稀土配合物研究进展总结材料

合集下载

《稀土配合物催化共轭烯烃聚合及共聚物性能的研究》范文

《稀土配合物催化共轭烯烃聚合及共聚物性能的研究》范文

《稀土配合物催化共轭烯烃聚合及共聚物性能的研究》篇一一、引言近年来,稀土配合物因其独特的催化性质和优异性能,逐渐成为了聚合物科学研究的热点之一。

尤其是在共轭烯烃聚合过程中,稀土配合物的使用展现了突出的效果。

本研究致力于探究稀土配合物在催化共轭烯烃聚合方面的应用,以及其与不同共聚单体进行共聚后得到的共聚物的性能研究。

二、稀土配合物在共轭烯烃聚合中的催化作用(一)背景及现状随着聚合技术的不断进步,对聚合物性能的要求也日益提高。

稀土配合物因其独特的电子结构和良好的配位能力,在催化共轭烯烃聚合方面具有显著的优势。

其不仅可以提高聚合效率,还可以调节聚合物分子的微观结构,从而达到调控聚合物性能的目的。

(二)稀土配合物的选择及制备选择适当的稀土元素和配体是制备稀土配合物的关键。

在本研究中,我们选用了多种稀土元素和不同的配体进行组合,制备了一系列稀土配合物催化剂。

这些催化剂的制备过程简单、高效,且具有良好的稳定性。

(三)催化共轭烯烃聚合的实验过程在实验过程中,我们将制备好的稀土配合物作为催化剂,用于催化不同种类的共轭烯烃进行聚合反应。

通过调整催化剂的用量、反应温度和压力等条件,我们成功地实现了对聚合反应的调控。

三、共聚物性能的研究(一)共聚物的制备及表征我们将稀土配合物催化剂与不同种类的共聚单体进行共聚反应,得到了多种共聚物。

通过核磁共振、红外光谱等手段对共聚物进行了表征,确定了其分子结构和微观结构。

(二)共聚物的性能研究我们进一步研究了共聚物的物理性能、化学性能和机械性能等。

实验结果表明,通过调整共聚单体的种类和比例,可以有效地调控共聚物的性能。

例如,当增加某种特定单体的比例时,共聚物的硬度、耐热性等性能会得到显著提高。

四、结论与展望本研究通过探究稀土配合物在催化共轭烯烃聚合中的应用,以及与不同共聚单体进行共聚后得到的共聚物的性能研究,发现稀土配合物具有良好的催化效果和调控聚合物性能的能力。

通过调整催化剂的种类、用量以及反应条件,可以有效地控制聚合反应和共聚物的性能。

我国Schiff碱稀土配合物的研究进展_张秀英

我国Schiff碱稀土配合物的研究进展_张秀英

文章编号:1004-1656(2002)01-0009-06我国Schiff碱稀土配合物的研究进展张秀英1,张有娟2,李青3,杨林1(11河南师范大学化学与环境科学学院,河南新乡453002;21安阳师范学院,河南安阳455002;31新乡医学院,河南新乡453003)摘要:本文对近二十年来Schiff碱稀土配合物的类型、合成方法、谱学性质、结构及在催化、生物与医学方面的应用作了简要综述。

关键词:Schiff碱;稀土配合物中图分类号:O614133文献标识码:A X1968年印度科学家N.K.Dutt和K.Nag发表了第一篇以Schiff碱(双水杨醛缩乙二胺(H2salen))为配体的稀土配合物论文,从而打开了Schiff碱稀土配合物研究领域的大门。

J.H.Fors-berg对1981年以前的工作进行了较全面的综述[1]。

我国Schiff碱稀土配合物的研究起步较晚)))八十年代才开始有关于这类配合物的报道,但其发展比较迅速,近二十年来,我国化学工作者们合成了大量的Schiff碱稀土配合物,并采用多种结构测试手段,对此类化合物进行了表征,丰富了世界Schiff碱稀土配合物的发展。

