半导体激光器实验

半导体激光器实验
半导体激光器实验

实验十五半导体激光器实验

一、实验目的

1.了解半导体激光器的基本原理和基本特性;

2.掌握半导体激光器的使用方法。

二、实验原理

半导体激光器之所以受到重视,是因为它既有激光单色性好、相干性好、方向性好、亮度高等特点,又具有半导体器件的体积小、重量轻、结构简单、使用方便、效率高和工作寿命长等优点。半导体激光器能直接利用电源对输出激光进行调制,而且发射波长恰好与光纤传输损耗最低的波段相匹配,因此,可成为光通信的理想光源。同时在CD、DVD、激光打印机、激光全息照相、光信息处理、激光高速印刷、数码显示、激光测距、激光准直、激光雷达、激光大气污染测试、光谱分析、航标、泵浦能源等领域也有广泛的应用前景。

和其他激光器一样,要使半导体发射激光,必须具备三个基本条件:

(1)建立粒子数反转分布,以产生受激辐射;

(2)建立一个能起到光反馈作用的谐振腔,以产生激光振荡;

(3)满足一定的阈值条件,使得光增益大于损耗。

在简单的两能级系统中,高能级的载流子数大于低能级的载流子数就实现了载流子的反转分布,受激辐射将大于受激吸收而产生光学增益。在半导体激光器中受激跃迁发生在被占据的导带电子态和价带空穴态之间,其跃迁发生在能量分布较广的能级之间,这时载流子反转分布的条件有所不同。

图15—1(a)表示T≈0K时直接带隙半导体中载流子的填充情况,能量大于带隙能量E g的入射光子将被吸收发生吸收跃迁。假若用某种激励方式使电子受激从价带跃迁到导带,经一段很短驰豫时间后,电子填充情况如图14—1(b)所示。

在一定温度T时,电子占据导带和价带中某一能级E的几率f C(E)和f v (E)满足费米-狄拉克分布,分别为

????

??????????????-+=-+=)exp(1)()exp(1)(T E E a E f T E E a E f FV v FC e κκ 式中E FC 、E FV 分别是导带和价带的准费米能级,R 是玻尔兹曼常数。若用能量为h ν的光子束照射半导体系统,必然要引起光的受激辐射和吸收。要使受激辐射大于受激吸收,也就是实现载流子反转分布,必须

f C (E )>f ν(E-h ν)即E FC -E FV >h ν>E g

获得反转分布的一个简单方法,就是利用重掺杂p 型和n 型半导体构成p —n 结,如图15-2所示。零偏压时,两区有统一的费米能级,载流子处于热平衡状态,如图15-2(a )。当加上偏压V 时,p —n 结处于势垒降低,n 区向p 区注入电子,p 区向n 区注入空穴,当h ν=E FC -E FV ≥E g 时,在结平面附近形成分布反转区,受激辐射占主导地位,可得到光量子的放大。此分布反转区是激光器的核心部分,称为“激活区”,或“有源区”和其他激光器一样,要使受激辐射达到发射激光的要求,即达到强度更大的单色相干光,还必须依靠光学谐振腔的作用,并使注入电流达到一定的数值——阈值电流,使腔内的单程增益大于损耗,形成激光输出。

图15—3是注入型半导体激光器的基本结构,利用适当的扩散和外延工艺制成p—n结,利用垂直于p—n结的两个相对的自然解理面组成谐振腔。

如果这种结构中的p区和n区都采用同种半导体材料,称之为同质结半导体激光器。这种激光器的阈值电流密度的数量级可达105安/厘米2。因此,尽管加装了散热器,也无法在室温下连续工作。后来,人们相继研制成单异质结、双异质结半导体激光器,使阈值电流密度大大降低,实现室温下连续工作。

