阻尼减振降噪技术

合集下载

粘滞阻尼器的工作原理及组成

粘滞阻尼器的工作原理及组成

粘滞阻尼器的工作原理及组成简介粘滞阻尼器作为一种常见的阻尼器,它可以通过摩擦力将动力系统的振动能量转化为热能,以达到减震降噪的效果。

在机械制造、建筑工程、航空航天等领域都得到了广泛的应用。

本文将介绍粘滞阻尼器的工作原理及其组成部分。

工作原理粘滞阻尼器的工作原理是利用材料的粘滞特性,将动力系统的振动能量逐渐转化为热能,从而达到减震降噪的效果。

这种阻尼器有两种方式完成振动能量的消耗,一种是使用粘滞材料,通过粘滞力将振动能量转化为热能;另一种是使用流体粘滞,利用流体力学原理将振动能量转化为热能。

组成部分粘滞阻尼器主要由以下几个部分组成:1.阻尼材料阻尼器中最关键的部件是阻尼材料。

通常会选用耐热性、耐磨性、抗拉强度高的硅橡胶、丁腈橡胶、氟橡胶等材料作为阻尼材料。

这些材料可以通过弹性形变和粘滞吸能的方式将振动能量转化为热能。

2.活塞粘滞阻尼器中的活塞通常由金属或塑料等材料制成,它主要用于承受作用力和传递作用力。

在受到外界作用力的作用下,活塞会受到位移,从而使阻尼材料产生变形,进而实现减震降噪的效果。

3.液压缸液压缸是粘滞阻尼器中的一个重要组成部分。

它能够稳定压缩阻尼材料,使阻尼材料能够实现弹性形变和粘滞效果,进而达到减震的效果。

通常液压缸会使用一定的精度和特殊的加工工艺来保证其精度和封装性。

4.密封材料密封材料在粘滞阻尼器中主要发挥密封作用,以保证液压系统中的液体不会泄漏。

在工作过程中,液体会通过密封材料流经阻尼材料,从而实现减震降噪的效果。

结论粘滞阻尼器作为一种常见的阻尼器,其工作原理和组成部分非常关键。

通过阻尼材料、活塞、液压缸、密封材料等部分的精密配合,粘滞阻尼器能够在振动系统中有效地将振动能量转化为热能,达到减震降噪的效果。

减振降噪技术在高速船舶上的应用

减振降噪技术在高速船舶上的应用

减振降噪技术在高速船舶上的应用高速船舶的噪声和振动是一个重要的问题,它们不仅会影响船员的健康和舒适度,也会对船舶和设备的寿命带来负面影响。

因此,减振降噪技术在高速船舶上的应用变得越来越重要。

减振技术主要通过改变结构或添加附加装置来减少振动,而降噪技术则主要通过隔离和吸收声音来减少噪声。

下面将分别介绍已经应用在高速船舶上的几种减振降噪技术。

1、积木式减振系统积木式减振系统是一种在结构内部放置“积木”来减少结构振动的方法。

这些“积木”通常由橡胶或其他弹性材料制成。

当结构振动时,“积木”会主动吸收和转化振动能量,从而减少振动。

2、主动减振系统主动减振系统通过在结构内部安装振动传感器和控制器,实时检测结构振动并控制附加质量来减少振动。

这种方法适用于需要快速响应和较大振动幅度时。

3、液压减振器液压减振器可以通过传递油压来减少结构振动。

当结构振动时,油压会随之变化,从而改变阻尼特性,减少振幅。

这种方法适用于需要较高的减振效果和持久性的情况。

4、隔振垫隔振垫是一种用于降低噪声和振动的隔离材料。

它们通常由橡胶或其他弹性材料制成,并通过在机器和结构之间减少直接接触来降低噪声和振动。

这种方法适用于需要降低机器噪声和振动的情况。

5、消声器消声器是一种降低噪声级别的装置。

它们通常由内部的吸音材料和外部的隔音材料组成,通过反射和吸收声波来减少噪声。

这种方法适用于需要降低排气系统和空气处理设备的噪声级别的情况。

总之,减振降噪技术在高速船舶上的应用可以降低噪声和振动的危害,保护船员的健康和船舶和设备的寿命,是一个不可忽视的问题。

不同的减振降噪技术需要根据不同情况选择合适的方法。

未来,随着新技术的不断出现,减振降噪技术将越来越成熟和完善。

防震降噪措施

防震降噪措施