由于Schiff 碱稀土配合物潜在的具有生物、催化活性以及可以作为光磁材料[2,3],所以这类化合物还将日益受到广泛的注意。

本文拟从几个重要的方面介绍近年来我国Schiff碱稀土配合物的研究和应用。

1Schiff碱稀土配合物的类型111含硫Schiff碱稀土配合物Sc hiff碱的稳定性决定于它们的结构,若-CH =N-双键能和-CH=C H-双键共轭,则这些物质极稳定,因此带有苯环的醛及其衍生物(水杨醛、二羟基苯甲醛、香草醛)与单胺、二胺、多甘醇二胺等缩合而成的各类芳香族Schiff碱与稀土形成的单核配合物的研究受到重视。

脂肪族类Schiff碱稀土配合物由于其配体的不稳定性及脂肪醛的相对不活泼性而很少见有报道[4]。

含硫Schiff碱不仅是很好的螯合剂,而且几乎所有的含硫Schiff碱都有抑菌和杀菌活性。

《多核稀土配合物的设计、合成及磁性研究》范文

《多核稀土配合物的设计、合成及磁性研究》范文

《多核稀土配合物的设计、合成及磁性研究》篇一一、引言多核稀土配合物因其在磁性材料、生物医学以及光电子器件等领域潜在的应用价值,成为了现代无机化学研究的前沿课题。

近年来,稀土离子在配位化学领域的运用因其丰富的物理和化学性质得到了极大的拓展。

本篇论文主要对多核稀土配合物的设计思路、合成过程及其磁性进行了系统的研究,以期为后续研究提供一定的参考依据。

二、多核稀土配合物的设计(一)理论设计框架多核稀土配合物的设计以现有的配位化学理论为指导,同时考虑稀土离子特有的电子结构以及它们之间的相互作用。

本设计从确定稀土离子种类开始,接着确定适当的配体以及配合物的几何构型,通过配体桥联设计多核的复合结构。

(二)实验选材依据选用适合的稀土元素及有机配体是实现高效配位的关键。

实验选用的稀土元素需具备适当的离子半径和电荷性质,以保证离子间相互作用的形成;同时选择的有机配体应具备合适的电子云密度和配位能力,以便与稀土离子形成稳定的配合物。

三、多核稀土配合物的合成(一)合成方法本实验采用溶液法进行多核稀土配合物的合成。

首先将稀土盐与配体分别溶解在适当的溶剂中,然后通过缓慢滴加或共沉淀的方式使二者混合反应,最后通过离心、洗涤、干燥等步骤得到目标产物。

(二)合成条件优化合成过程中,我们通过调整反应物的浓度、温度、pH值等条件,优化了多核稀土配合物的合成过程,提高了产物的纯度和产率。

四、磁性研究(一)磁性测量方法采用超导量子干涉仪(SQUID)对合成的多核稀土配合物进行磁性测量。

通过对样品在不同温度和磁场下的磁化率进行测量,获得了详细的磁学数据。

(二)磁性分析通过分析实验得到的磁学数据,我们发现多核稀土配合物具有明显的磁各向异性和磁相互作用。

随着温度的变化,配合物的磁性表现出不同的变化趋势,这与其内部的电子结构和相互作用密切相关。

五、结论本研究成功设计了多核稀土配合物,并通过溶液法成功合成了目标产物。

通过对产物的磁性研究,我们发现该类配合物具有显著的磁各向异性和磁相互作用,这为其在磁性材料等领域的应用提供了可能。

《多核稀土配合物的设计、合成及磁性研究》范文

《多核稀土配合物的设计、合成及磁性研究》范文

《多核稀土配合物的设计、合成及磁性研究》篇一一、引言随着材料科学的快速发展,多核稀土配合物因其独特的物理化学性质,如丰富的电子结构、显著的磁学性能等,逐渐成为化学与材料科学领域的研究热点。