半导体激光器的工作特质主要是Ⅲ-V族化合物半导体、Ⅳ-Ⅵ族化合物半导体以及Ⅱ-Ⅵ族化合物半导体。其振荡波长覆盖范围很宽,约从30μm(P b S n T e)的红外波段到320nm(ZnS)的紫外波段。目前应用最多的材料是GaAs-AlGaAs (0.8-0.9μm)InP-InGaAsP(1.3-1.35μm)和InP-InGaAs(1.5-1.65μm)材料。

半导体激光器的激励方式有:p-n结注入电流激励、电子束激励、光激励、碰撞电离激励等。目前研究和应用最多的是p-n结注入电流激励,这种激励方式的半导体激光器称为激光二极管,也称为注入型半导体激光器。

半导体激光器由于有源层模截面的不对称和很小的线度,其远场光斑既不对称,又具有很大的光束发散角,这是因其发射区域小,引起了衍射效应所致。图15—4是一个半导体激光器的典型远场辐射图,两个半功率强度点处的全角宽分别记为θ

和θ〃,为光束发散角。

三、实验设备

半导体激光器及其电源

激光功率计、双踪示波器、信号源、光电二极管。

四、实验内容

1.测量半导体激光器的阈值电流

实验装置如图15-5所示,把激光器输出端面正对光电二极管,开启激光器电源,缓慢增加泵浦电流,测量输出光功率随激光器泵浦电流的变化,作出P-I

关系曲线,将P-I曲线中出现拐点处所对应的电流值定为阈值。

图15-5 测量阈值电流的实验装置

2.测量半导体激光器的光束发散角

实验装置同上,固定半导体激光器与光电二极管的纵向距离,沿着与光束

相垂直的横向X、Y方向移动光电二极管,测量不同位置的光功率,画出半导体

激光器输出功率的空间分布曲线,求出光束发散角。

3.观察半导体激光器的调制特性

实验装置如图15—6所示,开启信号源,将交流信号与恒流源同时注入半导体激光器,在双踪示波器上观察输出光被调制的情况,改变半导体激光器泵浦电流,观察被调制的输出光随泵浦电流的变化,并作出解释。

图15-6 半导体激光器调制特性测量装置

半导体泵浦激光原理实验

半导体泵浦激光原理实验 理工学院光信息2班贺扬10329064 合作人:余传祥 【实验目的】 1、了解与掌握半导体泵浦激光原理及调节光路方法。 2、掌握腔内倍频技术,并了解倍频技术的意义。 3、掌握测量阈值、相位匹配等基本参数的方法。 【实验仪器】 808nm半导体激光器、半导体激光器可调电源、晶体、KTP倍频晶体、输出镜(前腔片)、光功率指示仪 【实验原理】 激光的产生主要依赖受激辐射过程。 处于激发态的原子,在外的光子的影响下,从高能态向低能态跃迁,并在两个状态的能量差以辐射光子的形式发出去。只有外来光子的能量正好为激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完全相同。 激光器主要有:工作物质、谐振腔、泵浦源组成。工作物质主要提供粒子数反转。 泵浦过程使粒子从基态抽运到激发态,上的粒子通过无辐射跃迁,迅速转移到亚稳态。是一个寿命较长的能级,这样处于的粒子不断累积,上的粒子又由于抽运过程而减少,从而实现与能级间的粒子数反转。 激光产生必须有能提供光学正反馈的谐振腔。处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,只有沿轴向的光子,部分通过输出镜输出,

部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。 激光倍频是将频率为的光,通过晶体中的非线性作用,产生频率为的光。 当外界光场的电场强度足够大时(如激光),物质对光场的响应与场强具有非线性关系: 式中均为与物质有关的系数,且逐次减小。 当E很大时,电场的平方项不能忽略。 ,直流项称为光学整流,当激光以一定角度入射到倍频晶体时,在晶体产生倍频光,产生倍频光的入射角称为匹配角。 倍频光的转换效率为倍频光与基频光的光强比,通过非线性光学理论可以得到: 式中L为晶体长度,、分别为入射的基频光、输出的倍频光光强。 在正常色散情况下,倍频光的折射率总是大于基频光的折射率,所以相位失配,双折射晶体中的o光和e光折射率不同,且e光的折射率随着其传播方向与光轴间夹角的变化而改变,可以利用双折射晶体中o光、e光间的折射率差来补偿介质对不同波长光的正常色散,实现相位匹配。 【实验装置】 图2 实验装置示意图