防震降噪措施1. 简介在建筑、交通、机械设备等领域,震动和噪音是普遍存在的问题。

不仅会对人体健康产生负面影响,还会损害设备和结构的稳定性。

因此,采取适当的防震降噪措施显得尤为重要。

本文将介绍几种常见的防震降噪措施,希望对相关领域的工程师和设计师有所帮助。

2. 防震措施2.1 减震器减震器是一种常见的防震措施,可以减少地震、风震和机械震动对建筑物和设备的影响。

减震器主要分为三种类型:摆式减震器、弹簧减震器和液体减震器。

2.1.1 摆式减震器摆式减震器是一种结构简单、成本较低的减震装置。

它通过设置可摆动的连接点,使建筑物在受到震动时可以产生相反方向的相对移动,从而减少震动对建筑物的影响。

2.1.2 弹簧减震器弹簧减震器利用弹性变形来吸收和耗散震动能量。

它通过将建筑物或设备与地面隔离,并在之间设置弹簧作为缓冲媒介,减少震动能量的传递。

2.1.3 液体减震器液体减震器利用流体的阻尼特性来减少震动的传递。

它通过将建筑物或设备与地面分离,并在之间注入液体,利用液体的黏性和摩擦阻尼来减少震动的传递。

2.2 隔声措施除了防震措施,隔声措施也是降噪的重要手段。

以下是几种常见的隔声措施:2.2.1 隔声墙隔声墙是一种用于减少声音传递和反射的墙体结构。

它通常由多层材料构成,如隔音石膏板、隔音毡等。

通过合理设计和布局,隔声墙可以有效降低室内和室外的噪音传递。

2.2.2 隔音门窗隔音门窗是一种专门设计的门窗,能够减少声音的传递。

它通常采用多层玻璃、隔音胶条等材料,具有较好的隔音效果。

在噪音较大的环境下,使用隔音门窗可以有效提供室内的静音环境。

2.3 结构优化优化结构是另一种防震降噪的重要手段。

通过合理设计建筑、设备的结构,可以减少震动和噪音的产生和传递。

2.3.1 刚度调整调整结构的刚度是一种常见的结构优化方法。

增加结构刚度可以减少地震和风震对建筑物的影响,减少结构振动。

2.3.2 质量平衡在设计建筑和设备时,做好质量平衡是十分重要的。

国产阻尼减振降噪材料

国产阻尼减振降噪材料

国产阻尼减振降噪材料(潜艇等)前言?nbsp; 随着科学技术的发展和人们环保意识的提高,降低舰船等交通工具的振动和噪声越来越迫切。

如何控制舰船的振动和噪声是一个复杂的系统工程,也是衡量一个国家造船水平的重要标志。

?nbsp; 舰船上存在着多种振源,其产生的振动和噪声会造成严重的危害,如引起铆钉松动,结构破坏;影响船员的舒适性,易造成船员疲劳;影响仪器、仪表的正常工作,降低使用精度等等。

对军船而言,振动和噪声还会降低声呐、雷达的作用距离,大大削弱其战斗力。

?nbsp; 传统的减振降噪方法是结构加强,其主要缺点是振动能没有消耗掉,从而导致噪声向其它部位传播。

阻尼材料利用高分子材料的粘弹性将振动能转化为热能耗散掉,从而有效地降低结构振动和噪声。

阻尼技术对宽频带随机振动和噪声特别有效,尤其适合于以框架结构为主的造船业。

?nbsp; 阻尼技术发展简史?nbsp; 本世纪50年代初,德国专家H.Oberst 最先提出自由阻尼结构的理论并在飞机上得到应用。

50年代末,美国专家Kerwin 和 Ungar等人将Oberst的复刚度法推广至约束阻尼结构,该结构最早应用于核潜艇壳体和主机机座上。

理论和应用表明:约束阻尼结构具有更好的减振降噪效果。

目前,美国、俄罗斯、英国、法国、日本等发达国家在舰船上广泛使用各类阻尼材料。

?nbsp; 我国从60年代起开始研究自由阻尼材料,70年代初具规模。

80年代末期约束阻尼结构的阻尼材料在舰船上得到应用,主要产品有上海钢铁研究所的阻尼钢板、七二五所的SBⅡ阻尼涂料、化工部海洋化工研究院(青岛)的ZHY-171和T54/T60阻尼涂料等。