本文将就多核稀土配合物的设计、合成及磁性研究进行深入探讨。

二、多核稀土配合物的设计多核稀土配合物的设计主要基于分子设计原理和稀土元素的电子特性。

首先,需要确定合适的配体,如羧酸类、氮杂环类等,这些配体能够与稀土离子形成稳定的配位键。

其次,根据需要调整配体的空间结构、电荷分布等,以实现多核稀土配合物的合理设计。

此外,还需考虑稀土元素之间的相互作用以及配合物的整体稳定性。

三、多核稀土配合物的合成多核稀土配合物的合成过程主要包括选择合适的配体、确定稀土元素种类及比例、控制反应条件等步骤。

具体而言,应选择适当的溶剂和温度,使配体与稀土元素在溶液中发生配位反应,生成目标配合物。

在合成过程中,还需注意避免杂质的影响,以提高配合物的纯度。

四、磁性研究多核稀土配合物的磁性研究是本文的重点。

首先,通过测量配合物的磁化率、磁化强度等参数,了解其基本磁学性质。

其次,利用量子化学计算方法,分析配合物的电子结构、能级分布等,进一步揭示其磁性来源。

此外,还需探讨不同稀土元素、配体结构以及合成条件对磁性的影响,为优化设计提供依据。

五、实验结果与讨论通过实验,我们成功合成了一系列多核稀土配合物,并对其进行了磁性研究。

结果表明,配合物的磁性与其结构密切相关。

具体而言,稀土元素的种类和比例、配体的空间结构以及合成条件等因素都会影响配合物的磁性。

此外,我们还发现,通过调整配体的电子特性,可以有效地调控多核稀土配合物的磁学性能。

六、结论本文对多核稀土配合物的设计、合成及磁性研究进行了探讨。

通过实验,我们成功合成了一系列多核稀土配合物,并对其磁性进行了深入研究。

结果表明,多核稀土配合物具有丰富的磁学性能,其磁性可通过调整配体结构和合成条件进行调控。

这为进一步开发具有优异磁学性能的多核稀土配合物提供了有益的参考。

稀土含硫有机配体配合物的合成与应用研究进展

稀土含硫有机配体配合物的合成与应用研究进展
将稀土盐与配体分别溶于有机溶剂 , 然后混 匀搅拌反应 , 反应后利用产物与杂质在有机溶剂 中的溶解度不同而采取过滤 、萃取或重结晶的方 法分离提纯 。常见的有 3 种 : (1) 绝对无水溶剂中 惰气保护下的液相合成 , 将稀土盐与溶剂做无水 处理 , 反应容器内要充氮气或氩气氛保护 。这种方 法适于合成一些对空气比较敏感的配合物[4~6 ] 。 (2) 一般有机溶剂在空气中合成[11 , 15 , 33~36 ] , 稀土 盐与溶剂无需进行无水处理 , 也不需要惰气保护 。 (3) 在水溶液中合成 , 用这种方法得到稀土配合物 的报道很少[12 , 17 ] , 这是因为水相反应极大地受到 有机配体溶解和稀土盐水解的限制 , 溶液的 p H 值 和温度等条件也不易选择 。
3 通讯联系人 ( E2mail : wgzhang @scnu . edu . cn)
3 00 中 国 稀 土 学 报 22 卷
1. 3 固液两相合成法 用稀土金属与配体在有机溶剂中反应 。这种用
稀土金属为原料制备配合物的方法近十年才见报 道[3~5] , 该方法是 : 在无水无氧的条件下 , 以稀土金 属单质与含硫有机配体发生简单的热化学反应 , 通 过控制反应物的摩尔比 , 来制备纯度较高、产率较 高的稀土配合物。这种新的制备方法有以下优点 : (1) 简单的一步反应 ; (2) 产物易纯化 , 只需经过简 单的结晶即可得到高纯化合物 ; (3) 用金属作反应 物 , 产物中不含盐类 。Kazushi Mashima 等[4]用稀土 金属首次成功地合成了配合物[ RE(PyS) 2 (hmpa) 3 ] I
土较难配位 。通常需要挑选一些特殊的配体来合 成 。常见的这类含硫有机配体有 : 二硫代 (氨基) 甲 酸类 、二硫代磷酸类 、黄原酸类 、硫冠杂醚类 、硫 脲类 、硫醇类等 。对不同的配体常采用不同的方 法 , 从文献报道看 , 主要有以下几种方法 。 1. 1 固相研磨合成法