光的偏振 实验报告.doc

光的偏振 实验仪器: 光具座、半导体激光器、偏振片、1/4波片、激光功率计。 实验原理: 自然光经过偏振器后会变成线偏振光。偏振片既可作为起偏器使用,亦可作为检偏器使用。 马吕斯定律:马吕斯指出:强度为I0的线偏振光,透过检偏片后,透射光的强度(不考虑吸收)为I=I0cos2。(是入射线偏振光的光振动方向和偏振片偏振化方向之间的夹角。) 当光法向入射透过1/4波片时,寻常光(o光)和非常光(e光)之间的位相差等于π/2或其奇数倍。当线偏振光垂直入射1/4波片,并且光的偏振和云母的光轴面成θ角,出射后成椭圆偏振光。特别当θ=45°时,出射光为圆偏振光。 实验1、2光路图: 实验5光路图: 实验步骤: 1.半导体激光器的偏振特性: 转动起偏器,观察其后的接受白屏,记录器功率最大值和最小值,以及对应的角度,求出半导体激光的偏振度。 2。光的偏振特性——验证马吕斯定律: 利用现有仪器,记录角度变化与对应功率值,做出角度与功率关系曲线,并与理论值进行比较。 5.波片的性质及利用: 将1/4波片至于已消光的起偏器与检偏器间,转动1/4波片观察已消光位置,确定1/4波片光轴方向,改变1/4波片的光轴方向与起偏器的偏振方向的夹角,对应每个夹角检偏器转动一周,观察输出光的光强变化并加以解释。

实验数据: 实验一: 实验二: 实验五: 数据处理: 实验一: 计算得半导体激光的偏振度约为 故半导体激光器产生的激光接近于全偏振光。实验二: 绘得实际与理论功率值如下:

进行重叠发现二者的图线几乎完全重合,马吕斯定律得到验证。实验五:见“实验数据”中的表格

总结与讨论: 本次实验所用仪器精度较高,所得数据误差也较小。 当光法向入射透过1/4波片时,寻常光(o光)和非常光(e光)之间的位相差等于π/2或其奇数倍。当线偏振光垂直入射1/4波片,并且光的偏振和云母的光轴面成θ角,出射后成椭圆偏振光。特别当θ=45°时,出射光为圆偏振光,这就是实验五中透过1/4波片的线 偏光成为不同偏振光的原因。XX大学生实习报告总结 3000字 社会实践只是一种磨练的过程。对于结果,我们应该有这样的胸襟:不以成败论英雄,不一定非要用成功来作为自己的目标和要求。人生需要设计,但是这种设计不是凭空出来的,是需要成本的,失败就是一种成本,有了成本的投入,就预示着的人生的收获即将开始。 小草用绿色证明自己,鸟儿用歌声证明自己,我们要用行动证明自己。打一份工,为以后的成功奠基吧! 在现今社会,招聘会上的大字板都总写着“有经验者优先”,可是还在校园里面的我们这班学子社会经验又会拥有多少呢?为了拓展自身的知识面,扩大与社会的接触面,增加个人在社会竞争中的经验,锻炼和提高自己的能力,以便在以后毕业后能真正的走向社会,并且能够在生活和工作中很好地处理各方面的问题记得老师曾说过学校是一个小社会,但我总觉得校园里总少不了那份纯真,那份真诚,尽管是大学高校,学生还终归保持着学生身份。而走进企业,接触各种各样的客户、同事、上司等等,关系复杂,但你得去面对你从没面对过的一切。记得在我校举行的招聘会上所反映出来的其中一个问题是,学生的实际操作能力与在校的理