?nbsp; 目前,阻尼材料已广泛应用于航空、航天、舰船、汽车、机械、纺织、建筑、体育等领域,具有重要的社会和经济效益。

?nbsp; T54/T60阻尼涂料的主要性能?nbsp; 阻尼材料的作用原理是将振动能转化为热能耗散掉,使产生噪声的振动能量大大衰减,即从声(振)源上有效地控制振动和噪声。

阻尼脂的功能

阻尼脂的功能

阻尼脂的功能
阻尼脂是一种具有减震、减振、消声等功能的材料,主要应用于以下领域:
1. 减震防护:阻尼脂可以在物体受到冲击力或振动时吸收和分散能量,减少或消除冲击和振动对物体的损伤。

因此,它常被用于减震器、缓冲材料、防振垫等产品中,以保护机械设备、电子产品或建筑结构不受振动或冲击的影响。

2. 消声降噪:阻尼脂具有吸声效果,能够有效减少声波的传播和反射,降低噪音水平。

它常被用于汽车内部隔音材料、电子产品的降噪处理、建筑隔音等领域,以提供更好的声学环境。

3. 控制振动:阻尼脂可以用于控制机械设备、建筑结构等的振动,以确保其正常运行。

它可以减少共振现象的发生,提高系统的稳定性和可靠性。

4. 增加稳定性:阻尼脂可以提供结构的稳定性,降低结构在受力或受振动时的变形和位移。

因此,它常用于增强建筑结构的稳定性和抗震能力。

需要注意的是,阻尼脂的功能和应用还具有很大的多样性,根据具体的材料配方和设计需求,其功能和应用可能会有所不同。

阻尼减震类书籍

阻尼减震类书籍

阻尼减震类书籍
关于阻尼减震的书籍有《阻尼减振降噪技术》,这本书由戴德沛编写,由西安交通大学出版社出版。

这本书主要讲述了阻尼减震的相关知识,可以作为学习阻尼减震的参考书籍。

此外,关于阻尼减震的专业书籍还有很多,可以通过图书馆、书店或网上购买。

在选择书籍时,建议查看书评、目录和样章,了解书籍的内容和风格是否符合自己的需求和兴趣。

同时,也可以通过阅读学术论文、参加学术会议或在线课程等途径,深入了解阻尼减震领域的最新研究成果和应用进展。

阻尼降噪原理

阻尼降噪原理

阻尼降噪原理
阻尼降噪是指利用某些物质的弹性势能来消耗振动能量的方法,其实质是利用物质的某些特性,在结构中形成一个阻尼层,以降低振动速度和幅度。

例如,在有弹性夹层的梁中,当一阶弯曲振动通过弹性夹层时,由于有一定的阻尼作用,使梁中振动速度衰减较慢。

又如,在一个刚性圆板内装一块橡胶板和一块金属板,金属板置于圆板中。

当一阶弯曲振动通过圆板时,金属板会被压缩变形而与橡胶板一起向外运动。

此时如果在金属板面贴上橡胶板或在金属板面上涂上一些粘性流体(如水),当这两种物质混合在一起时会使金属板产生明显的阻尼力,从而使振动速度下降。

利用这种方法可以制造出具有消声效果的建筑物。

这种消声作用主要是由于建筑结构中某些部位采用了阻尼材料引起的。

阻尼降噪方法是利用某些物质的弹性势能来消耗振动能量,这种能量可以分为弹性、粘弹性和粘弹三种。

其中,弹性势能是通过阻尼材料本身的粘弹性而消耗振动能量;而粘弹性则是通过粘结在结构中的粘性流体(水)来消耗振动能量。

—— 1 —1 —。

混凝土减震降噪处理方法

混凝土减震降噪处理方法

混凝土减震降噪处理方法一、前言混凝土结构在建筑工程中得到广泛应用,但其刚性较大,容易产生噪声和振动,影响人们的生活和工作。

为了减少建筑物的震动和噪声,需要采用一些有效的减震降噪处理方法。

本文将为大家介绍几种常用的混凝土减震降噪处理方法。

二、减震处理方法1. 弹性支座减震法弹性支承法是一种常见的减震处理方法,其原理是将结构与地基之间添加弹性支承,使结构能够在地震或其他外部荷载作用下发生相对位移,从而将地震或其他外部荷载的能量消耗掉,减少结构的震动反应。