稀土—β—二酮配合物的研究进展

稀土—β—二酮配合物的研究进展

稀土—β—二酮配合物的研究进展摘要:介绍了稀土-β-二酮三元配合物的合成方法,并对β-二酮的合成研究进展以及第二配体的合成研究进展进行了综述,最后对其发展方向和应用前景提出了自己的见解。

关键词:稀土β-二酮第二配体研究进展稀土元素的显著特点是大多数稀土离子含有未充满的4f电子,且稀土离子的基态和激发态都为4fn 电子构型,4f电子处于原子结构的内层,受到外层5S 和5P轨道的有效屏蔽引起f-f 跃迁呈现尖锐的线状谱带,其激发态具有相对较长的寿命,然而稀土离子在紫外和可见光区的吸收系数十分低;同时由于这种屏蔽作用使得其配位场效应较小、体积较大,能形成高配位数的配合物,且配合物的键型主要是离子型的,属于硬酸性,与硬碱性的配位原子(如氧、氟、氮等)有较强的配位能力,而β-二酮含有多个强配位氧原子能与稀土离子形成稳定的配合物。

大多数稀土-β-二酮配合物在200~400 nm的紫外区都有强烈的电子吸收,而且热分解温度多在200℃以上,良好的光热稳定性和光储性能使其在激发光光存储领域日益受到人们的重视。

β-二酮化合物是一类重要的有机合成中间体,尤其是作为一种优良的金属螯合剂已经得到了广泛的应用,早期主要用于分离和气相色谱[1,2]。

稀土有机配合物多属于中心离子发光型配合物,其发光具有半峰宽窄、色纯度高、理论内量子效率100%等优点。

从配位化学的角度看,Ln(III)离子倾向于多配位,有机负离子作第一配体满足电荷平衡,电中性的第二配体满足Ln(III)离子配位数;此外第二配体还可以降低配合物的极性,提高挥发性能,合适的第二配体还可以改善配合物载流子的传输性,且第二配体结构不同对材料的发光效率影响也不同。

下面就对稀土β-二酮配合物的合成、β-二酮化合物的合成以及第二配体的合成研究进展作一概述。

一、稀土-β-二酮配合物的合成研究β-二酮具有酮式和烯醇式两种结构并有互变异构反应,因此β-二酮可以看成是一种一元弱酸,与碱反应被夺去一个氢后,成为一个具有两个配位点的一价阴离子,很容易与稀土离子发生配位反应。

稀土配合物研究进展总结

稀土配合物研究进展总结

稀土元素稀土配合物研究进展稀土元素包括镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)这15种镧系元素以及与镧系元素密切相关的钪(Sc)和钇(Y),共17种元素。

根据稀土元素物理化学性质的相似性和差异性,除钪之外划分为三组:La-Nd为轻稀土,Sm-Ho为中稀土,Er-Lu加上Y为重稀土。

稀土离子发光具有线性、不重叠的和可辨认的发射谱带,更特殊的是它们比有机荧光团和半导体荧光纳米晶体(NCS)的谱带宽度更窄。

这是由于发射激发态和基态具有相同的fn电子结构,并且f轨道被外层的s和p层电子所屏蔽。

同样的原因,稀土离子的发射波长不受环境影响,不像有机荧光团,它们会随溶液性质[3]或pH值而改变发射波长。

镧系稀土离子在可见和紫外光谱范围内具有很小的吸收系数,故无机稀土发光材料的发光强度低。

有些有机配体吸光系数比较高,与稀土离子配位后,配体分子(天线)在靠近稀土离子的位置使其敏化,通过天线效应提高了稀土离子的发光强度,这种有机稀土发光材料成为人们研究的重点。