44瓦超高功率808nm半导体激光器设计与制作

44瓦超高功率808 nm半导体激光器设计与制作 仇伯仓,胡海,何晋国 深圳清华大学研究院 深圳瑞波光电子有限公司 1. 引言 半导体激光器采用III-V化合物为其有源介质,通常通过电注入,在有源区通过电子与空穴复合将注入的电能量转换为光子能量。与固态或气体激光相比,半导体激光具有十分显著的特点:1)能量转换效率高,比如典型的808 nm高功率激光的最高电光转换效率可以高达65%以上[1],与之成为鲜明对照的是,CO2气体激光的能量转换效率仅有10%,而采用传统灯光泵浦的固态激光的能量转换效率更低, 只有1%左右;2)体积小。一个出射功率超过10 W 的半导体激光芯片尺寸大约为mm3, 而一台固态激光更有可能占据实验室的整整一张工作台;3)可靠性高,平均寿命估计可以长达数十万小时[2];4)价格低廉。半导体激光也同样遵从集成电路工业中的摩尔定律,即性能指标随时间以指数上升的趋势改善,而价格则随时间以指数形式下降。正是因为半导体激光的上述优点,使其愈来愈广泛地应用到国计民生的各个方面,诸如工业应用、信息技术、激光显示、激光医疗以及科学研究与国防应用。随着激光芯片性能的不断提高与其价格的持续下降,以808 nm 以及9xx nm为代表的高功率激光器件已经成为激光加工系统的最核心的关键部件。高功率激光芯片有若干重要技术指标,包括能量转换效率以及器件运行可靠性等。器件的能量转换效率主要取决于芯片的外延结构与器件结构设计,而运行可靠性主要与芯片的腔面处理工艺有关。本文首先简要综述高功率激光的设计思想以及腔面处理方法,随后展示深圳清华大学研究院和深圳瑞波光电子有限公司在研发808nm高功率单管激光芯片方面所取得的主要进展。 2.高功率激光结构设计 图1. 半导体激光外延结构示意图

实验报告-半导体泵浦激光原理

激光器主要有:工作物质、谐振腔、泵浦源组成。工作物质主要提供粒子数反转。 泵浦过程使粒子从基态E1抽运到激发态E3,E3上的粒子通过无辐射跃迁(该过程粒子从高能级跃迁到低能级时能量转变为热能或晶格振动能,但不辐射光子),迅速转移到亚稳态E2。E2是一个寿命较长的能级,这样处于E2的粒子不断累积,E1上的粒子又由于抽运过程而减少,从而实现E2与E1能级间的粒子数反转。 激光产生必须有能提供光学正反馈的谐振腔。处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,偏

离轴向的光子很快逸出腔外,只有沿轴向的光子,部分通过输出镜输出,部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。 光的倍频是一种最常用的扩展波段的非线性光学方法。激光倍频是将频率为ω的光,通过晶体中的非线性作用,产生频率为2ω的光。 当光与物质相互作用时,物质中的原子会因感应而产生电偶极矩。单位体积内的感应电偶极矩叠加起来,形成电极化强度矢量。电极化强度产生的极化场发射出次级电磁辐射。当外加光场的电场强度比物质原子的内场强小得多时,物质感生的电极化强度与外界电场强度成正比。 P=ε0χE 在激光没有出现前,当有几种不同频率的光波同时与该物质作用时,各种频率的光都线性独立地反射、折射和散射,满足波的叠加原理,不会产生新的频率。 当外界光场的电场强度足够大时(如激光),物质对光场的响应与场强具有非线性关系: P=αE+βE2+γE3+?