弹性支承法的主要优点是易于施工,并且可以根据需要进行调整。

2. 防震支撑减震法防震支撑法是一种通过支撑结构的方式来减小结构受到的地震或其他外部荷载的振动反应的方法。

其基本原理是在结构的支撑点处设置弹性支座或弹簧,使结构能够在地震或其他外部荷载作用下发生相对位移,从而将地震或其他外部荷载的能量消耗掉,减少结构的震动反应。

防震支撑法的主要优点是施工简单、可调性好、减震效果显著。

3. 隔震层减震法隔震层减震法是一种通过在结构下方设置隔振层的方式来减小结构受到的地震或其他外部荷载的振动反应的方法。

其基本原理是在结构下方设置一层隔振材料,例如橡胶、弹簧、减震橡胶、防震垫等,使结构能够在地震或其他外部荷载作用下发生相对位移,从而将地震或其他外部荷载的能量消耗掉,减少结构的震动反应。

隔震层减震法的主要优点是减震效果好、适用范围广、施工方便等。

4. 阻尼器减震法阻尼器减震法是一种通过设置阻尼器来减小结构受到的地震或其他外部荷载的振动反应的方法。

其基本原理是在结构的支撑点处设置阻尼器,当地震或其他外部荷载作用于结构时,阻尼器会产生阻尼力,将地震或其他外部荷载的能量消耗掉,减少结构的震动反应。

阻尼器减震法的主要优点是减震效果好、结构稳定性高、施工方便等。

三、降噪处理方法1. 隔音墙隔音墙是一种常见的降噪处理方法,其主要原理是通过设置具有吸声性能的材料来隔离声源和接收器,从而减少声波的传播和反射。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章.阻尼减振降噪技术A、教学目的1.隔振及其原理(C:理解)2.阻尼降噪及其原理(C:理解)3.阻尼降噪的量度(B:识记)4.阻尼材料和结构的特性及选用(B:识记)B、教学重点隔振原理、阻尼降噪原理及其量度、阻尼材料和结构的特性及选用。

C、教学难点阻尼降噪原理及其量度、阻尼材料和结构的特性及选用。

D、教学用具多媒体——幻灯片E、教学方法讲授法F、课时安排2课时G、教学过程声波起源于物体的振动,物体的振动除了向周围空间辐射在空气中传播的声(称”空气声”)外,还通过其相连的固体结构传播声波,简称“固体声”,固体声在传播的过程中又会向周围空气辐射噪声,特别是当引起物体共振时,会辐射很强的噪声。

振动除了产生噪声干扰人的生活、学习和健康外,特别是1~100Hz的低频振动,直接对人有影响。

长期暴露于强振动环境中,人的机体将受到损害,机械设备或建筑结构也会受到破坏。

对于振动的控制应从以下两方面采取措施:一是对振动源进行改进以减弱振动强度;二是在振动传播路径上采取隔振措施,或用阻尼材料消耗振动的能量并减弱振动向空间的辐射。

从而,直接或间接地使噪声降低。

一. 振动对人体的危害从物理学和生理学角度看,人体是一个复杂系统。

如果把人看作一个机械系统。

振动的干扰对人、建筑物及设备都会带来直接的危害。

振动对人体的影响可分为全身振动和局部振动:全身振动是指人直接位于振动体上时所受的振动;局部振动是指手持振动物体时引起的人体局部振动。

可听声的频率范围为20~20000 Hz,而人能感觉到的振动频率范围为1~100 Hz。

振动按频率范围分为低频振动(30Hz以下)、中频振动(30-100Hz)和高频振动(100 Hz以上)。

实验表明人对频率为2—12 Hz的振动感觉最敏感。

对于人体最有害的振动频率是与人体某些器官固有频率相吻合(即共振)的频率。

这些固有频率是:人体在6 Hz附近;内脏器官在8Hz附近;头部在25 Hz;神经中枢则在250Hz左右。

低于2Hz的次声振动甚至有可能引起人的死亡。

人对振动反应的敏感度按频率和振幅大小,大致分为6个等级,见图10-1。

(P203)振动的影响是多方面的,它损害或影响振动作业工人的身心健康和工作效率,干扰居民的正常生活,还影响或损害建筑物、精密仪群和设备等。

根据人体对某种振动刺激的主观感觉和生理反应的各项物理量,国际标准化组织(ISO)和一些国家推荐提出了不少标准,主要包括局部振动标准(ISO5349-1981, P203)、整体振动标准(ISO2631-1978, P204)和环境振动标准(GB10070-88, P205)。