羧酸是合成稀土配合物的一类常用配体。

羧基可以多种方式与稀土离子络合,同时具有芳香环的羧酸类配体,它们在结构上具有刚性和稳定性,已被广泛用于稀土离子配位聚合物的研究稀土配合物的配位特性稀土配合物的配位特性配体中含有负电荷的氧原子时,一般可以形成较稳定的稀土配合物。

N-酰化氨基酸一般以阴离子形式通过羧基氧与稀土离子配位,而氨基中氮与酰基中氧都不参与配位[4]。

对于稀土离子来说,H2O也是一种很强的配体,与稀土离子的络合能力比较强。

在选择配体时,不能选择比水配位能力弱的配体,因为水会与配体竞争配位,因此要选择在极性比较弱的溶剂中反应。

而含有羧基的配体与稀土离子配位后可以在水溶液中析出相应的稀土配合物,但是这种稀土配合物往往会含有配位水分子,而含配位水的稀土配合物的脱水是非常困难的[5]。

稀土论文的总结报告范文(3篇)

稀土论文的总结报告范文(3篇)

第1篇一、论文背景及研究目的随着科技的飞速发展,稀土材料在电子、能源、冶金、农业等领域发挥着越来越重要的作用。

我国是全球最大的稀土资源国,稀土产业在国际市场上具有举足轻重的地位。

然而,稀土资源的开发利用过程中,存在着资源浪费、环境污染等问题。

本论文旨在通过对稀土资源开发利用的研究,探讨稀土产业可持续发展的路径,为我国稀土产业的健康发展提供理论依据。

二、研究方法本论文采用文献综述、实地调研、数据分析等方法,对稀土资源的开发利用现状、存在的问题以及发展趋势进行了深入研究。

1. 文献综述:通过对国内外稀土资源开发利用相关文献的梳理,了解稀土产业的研究动态和发展趋势。

2. 实地调研:深入稀土矿山、加工企业等现场,了解稀土资源开发利用的实际状况。

3. 数据分析:对稀土资源开发利用的相关数据进行分析,揭示存在的问题和发展趋势。

三、研究内容1. 稀土资源开发利用现状(1)我国稀土资源储量丰富,种类齐全,具有较强的国际竞争力。

(2)稀土产业规模逐年扩大,产业集聚效应明显。

(3)稀土产品种类繁多,广泛应用于电子、能源、冶金、农业等领域。

2. 稀土资源开发利用存在的问题(1)资源浪费严重,开采过程中存在环境污染问题。

(2)产业链低端,附加值低,产品同质化严重。

(3)技术创新能力不足,产业链延伸不足。

3. 稀土资源开发利用发展趋势(1)资源开发利用向绿色、高效、清洁方向发展。

(2)产业链向高端延伸,提高产品附加值。

(3)技术创新能力不断提升,产业链延伸更加明显。

四、结论与建议1. 结论(1)我国稀土资源开发利用具有巨大潜力,但存在资源浪费、环境污染等问题。

(2)稀土产业应向绿色、高效、清洁方向发展,提高产业链附加值。

(3)加强技术创新,延伸产业链,提升我国稀土产业的国际竞争力。

2. 建议(1)加强稀土资源勘探,提高资源利用率。

(2)推进绿色开采,降低环境污染。

(3)加大政策扶持力度,鼓励企业技术创新。

(4)加强产业链整合,提高产品附加值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

稀土元素稀土配合物研究进展稀土元素包括镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)这15种镧系元素以及与镧系元素密切相关的钪(Sc)和钇(Y),共17种元素。