式中α,β,γ,…均为与物质有关的系数,且逐次减小。 考虑电场的平方项 E=E0cosωt P(2)=βE2=βE02cos2ωt=βE02 (1+cos2ωt) 出现直流项和二倍频项cos2ωt,直流项称为光学整流,当激光以一定角度入射到倍频晶体时,在晶体产生倍频光,产生倍频光的入射角称为匹配角。 倍频光的转换效率为倍频光与基频光的光强比,通过非线性光学理论可以得到: η=I2ω ω ∝βL2Iω sin2(Δkl/2) 式中L为晶体长度,Iω、I2ω分别为入射的基频光、输出的倍频光光强。 在正常色散情况下,倍频光的折射率n2ω总是大于基频光的折射率,所以相位失配,双折射晶体中的o光和e光折射率不同,且e光的折射率随着其传播方向与光轴间夹角的变化而改变,可以利用双折射晶体中o光、e光间的折射率差来补偿介质对不同波长光的正常色散,实现相位

实验报告——半导体激光器输出光谱测量

实验报告——半导体激光器输出光谱测量 实验时间:2017.03.04 一、实验目的 1、了解半导体激光器的基本原理及基本参数; 2、测量半导体激光器的输出特性和光谱特性; 3、了解外腔选模的机理,熟悉光栅外腔选模技术; 4、熟悉压窄谱线宽度的方法。 二、实验原理 1.半导体激光器 激光(LASER)的全称 light amplification by stimulated emission of radiation 意为通过受激发射实现光放大。 激光器的基本组成如下图: 必要组成部分无外乎:谐振腔、增益介质、泵浦源。 在此基础上,激光产生的条件有二: 1)粒子数反转 通过外界向工作物质输入能量,使粒子大部分处于高能态,而非基态。 2)跃迁选择定则 粒子能够从基态跃迁到高能态,需要两个能级之间满足跃迁选择定则,电子相差 的奇数倍角动量差。 世界上第一台激光器是1960年7月8日,美国科学家梅曼发明的红宝石激光器。 1962年世界上第一台半导体激光器发明问世。 2.半导体激光器的基本原理 半导体激光器工作原理是激励方式,利用半导体物质(既利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈、产生光的辐射放大,输出激光。 没有杂质的纯净半导体,称为本征半导体。 如果在本征半导体中掺入杂质原子,则在导带之下和价带之上形成了杂质能级,分别称为施主能级和受主能级。 有施主能级的半导体称为n型半导体;有受主能级的半导体称这p型半导体。在常温下,热能使n型半导体的大部分施主原子被离化,其中电子被激发到导带上,成为自由电子。而p型半导体的大部分受主原子则俘获了价带中的电子,在价带中形成空穴。因此,n 型半导体主要由导带中的电子导电;p型半导体主要由价带中的空穴导电。 若在形成了p-n结的半导体材料上加上正向偏压,p区接正极,n区接负极。正向电压的电场与p-n结的自建电场方向相反,它削弱了自建电场对晶体中电子扩散运动的阻碍

