疑问。
(四)小组讨论1. 将学生分成小组,讨论以下问题:a. 如何运用全等三角形判定定理解决实际问题?b. 如何在解题过程中避免误用判定定理?2. 小组代表分享讨论成果,教师点评并总结。
(五)总结与反思1. 教师总结本节课所学内容,强调三角形全等判定定理的重要性和应用价值。
2. 学生反思自己在学习过程中的收获和不足,提出改进措施。
四、教学评价1. 课堂练习:考察学生对三角形全等判定定理的掌握程度。
12.2全等三角形的判定(AAS,ASA,HL)教案

-针对实际问题时,引导学生将问题抽象成几何模型,运用全等三角形的性质进行求解,如:在计算不规则图形的面积时,通过全等三角形将不规则图形转化为规则图形。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《全等三角形的判定》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断两个三角形是否完全一样的情况?”(如拼图、制作三角形框架等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索全等三角形的判定方法的奥秘。
另外,对于全等三角形在实际生活中的应用,学生在小组讨论中提出的例子较为有限。这说明我对这个知识点的实际应用案例介绍还不够丰富,今后的教学中,我需要补充更多贴近学生生活的实例,帮助他们更好地理解全等三角形的应用价值。
此外,在教学过程中,我也注意到了一些学生的疑问,比如在全等三角形的判定过程中,如何快速准确地找出对应边和对应角。针对这个问题,我打算在下一节课的复习环节中,专门设计一些练习题,帮助学生巩固这方面的技能。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“全等三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
《全等三角形》单元教学设计-精品教案(推荐)

全等三角形1课时
探索三角形全等的条件8课时
小结与思考2课时
第1课时教学设计(其他课时同)
课题全等图形
新授课 章/单元复习课□专题复习课□
课型
习题/试卷讲评课□学科实践活动课□其他□
1.教学内容分析
2.学习者分析
本节课是在学生掌握了三角形有关知识的基础上,重点研究了全等三角形的有关概念、表示方法及对
观察下面两组图形,它们是不是全等图形?为什么?
在课堂上观察学生对概念的理解程度,评价学生的掌握情况,通过问题的设置评价学生对概念的理解,通过课堂例题的解决过程评价学生的掌握,最后可以通过当堂训练的完成情况评价学生的学习情况。
6.学习活动设计 教师活动
学生活动
环节一:(一)、创设情境,引入新课 教师活动1
1、请同学们观察几组图片,这些图片有何特征?
学生活动1
通过观察我们发现,这些图形中有些是完全一样的,如果把它们叠在一起,它们就能重合.
通过设置有趣的生活图片,让学生通过观察、举例,对全等图形有一个感性认识。
学生发现每组图片能够完全重合在一起,进而得出全等图形的概念。
这样做不仅有利于激发学生的学习兴趣,而且让学生知道生活中的一些图形是全等图形。
环节二:(二)、探究新知,得出结论 教师活动2
1、完成课本“议一议”。
观察下面两组图形,它们是不是全等图形?为什么?
学生活动2
1. 这两组图形都不是全等图形,全等图形的形状和大小都相同。
得出全等图形的两个基本特征。
2. 类比全等图形的特征得出全等三。
三角形全等的判定SAS教案

三角形全等的判定SAS教案一、教学目标:知识与技能:1. 学生能够理解三角形全等的概念。
2. 学生能够运用SAS(边-角-边)判定两个三角形全等。
过程与方法:1. 学生通过观察和操作,培养观察能力和动手能力。
2. 学生通过小组讨论和合作,培养交流和合作能力。
情感态度价值观:1. 学生体验数学的乐趣,培养对数学的兴趣。
2. 学生在解决数学问题的过程中,培养自信心和克服困难的意志。
二、教学重点与难点:重点:1. 学生掌握三角形全等的概念。
2. 学生能够运用SAS判定两个三角形全等。
难点:1. 学生理解SAS判定条件的含义。
2. 学生能够正确运用SAS判定两个三角形全等。
三、教学准备:教师准备:1. 教学课件或黑板。
2. 三角形模型或图片。
3. 剪刀和彩笔。
学生准备:1. 笔记本和笔。
2. 三角形模型或图片。