根据稀土元素物理化学性质的相似性和差异性,除钪之外划分为三组:La-Nd为轻稀土,Sm-Ho为中稀土,Er-Lu加上Y为重稀土。

稀土离子发光具有线性、不重叠的和可辨认的发射谱带,更特殊的是它们比有机荧光团和半导体荧光纳米晶体(NCS)的谱带宽度更窄。

这是由于发射激发态和基态具有相同的fn电子结构,并且f轨道被外层的s和p层电子所屏蔽。

同样的原因,稀土离子的发射波长不受环境影响,不像有机荧光团,它们会随溶液性质[3]或pH值而改变发射波长。

镧系稀土离子在可见和紫外光谱围具有很小的吸收系数,故无机稀土发光材料的发光强度低。

有些有机配体吸光系数比较高,与稀土离子配位后,配体分子(天线)在靠近稀土离子的位置使其敏化,通过天线效应提高了稀土离子的发光强度,这种有机稀土发光材料成为人们研究的重点。

羧酸是合成稀土配合物的一类常用配体。

羧基可以多种方式与稀土离子络合,同时具有芳香环的羧酸类配体,它们在结构上具有刚性和稳定性,已被广泛用于稀土离子配位聚合物的研究稀土配合物的配位特性稀土配合物的配位特性配体中含有负电荷的氧原子时,一般可以形成较稳定的稀土配合物。

N-酰化氨基酸一般以阴离子形式通过羧基氧与稀土离子配位,而氨基中氮与酰基中氧都不参与配位[4]。

对于稀土离子来说,H2O也是一种很强的配体,与稀土离子的络合能力比较强。

在选择配体时,不能选择比水配位能力弱的配体,因为水会与配体竞争配位,因此要选择在极性比较弱的溶剂中反应。

而含有羧基的配体与稀土离子配位后可以在水溶液中析出相应的稀土配合物,但是这种稀土配合物往往会含有配位水分子,而含配位水的稀土配合物的脱水是非常困难的[5]。

稀土配合物中稀土离子的配位数一般比较高,主要是由稀土离子较大的半径和以离子型为主的键型特点决定的。

当稀土离子与配体的相对大小合适的情况下,形成的稀土配合物中的稀土离子一般都是八或者八以上配位的。

配合物中稀土离子的价态一般为正三价,含有的正电荷较高,如果从电中性的角度看,为了满足电中性,稀土离子也容易形成较高配位数的比较稳定的稀土配合物。

弱碱性的配位原子如含N原子的联吡啶和邻菲啰啉等中性配体,它们作为第二配体时,也可以与稀土离子配位[5]。

稀土有机配合物在光伏器件中的应用太阳能电池对太中的短波长光不敏感,是导致电池光电转换效率较低的主要原因之一。

稀土有机配合物具有荧光量子效率高、Stokes 位移大等优点,近年来受到越来越多的关注与研究。

太阳能是取之不尽、用之不竭的绿色新能源,利用太阳能电池发电可有效解决全球日益严重的传统能源短缺和环境污染的问题。

提高转换效率和降低成本是太阳能电池研究的两大趋势。

太阳能电池对短波长光不敏感是其效率较低的主要原因之一。

近年来,通过光致荧光材料提高太阳能电池的光电转换效率受到广泛关注。

光致荧光材料可吸收300 ~ 500 nm 的短波长光子,并将其转换为太阳能电池光谱响应性更好的长波长光子。

光致荧光材料主要分为量子点、有机染料、稀土有机配合物三大类。

与量子点材料和有机染料相比较,稀土有机配合物具有以下优点: 稀土离子具有高的荧光量子效率,尽管其吸收系数非常低,但通过具有吸收性能好的配体可以改善稀土离子有机配合物的吸收系数; 此类配合物的Stokes 位移大,从而避免了自吸收损失[1]。