局部振动标准(ISO5349-1981):如人的手所感受的振动。

整体振动标准(ISO2631-1978):振动对人体的作用取决于:振动强度、频率、方向、暴露时间4个因素。

环境振动标准(GB10070-88):主要针对各种机械设备、交通运输工具和施工机械所产生的振动,以及城市区域环境振动污染。

二. 阻尼材料及其阻尼性能评价指标衡量阻尼材料的阻尼性能主要是根据阻尼材料的损耗因子、振动频率、振幅三要素。

其中,又以阻尼材料的损耗因子作为一般比较对比的主要因素:目前表征材料阻尼性能的参量较多,其中还有玻璃化转变温度Tg,Tg是否与使用环境温度相适应是选择阻尼材料的关键。

最常使用的度量参量比阻尼能力 、相位差角正切tan 、对数衰减率 和品质因子的倒数1/Q等;常用阻尼性能的表征参量有(阻尼材料损耗因子 )复合结构损耗因子η(即单位弧度的阻尼容量:为每单位弧度的相位变化的时间内,内损耗的能量与系统的最大弹性势能之比。

)、阻尼比 以及损失能量与存储能量之比M2/M1 ;这些参量在一定条件下可以相互转换,当阻尼值较小,即tan <0.1时, /2 = =tan = / = Q-1=η=2 = M2/M1①粘性阻尼系数C即阻尼力与振动速度之比。

②临界阻尼系数C C即共振时所能容许的最大粘性阻尼系数。

③阻尼比ξ=C/C C阻尼系数C与临界阻尼系数C C之比。

④阻尼容量ψ即每振动一个周期所损失的能量与系统的最大弹性势能之比。

三. 隔振及其原理研究环境振动防治前,必须先弄清环境振动的传播途径和规律,才能制定的防治对策和控制方法。

下图(P206)为环境振动的传播过程。

在环境保护中遇到的振动源主要有:工厂振源(往复旋转机械、传动轴、电磁振动等),交通振源(汽车、机车、路轨、路面、飞机、气流等),建筑工地(打桩、搅拌、风镐、压路机等)以及大地脉动及地震等;传递介质主要有:地基地坪、建筑物、空气、水、道路、构件设备等;接受者除人群外,还包括建筑物及仪器设备等。

振动控制的基本方法根据振动的性质及其传播的途径,振动的控制方法可归纳为三类:①减少振动源的扰动振动的主要来源是振动源本身的不平衡力引起的对设备的激励。

减少或消除振动源本身的不平衡力(即激励力),从振动源来控制,改进振动设备的设计和提高制造加工装配精度,使其振动最小.是最有效的控制方法。

例如,鼓风机、高压水泵、蒸汽轮机、燃气轮机等旋转机械,大多属高速旋转类,每分钟在于转U上,其微小的质量偏心或安装间隙的不均匀常带来严重的危害。

为此,应尽可能调好其静、动平衡,提高其制造质量,严格控制安装间隙,以减少其离心偏心惯性力的产生。

性能差的风机往往是动平衡不佳,不仅振动厉害,还伴有强烈的噪声。

②防止共振振动机械激励力的振动频率.若与设备的固有频率一致,就会引起共振,使设备振动得更厉害。

起了放大作用,其放大倍数可有几倍到几十倍。

共振带来的破坏和危害是十分严重的。

本工机械中的锯、刨加工,不仅有强烈的振动,而且常伴随壳体等共振,产生的抖动使人难以承受,操作者的手会感到麻木。

高速行驶的载重卡车、铁路机车等,往往使较近的居民楼房等产生共振,在某种频率下,会发生楼面晃动,玻璃窜强烈抖动等。

历史上赞发生过几次严重的共振事故,如美国Tacoma峡谷悬索吊桥,长853 m,宽12 m左右,1940年固风灾(8级大风)袭击,发生了当时难以理解的振动.引起共振,历时1h,使笨重的钢桥翻腾扭曲,量后在可怕的断裂声中整个吊桥彻底毁坏。

因此,防止和减少共振响应是振动控制的一个重要方面。

控制共振的主要方法有:改变设施的结构和总体尺寸或采用局部加强法等,以改变机械结构的固有频率;改变机器的转速或改换机型等以改变振动源的扰动频率;将振动源安装在非刚性的基础上以降低共振响应;对于一些薄壳机体或仪器仪表柜等结构,用粘贴弹性高阻尼结构材料增加其阻尼,以增加能量逸散,降低其振幅。