实验四 连续半导体泵浦固体激光器静态输出特性和声光调Q实验

实验四连续半导体泵浦固体激光器静态输出特性 和声光调Q实验 实验目的 1.了解固体激光器的输出特性和阈值特性,掌握激光器输出特性斜率效率的计 算; 2.掌握激光器设计中最佳透过率的概念,巩固最佳透过率选取原则; 3.掌握声光调Q的基本原理和布拉格衍射的特征及布拉格衍射角的概念,了解 激光器在连续和调Q脉冲工作状态下的激光功率输出特性, 4.了解不同调Q频率下,激光功率变化的原因,巩固最佳调Q频率选取的原则。 实验原理 1. 固体Nd:YAG激光器工作原理 固体激光器通常由三个基本部分组成,即固体激光工作物质、泵浦源和光学谐振腔。 激光工作物质是激光器的心脏,产生激光的是激活离子,激光器的输出特性在很大程度上由激活离子的能级结构决定。目前,常用的固体激光工作物质有红宝石晶体、钕玻璃和掺钕钇铝石榴石(即Nd3+:YAG)晶体。由于Nd3+:YAG晶体具有荧光谱线窄、量子效率高等特点,它的增益高、阈值低、激光输出效率高,故在中小功率的脉冲器件中,以及在高重复率的脉冲激光器中得到广泛应用。本实验中即采用Nd3+:YAG作为激光工作物质,该工作物质的激活离子为Nd3+,属四能级系统,发射激光波长为1.06μm,工作于连续方式。Nd3+:YAG产生受激辐射的能级如图4-1所示。激活粒子(Nd3+:离子)在这些能级之间的跃迁特性为:在光泵浦作用下,处于基态能级E1上的粒子被激发到高能级E4上,由于E4能级寿命很短,处在该能级上的粒子很快以无辐射跃迁方式迅速转移到较低的激发态能级E3上,E3为亚稳态,在E3能级上的粒子有较长的寿命(10-3~10-4s),因而易于实现粒子数积累。当粒子数由E3向E2跃迁时,产生激光辐射,粒子到达能级E2后,再以无辐射跃迁迅速地返回到基态E1。基于这种状态以及由于热平衡情况,使得粒子不易在E2能级上积聚,因此,在外界激励下,E3和E2之间较易形成粒子数反转,从而实现受激辐射。

半导体激光器pi特性测试实验

太原理工大学现代科技学院 课程实验报告 专业班级 学号 姓名 指导教师

实验名称 半导体激光器P-I 特性测试实验 同组人 专业班级 学号 姓名 成绩 一、 实验目的 1. 学习半导体激光器发光原理和光纤通信中激光光源工作原理 2. 了解半导体激光器平均输出光功率与注入驱动电流的关系 3. 掌握半导体激光器P (平均发送光功率)-I (注入电流)曲线的测试方法 二、 实验仪器 1. ZY12OFCom13BG 型光纤通信原理实验箱 1台 2. 光功率计 1台 3. FC/PC-FC/PC 单模光跳线 1根 4. 万用表 1台 5. 连接导线 20根 三、 实验原理 半导体激光二极管(LD )或简称半导体激光器,它通过受激辐射发光,(处于高能级E 2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E 1,这个过程称为光的受激辐射。所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。)是一种阈值器件。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW )辐射,而且输出光发散角窄(垂直发散角为30~50°,水平发散角为0~30°),与单模光纤的耦合效率高(约30%~50%),辐射光谱线窄(Δλ=0.1~1.0nm ),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz )直接调制,非常适合于作高速长距离光纤通信系统的光源。 P-I 特性是选择半导体激光器的重要依据。在选择时,应选阈值电流I th 尽可能小,I th 对应P 值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,消光比(测试方法见实验四)大, ……………………………………装………………………………………订…………………………………………线………………………………………

实验一-半导体激光器系列实验

实验一-半导体激光器系列实验

实验一半导体激光器系列 实验

一、实验设备介绍 2.配套仪器的使用 WGD-6光学多道分析器的使用参考WGD-6光学多道分析器的使用说明书。 3.激光器概述 光电子器件和技术是当今和未来高技术的基础,引起世界各国的极大关注。其中半导体激光器的生产和应用发展特别迅猛,它已经成功地用于光通讯和光学唱片系统;还可以作为红外高分辨率光谱仪光源,用于大气测污和同位素分离等;同时半导体激光器可以成为雷达,测距,全息照相和再现、射击模拟器、红外夜视仪、报警器等的光源。半导体激光器,调频器,放大器集成在一起的集成光路将进一步促进光通 - 1 -