近些年来,通过稀土有机配合物提高太阳电池效率的研究报道逐渐增多,本文从稀土有机配合物的光谱转换机理及其在太阳能光伏器件中的应用研究进行综述。

1 稀土有机配合物的光谱转换机理位于镧系元素层的4f 电子在不同能级之间跃迁,从而产生了大量的吸收和荧光光谱信息。

由于受到5s 和5p 轨道的屏蔽,4f 轨道的f - f 跃迁呈现尖锐的线状谱带,使稀土离子具有高的荧光量子效率,属于 f - f 禁阻跃迁的三价稀土离子在紫外光区的吸收系数很小。

有机配体在紫外光区有较强的吸收,而且能有效地将激发态能量通过无辐射跃迁转移给稀土离子的发射态,从而敏化稀土离子的发光,弥补了稀土离子在紫外光区吸光系数很小的缺陷,这种有机配体敏化稀土离子发光的效应称为“天线效应”,这是个光吸收-能量传递-发射的过程。

影响该过程的因素有3 个:配体的光吸收强度和部弛豫过程; 配体-稀土离子的能量传递效率; 稀土离子本身的发射效率[2,3]。

太阳能电池中稀土有机配合物可以通过选择适宜的配体来提高荧光强度。

目前,已用于太阳能电池的稀土有机配合物中配体主要有邻菲罗啉、联吡啶、β-二酮类化合物( 结构如上所示) ;而配合物中稀土离子为铕、镱、铽等三价离子,其中以铕离子居多。

2 稀土有机配合物在太阳能电池中的应用稀土有机配合物在太阳能电池中的应用研究主要集中于硅太阳能电池、有机太阳能电池和荧光集光太阳能光伏器件。

2. 1 稀土有机配合物在硅太阳能电池中的应用硅材料由于具有耐用、无毒、储量丰富和电性能好等优点,被广泛用作太阳能电池的主体材料,因而硅基太阳能电池在各种太阳能电池中占主导地位。

但是,硅太阳能电池对紫外光不敏感,导致硅太阳能电池的转换效率大大降低。

为了提高硅太阳能电池效率,国外的很多研究者都将稀土有机配合物掺杂到聚合物薄膜中,并以此薄膜封装太阳能电池。

Jin 等[4]用[Eu( phen)2]3 + 掺杂的ORMOSIL薄膜涂覆在单晶硅太阳能电池表面,并用[Tb( BPY)2]3 + 掺杂的ORMOSIL 薄膜涂覆在非晶硅太阳能电池表面,光伏特性测试结果表明,相对涂覆之前,单晶硅和非晶硅太阳能电池的最大输出功率分别提高了18% 和8%。

2006 年Marchionna等[5]研究了[Eu( phen)2]( NO3)3配合物掺杂改性PVA 薄膜,并用改性后的薄膜封装单晶硅太阳能电池。

结果表明,单晶硅太阳能电池的输出功率提高了1%。

Liu 等[6]研究了稀土铕( Ⅲ) 配合物掺杂PVA 薄膜的单晶硅光伏组件的光伏特性,首先合成[Eu ( DBM )3phen ]、[Eu( TTA)3phen]、[Eu( TTA)3BPY]、[Eu( TTA)3- BPBPY]等配合物,PVA 薄膜用这些铕配合物掺杂改性后,封装单晶硅太阳能电池组件。

该研究发现这些配合物中[Eu( TTA)3BPBPY]的光致荧光性能最好,与晶硅光伏组件的理想荧光光谱围匹配,用此配合物掺杂的PVA 薄膜封装的晶硅光伏组件效率由16. 05%提高至16. 37%。

Donne等[7]研究了铕配合物掺杂双层PVA 胶封装的太阳能电池,电池顶层用掺有[Eu( tfc)3]配合物的PVA 胶,底层用掺有[Eu( DBM)3phen]配合物的PVA 胶。