四、教学过程:1. 导入:教师通过展示一些三角形图片,引导学生观察和讨论三角形的特征。
提出问题:“如果两个三角形有三条边分别相等,它们是否全等呢?”引发学生的思考和兴趣。
2. 探究:教师引导学生分组进行探究,每组领取一些三角形模型或图片。
学生通过观察、操作和讨论,尝试找出判定两个三角形全等的方法。
3. 引导:教师引导学生总结出判定两个三角形全等的方法,即SAS(边-角-边)。
解释SAS 的含义:如果两个三角形有两边和它们的夹角分别相等,这两个三角形全等。
4. 巩固:教师出示一些例题,学生独立判断两个三角形是否全等。
教师引导学生运用SAS 判定方法,并解释判断过程。
5. 拓展:教师引导学生思考:除了SAS,还有哪些方法可以判定两个三角形全等呢?引发学生的思考和进一步学习兴趣。
五、作业布置:教师布置一些练习题,让学生运用SAS判定两个三角形全等。
鼓励学生在课堂上或家中完成,培养学生的自主学习能力。
教学反思:本节课通过引导学生观察、操作和讨论,让学生掌握三角形全等的判定方法SAS。
在教学过程中,注意关注学生的学习情况,及时解答学生的疑问,帮助学生巩固知识。
中考数学第五章《全等三角形》复习教案新人教版

章节第五章课题全等三角形课型复习课教法讲练结合教学目标(知1。
了解图形全等的概念,能利用全等图形解决有关问题。
识、能力、教育)2.掌握两个三角形全等的条件,能应用三角形的全等解决一些实际问题.3.体会在证明过程中,所运用的归纳、转化等数学思想方法.教学重点掌握两个三角形全等的条件教学难点应用三角形的全等解决一些实际问题.教学媒体学案教学过程一:【课前预习】(一):【知识梳理】1。
全等三角形的判定方法(1)三边对应相等的两个三角形全等,简写成“边边边”或“SSS".(2)两角和它们的夹边对应相等的两个二角形全等,简写成“角边角”或"ASA”(3)两角和其中一角的对边对应角相等的两个三角形全等,简写成“角角边"或“AAS”.(4)两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”. (5)有斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜过直角边定理"或“HL”.2。
全等三角形的性质:全等三角形的对应边相等,对应角相等.3.注意事项:(1)说明两个三角形全等时,应注意紧扣判定的方法,找出相应的条件,同时要从实际图形出发,弄清对应关系,把表示对应顶点的字母写在对应的位置上.(2)注意三个内角对应相等的两个三角形不一定全等,另外已知两个三角形的两边与一角对应相等的两个三角形也不一定全等.(二):【课前练习】1.如图,若△ABC≌△DEF,∠E等于( )A.30° B.50° C.60° D、100°2.如图,在△ABC中,AD⊥BC于 D,再添加一个条件____,就可确定△ABD≌△ACD3。
在下列各组几何图形中,一定全等的是( )A.各有一个角是45°的两个等腰三角形;B.两个等边三角形C.腰长相等的两个等腰直角三角形D.各有一个角是40°腰长都是5cm的两个等腰三角形4。
下列说法中不正确的是()A.有两角和其中一角的对边对应相等的两个三角形全等B.有两边和其中一边上的中线对应相等的两个三角形全等C.有一边对应相等的两个等边三角形全等D.面积相等的两个直角三角形全等5。
(八年级数学教案)全等三角形复习教案

全等三角形复习教案
八年级数学教案
【学习目标】(复习)
知识目标:
1.了解全等形及全等三角形的概念。
2.理解全等三角形的性质。
3.掌握全等三角形的判定。
4.灵活运用全等三角形的判定定理和性质定理,证明简单的全等三角形问题。
5.掌握角平分线的性质与判定以及综合运用。
6.会在给定的方格图中画出符和条件的格点三角形。
能力目标:
通过学习全等三角形的性质和条件,培养学生综合应用能力,培养学生的几何感觉。
情感目标:
学生通过在综合运用全等三角形性质和全等三角形条件以及角平分线的过程中感受到数学与生活息息相关,从而激发学生学习数学的兴趣。
【重点、难点】
重点:全等三角形的性质和条件以及所学知识的综合应用
难点:加强应用型与探究型题型训练
【学法】
自主探索、合作交流
【学习过程】
一、自主学习:复习提纲
复习课本内容,思考一下几个问题
1、全等形,全等三角形的定义
2、全等三角形的性质有哪些?从哪几方面考虑?为什么?