讯,光计算机的发展。 激光器一般包括三个部分: (1)激光工作介质 激光的产生必须选择合适的工作介质,可以是气体、液体、固体或半导体。在这种介质中可以实现粒子数反转,以制造获得激光的必要条件。显然亚稳态能级的存在,对实现粒子数反转是非常有利的。现有工作介质近千种,可产生的激光波长包括从真空紫外到远红外,非常广泛。 (2)激励源 为了使工作介质中出现粒子数反转,必须用一定的方法去激励原子体系,使处于上能级的粒子数增加。一般可以用气体放电的办法来利用具有动能的电子去激发介质原子,称为电激励;也可用脉冲光源来照射工作介质,称为光激励;还有热激励、化学激励等。各种激励方式被形象化地称为泵浦或抽运。为了不断得到激光输出,必须不断地“泵浦”以维持处于上能级的粒子数比下能级多。 (3)谐振腔 有了合适的工作物质和激励源后,可实现粒子数反转,但这样产生的受激辐射强度很弱,无法实际应用。于是人们就想到了用光学谐振腔进行放大。所谓光学谐振腔,实际是在激光器两端,面对面装上两块反射率很高的镜。一块几乎全反射,一块大部分反射、 - 2 -

半导体激光器

半导体激光器 半导体激光器又称激光二极管[1](LD)。进入八十年代,人们吸收了半导体物理发展的最新成果,采用了量子阱(QW)和应变量子阱(SL-QW)等新颖性结构,引进了折射率调制Bragg发射器以及增强调制Bragg发射器最新技术,同时还发展了MBE、MOCVD及CBE等晶体生长技术新工艺,使得新的外延生长工艺能够精确地控制晶体生长,达到原子层厚度的精度,生长出优质量子阱以及应变量子阱材料。于是,制作出的LD,其阈值电流显著下降,转换效率大幅度提高,输出功率成倍增长,使用寿命也明显加长。 A 小功率LD 用于信息技术领域的小功率LD发展极快。例如用于光纤通信及光交换系统的分布反馈(DFB)和动态单模LD、窄线宽可调谐DFB-LD、用于光盘等信息处理技术领域的可见光波长(如波长为670nm、650nm、630nm的红光到蓝绿光)LD、量子阱面发射激光器以及超短脉冲LD等都得到实质性发展。这些器件的发展特征是:单频窄线宽、高速率、可调谐以及短波长化和光电单片集成化等。 B 高功率LD 1983年,波长800nm的单个LD输出功率已超过100mW,到了1989年,0.1 mm条宽的LD则达到3.7W的连续输出,而1cm线阵LD已达到76W输出,转换效率达39%。1992年,美国人又把指标提高到一个新水平:1cm线阵LD连续波输出功率达121W,转换效率为45%。现在,输出功率为120W、1500W、3kW等诸多高功率LD均已面世。高效率、高功率LD及其列阵的迅速发展也为全固化激光器,亦即半导体激光泵浦(LDP)的固体激光器的迅猛发展提供了强有力的条件。 近年来,为适应EDFA和EDFL等需要,波长980nm的大功率LD也有很大发展。最近配合光纤Bragg光栅作选频滤波,大幅度改善其输出稳定性,泵浦效率也得到有效提高。 【特点及应用范围】半导体二极管激光器是实用中最重要的一类激光器。它体积小、寿命长,并可采用简单的注入电流的方式来泵浦其工作电压和电流与集成电路兼容,因而可与之单片集成。并且还可以用高达GHz的频率直接进行电流调制以获得高速调制的激光输出。由于这些优点,半导体二极管激光器在激光通信、光存储、光陀螺、激光打印、测距以及雷达等方面以及获得了广泛的应用。 【半导体激光器的发展及应用】半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器,60年代早期,很多小组竞相进行这方面的研究。在理论分析方面,以莫斯科列别捷夫物理研究所的尼古拉·巴索夫的工作最为杰出。 在1962年7月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,这引起通用电气研究实验室工程师哈尔(Hall)的极大兴趣,在会后回家的火车上他写