结果表明,掺杂配合物的组件对420 nm以下短波长光更加敏感,输出功率相对提高了2. 8%[7],而且降低了成本。

该课题组还合成了铕配合物[Eu( tfc)3EABP],用此配合物改性EVA胶能,用改性后的EVA 胶封装晶体硅太阳能电池组件,在大气质量1. 5 的条件下测试,结果表明,晶体硅组件的输出功率相对提高了2. 9%[8]。

Klampaftis 等[9]用铕配合物改性的EVA 胶封装多晶硅太阳能电池后,电池对紫外光更敏感,转换效率提高了0. 3%,研究发现此铕配合物在高温层压工艺中不稳定。

Wang 等[10]分别用配合物[Eu( TTA)3( TPPO)2]和[Eu ( TTA)3Dpbt]改性EVA 胶,并用其封装多晶硅光伏组件,研究发现配合物[Eu( TTA)3( TPPO)2]能够有效吸收400nm 以下的短波长光,光电转换效率提高了0. 42%,大大降低了发电成本,有望应用于多晶硅光伏组件的实际生产中。

2. 2 稀土有机配合物在有机太阳能电池中的应用有机太阳能电池以具有光敏性质的有机物作为半导体材料,以光伏效应而产生电压形成电流。

近年来有机太阳能电池因其重量轻、制备工艺简单、材料经济且易从分子水平进行设计,与柔性基质材料相容性好等优点成为太阳能电池领域的研究热点之一。

有机太阳能电池按照半导体材料可以分为单质结太阳能电池、P-N 异质结太阳能电池和染料敏化纳米晶太阳能电池。

1997 年,Videlot 等[11]研究了基于酞箐稀土配合物的太阳能电池器件的光伏性能,研究发现,其光伏性能与稀土离子有关,电池填充因子FF在0. 2 ~ 0. 3 围,酞箐镧配合物的太阳能电池产生的光电流强,酞箐钕、铕、钆配合物的太阳能电池产生的光电流强度中等,而酞箐镧配合物的太阳能电池产生的光电流较弱。

为了发展新型光伏材料,Liu 等[12]合成了铽配合物[Tb( B2TBPY)3],并对此配合物的光伏性能进行了研究,测试结果表明,在78. 2 mW/cm2的光照强度下,太阳能电池器件ITO/Tb( B2TBPY)3 /PCH/Al 的性能结果为Voc = 0. 57V, Jsc = 2. 4 mA/cm2,FF = 29. 1%,PCE = 0. 52%。

Chu 等[13]以镱配合物[Y( ACA)3phen]为电子受体材料,联苯二胺类化合物( NPB) 为给体材1088第36 卷第12 期周小英: 稀土有机配合物在光伏器件中的应用料,制备了太阳能电池器件Y( ACA)3phen ITO/NPB( 30 nm) /Y ( ACA)3phen ( 30 nm) /Mg: Ag( 100 nm) ,得到的最优化器件性能结果为Voc =2. 15 V,Jsc = 46 mA/cm2,FF = 30%,PCE =0. 7%。

为了进一步提高基于稀土配合物的有机太阳能电池的光电转换效率,该课题组以配合物[Eu( DBM)3( CPyBM) ]为电子受体材料,以三苯胺类化合物m-MTDATA 为电子给体材料,制备了太阳能电池器件,其性能结果为Voc = 1. 61 V,Jsc = 41. 5 mA/cm2,FF = 25%,PCE = 1. 04%[14]。

Li 等[15]制备了一系列具有双层夹心治结构的稀土配合物———[YⅢ( TClPP) ( Pc) ]、[YⅢH( Pc){ Pc ( a-OC4H9)8} ]和[MⅢ H ( TClPP) { Pc ( a-OC4H9)8} ]( 其中M = Y、Sm、Eu、Tb、Dy、Ho、Lu) ,并以其作为宽光谱吸收剂和电子给体材料,以苝酰亚胺类化合物与纳米级多孔TiOx的混合物为受体材料,制备了宽光谱太阳能电池器件,最优化器件的转换效率为0. 82%。

相关文档
最新文档