3、全等变换有哪些?一个图形经过_ _ _ 后,位置变化了,但_ _ 都没有变,即_ _ _ 前后的图形全等。
4、全等三角形有哪些判定?(1)文字语言(2)符号表示
5、角的平分线性质和判定是什么?两者区别和联系
交流与点拨:
1、全等变换:平移、旋转、翻折用运动的观点分析两个静止图形
2、全等三角形性质与判定区别与联系题设与结论互逆
3、角的平分线性质与判定区别与联系。
复习点到直线距离概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形指三条边及三个角都对应相等的两个三角形,是几何中全等之一。
根据全等转换,两个全等三角形可以平移、旋转、把轴对称或重叠。
下面是小编为大家整理的数学全等三角形教案5篇,希望大家能有所收获!数学全等三角形教案1教学目标:1、知识目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能熟练找出两个全等三角形的对应角、对应边。
2、能力目标:(1)通过全等三角形角有关概念的学习,提高学生数学概念的辨析能力;(2)通过找出全等三角形的对应元素,培养学生的识图能力。
3、情感目标:(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。
教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角教学用具:直尺、微机教学方法:自学辅导式教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发现这两个三角形有什么美妙的关系吗?一般学生都能发现这两个三角形是完全重合的。
(2)学生自己动手画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。
(3)获取概念让学生用自己的语言叙述:全等三角形、对应顶点、对应角以及有关数学符号。
2、全等三角形性质的发现:(1)电脑动画显示:问题:对应边、对应角有何关系?由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。
3、找对应边、对应角以及全等三角形性质的应用(1) 投影显示题目:D、AD∥BC,且AD=BC分析:由于两个三角形完全重合,故面积、周长相等。
至于D,因为AD和BC是对应边,因此AD=BC。
C符合题意。
说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。
分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来说明:根据位置元素来找:有相等元素,其即为对应元素:然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
说明:利用“运动法”来找翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素求证:AE∥CF分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等∴AE∥CF说明:解此题的关键是找准对应角,可以用平移法。
分析:AB不是全等三角形的对应边,但它通过对应边转化为AB=CD,而使AB+CD=AD-BC可利用已知的AD与BC求得。
说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。
(2)题目的解决这些题目给出以后,先要求学生独立思考后回答,其它学生补充完善,并可以提出自己的看法。
教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:投影显示:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边一定是对应边;(4)有公共角的,角一定是对应角;(5)有对顶角的,对顶角一定是对应角;两个全等三角形中一对最长边(或角)是对应边(或对应角),一对最短边(或最小的角)是对应边(或对应角)4、课堂独立练习,巩固提高此练习,主要加强学生的识图能力,同时,找准全等三角形的对应边、对应角,是以后学好几何的关键。
5、小结:(1)如何找全等三角形的对应边、对应角(基本方法)(2)全等三角形的性质(3)性质的应用让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。
6、布置作业a.书面作业P55#2、3、4b.上交作业(中考题)数学全等三角形教案2一、教学目标1.使学生了解判定定理1及直角三角形相似定理的证明方法并会应用,掌握例2的结论.2.继续渗透和培养学生对类比数学思想的认识和理解.3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.4.通过学习,了解由特殊到一般的唯物辩证法的观点.二、教学设计类比学习,探讨发现三、重点及难点1.教学重点:是判定定理l及直角三角形相似定理的应用,以及例2的结论.2.教学难点:是了解判定定理1的证题方法与思路.四、课时安排1课时五、教具学具准备多媒体、常用画图工具、六、教学步骤[复习提问]1.什么叫相似三角形?什么叫相似比?2.叙述预备定理.由预备定理的题所构成的三角形是哪两种情况.[讲解新课]我们知道,用相似三角形的定义可以判定两个三角形相似,但涉及的条件较多,需要有三对对应角相等,三条对应边的比也都相等,显然用起来很不方便.