③采用隔振技术振动的影响,特别是对于环境来说,主要是通过振动传递来达到的,减少或隔离振动的传递,振动就得以控制。

采用大型基础来减少振动影响是最常用最原始的方法。

根据工程振动学原则合理地设计机器的基础,可以减少基础(和机器)的振动和振动向周围的传递。

根据经验,一般的切削机床的基础是自身重量的1-2倍,而特殊的振动机械如锻冲设备则达到设备自重的2-5倍,更甚者达10倍以上。

在振动机械基础的四周开有一定宽度和深度的沟槽——防振沟,里面填充松软物质(如木屑等)或不填,用来隔离振动的传递,这也是以往常采用的隔振措施之一。

在设备下安装隔振元件——隔振器,是目前工程上应用最为广泛的控制振动的有效措施。

安装这种隔振元件后,能真正起到减少振动与冲击力的传递的作用,只要隔振元件选用得当,隔振效果可在85%-90%以上,而且可以不必采用上面讲的大型基础。

对一般中、小型设备,甚至可以不用地脚螺钉和基础,只要普通的地坪能承受设备的静负荷即可。

隔振原理研究机器设备振动力传递给基础的基本模型是一个单自由度系统。

虽然实际振动控制系统可能很复杂,但单自由度系统的分析概念和隔振原理却是理解和解决复杂问题的基础,其方法也大体相同。

下右图是一个单自由度振动系统模型。

振动系统的主要参量是质量M 、弹簧K 、阻尼δ,外激励力F ,y 表示振动在y 方向的位移,根据牛顿第二定律系统的运动方程为:F y K dt dy dt y d M =⋅++δ22 式中:22dty d M :惯性力 dtdy δ:粘滞阻尼力 y K ⋅:弹性力t F F ωcos 0=:设定外力为简谐力22)(ωωδK M Z m -+=:力阻抗则可解得: )cos()cos(00ϕωωϕωβ+⋅⋅++⋅=⋅-t Z F t e A y mt : 振动波形(振幅随时间的变化曲线)2200)(ωωδωωK M F Z F A m -+⋅=⋅= :最大振幅结论:①影响振动波的因素主要和振动体的固有频率、阻尼减振结构或材料相关。

②阻尼系统中,振动波形公式第一项会消减,外有激励力的影响决定振动达到稳态振动(规律性)的持续时间(即振动波形公式第二项)。

③振动是与时间、振幅、固有频率相关量,也是与振动体系中刚弹性能、阻尼性能相关的量。

隔振的力传递率力传递率T f 定义为通过隔振装置传递到基础上的力F f 的幅值F f0与作用于振动系统上的激励力的幅值F 0之比。

2022202022200)/(4])/(1[)/(41)(f f f f f f Z K F F T m f f ξξωδω+-+=+== 式中:0/δδξ=:阻尼比(阻尼因子)结论:①1/0《f f 时,无隔振作用;②1/0=f f 时,放大振动作用;③2/0》f f 时,有隔振作用;四、阻尼降噪及其原理阻尼是指阻碍物体的相对运动,并把运动能量转变为热能的一种作用。

阻尼材料是具有内损耗、内摩擦的材料,如沥青、软橡胶以及其它一些高分子涂料。

阻尼降噪即在振动结构上涂上或粘附上一层内摩擦阻力大的阻尼材料来抑振,降低辐射噪声。

4.1.阻尼材料的阻尼能力大小评价指标①粘性阻尼系数C即阻尼力与振动速度之比。

②临界阻尼系数C C即共振时所能容许的最大粘性阻尼系数。

③阻尼比ξ即ξ=C/C C 。

④阻尼容量ψ即每振动一个周期所损失的能量与系统的最大弹性势能之比。

⑤损耗因子η即单位弧度的阻尼容量。

4.2.附加阻尼的常用方法① 自由阻尼层结构 (阻尼材料被压缩变形):既无任何刚性结构材料的贴附或约束。

自由阻尼层结构损耗因子:212122)(14d d E E ⋅⋅=ηη 一般涉及参量有:E 1、E 2——分别为基材和阻尼材料的弹性模量,η2——阻尼材料损耗因子,d 1、d 2——分别为基材和阻尼材料的厚度。

② 约束阻尼层结构 (阻尼材料被剪切变形):指有刚弹性材料的粘附或约束。

21133max 3ηηηηE E = 一般涉及参量同上,E 3 、η3分别是约束层的弹性模量和损耗因子。

四、阻尼降噪的量度阻尼材料的阻尼系数、声阻抗、声压级的为指标的降噪量。

五、阻尼材料和结构的特性及选用粘弹性阻尼材料动态性能主要指复剪切模量实部G D (或复杨氏模量实部E D )和材料损耗因子η。

相关文档
最新文档