那么从本节课开始我们来研究能不能用较少的几个条件就能判定三角形相似呢?上节课讲的预备定理实际上就是一个判定三角形相似的方法,现在再来学习几种三角形相似的判定方法.我们已经知道,全等三角形是相似三角形当相似比为1时的特殊情况,判定两个三角形全等的三个公理和判定两个三角形相似的三个定理之间有内在的联系,不同处仅在于前者是后者相似比等于1的情况,教学时可先指出全等三角形与相似三角形之间的关系,然后引导学生自己用类比的方法找出新的命题,如:问:判定两个三角形全等的方法有哪几种?答:SAS、ASA(AAS)、SSS、HL.问:全等三角形判定中的“对应角相等”及“对应边相等”的语句,用到三角形相似的判定中应如何说?答:“对应角相等”不变,“对应边相等”说成“对应边成比例”.问:我们知道,一条边是写不出比的,那么你能否由“ASA”或“AAS”,采用类比的方法,引出一个关于三角形相似判定的新的命题呢?答:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.强调:(1)学生在回答中,如出现问题,教师要予以启发、引导、纠正.(2)用类比方法找出的新命题一定要加以证明.如图5-53,在△ABC和△ 中,, .问:△ABC和△ 是否相似?分析:可采用问答式以启发学生了解证明方法.问:我们现在已经学习了哪几个判定三角形相似的方法?答:①三角形的定义,②上一节学习的预备定理.问:根据本命题条件,探讨时应采用哪种方法?为什么?答:预备定理,因为用定义条件明显不够.问:采用预备定理,必须构造出怎样的图形?答:或 .问:应如何添加辅助线,才能构造出上一问的图形?此问学生回答如有困难,教师可领学生共同探讨,注意告诉学生作辅助线一定要合理.(1)在△ABC边AB(或延长线)上,截取,过D作DE∥BC交AC于E.“作相似.证全等”.(2)在△ABC边AB(或延长线上)上,截取,在边AC(或延长线上)截取AE= ,连结DE,“作全等,证相似”.(教师向学生解释清楚“或延长线”的情况)虽然定理的证明不作要求,但通过刚才的分析让学生了解定理的证明思路与方法,这样有利于培养和提高学生利用已学知识证明新命题的能力.判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简单说成:两角对应相等,两三角形相似.,,∽ .例1 已知和中,,, .求证:∽ .此例题是判定定理的直拉应用,应使学生熟练掌握.例2 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.已知:如图5-54,在中,CD是斜边上的高.求证:∽ ∽ .该例题很重要,它一方面可以起到巩固、掌握判定定理1的作用;另一方面它的应用很广泛,并且可以直接用它判定直角三角形相似,教材上排了黑体字,所以可以当作定理直接使用.即∽△∽△.[小结]1判定定理1的引出及证明思路与方法的分析,要求学生掌握两种辅助线作法的思路.2.判定定理1的应用以及记住例2的结论并会应用.七、布置作业教材P238中A组3、4.数学全等三角形教案3教学目标一、知识与技能1、了解全等形和全等三角形的概念,掌握全等三角形的性质。
2、能正确表示两个全等三角形,能找出全等三角形的对应元素。
二、过程与方法通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。
三、情感态度与价值观通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。
教学重点1、全等三角形的性质。
2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。
教学难点正确寻找全等三角形的对应元素教学关键通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。
课前准备: 教师------课件、三角板、一对全等三角形硬纸版学生------白纸一张硬纸三角形一个教学过程设计一、全等形和全等三角形的概念(一)导课:教师----(演示课件)庐山风景,以诗横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。
数学全等三角形教案4教材内容分析:本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。
通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
全等三角形中严密的对应关系能够锻炼学生的观察力和推理能力,对它的深入研究有助于学生理解数学的本质,提升思维水平。
教学目标:1.了解全等形、全等三角形的概念;理解全等三角形的性质;2.能够准确找出全等三角形的对应元素,逐步培养学生的识图能力;3.让学生通过观察生活中的全等形和动手操作获得全等三角形的体验,在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。
教学重难点及突破:重点:全等三角形的概练和性质;难点:能在全等变换中准确找到对应角、对应边。
教学突破:通过生活中的实例观察、感受全等形和全等三角形,动手操作、合作交流,亲身体验创造全等三角形,加深全等三角形的有关概念的理解。
教学准备:1.教师准备:多媒体课件、剪刀、白纸等;2.学生准备:白纸、剪刀等。
教学流程:创设情境,引入新知→合作交流,探索新知→手脑并用,理解新知→合作交流,应用新知→课堂练习,巩固新知→师生互动,小结新知。