实验1NdYAG固体激光器实验

hv 2 1 (a) 2 1 (b) 2 E 1 (c) 图1、光与物质作用的吸收过程 Nd :YAG 固体激光器实验 一、 实验内容与器件 1、了解半导体激光器的工作原理和光电特性 2、掌握半导体泵浦固体激光器的工作原理和调试方法 二、 实验原理概述 1. 激光产生原理 光与物质的相互作用可以归结为光与原子的相互作用,有三种过程:吸收、自发辐射和受激辐射。 如果一个原子,开始处于基态,在没有外来光子,它将保持不变,如果一个能量为hv 21的光子接近,则它吸收这个光子,处于激发态E 2。在此过程中不是所有的光子都能被原子吸收,只有当光子的能量正好等于原子的能级间隔 E 1-E 2时才能被吸收。 激发态寿命很短,在不受外界影响时,它们会自发地返回到基态,并放出光子。自发辐射过程与外界作用无关,由于各个原子的辐射都是自发的、独立进行的,因而不同原子发出来的光子的发射方向和初相位是不相同的。 处于激发态的原子, 在外的光子的影响下,会从高能态向低能态跃迁,并两个状态间的能量差以辐射光子的形式发射出去。只有外来光子的能量正好为激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完 全相同。激光的产生主要依赖受激辐射过程。激光器主要有:工作物质、谐振腔、泵浦源组成。工作物质主要提供粒子数反转。 hv 21 2 E 1 (a) E 2 E 1 (b) hv 21 hv 21 图2、光与物质作用的受激辐射过程

泵浦过程使粒子从基态E 1抽运到激发态E 3,E 3上的粒子通过无辐射跃迁(该过程粒子从高能级跃迁到低能级时能量转变为热能或晶格振动能,但不辐射光子),迅速转移到亚稳态E 2。E 2是一个寿命较长的能级,这样处于E 2上的粒子不断积累,E 1上的粒子 又由于抽运过程而减少,从而实现E 2与E 1能级间的粒子数反转。激光产生必须有能提供光学正反馈的谐振腔。处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,偏离轴向的光子很快逸出腔外,只有沿轴向的光子,部分通过输出镜输出,部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。 2 YAG 固体激光器 固体激光器基本都是由工作物质、泵浦系统、谐振腔和冷却、滤光系统构成。固体激光器工作物质是固体激光器的核心。影响固体激光器工作特性的关键是固体激光工作物质的物理和光谱性质,这主要是指吸收带、荧光谱线、热导率等。实验中,我们采用掺钕钇铝石 榴石(Nd:YAG)作为工作物质,它的激活离子是钕离子(Nd 3+),其吸收谱线如图4所示,在可 见光和红外区域有几个较强的吸收带,我们关注的是808nm 附近的吸收谱线。在本实验中,半导体激光器是用来做固体激光器的泵浦光源。我们采用了输出波长为808nm, InGaAlAs/GaAs 量子阱结构设计、光斑预整形、输出功率大于2W 的多模半导体激光器,工作电流可调,采用半导体制冷片对其进行温度控制。 图4 3:Nd YAG +晶体的吸收光谱(300K ) YAG 中3Nd +与激光产生有关系的能级结构如图5所示。它属于四能级系统。其激光上 能级3E 为33/2F ,激光下能级2E 为43/2I I ,43/2II I ,其荧光谱线波长分别为1.35m μ和1.06m μ,49/2 I 相应于1E 。由于1.06m μ比1.35m μ波长的荧光强约4 倍,在本实验中,我们通过腔镜镀膜,E 1 E 3 E 2 图3、三能级系统示意图

1-实验四 半导体泵浦固体激光器综合实验

实验四半导体泵浦固体激光器综合实验半导体泵浦固体激光器(Diode-Pumped solid-state Laser,DPL),是以激光二极管(LD)代替闪光灯泵浦固体激光介质的固体激光器,具有效率高、体积小、寿命长等一系列优点,在光通信、激光雷达、激光医学、激光加工等方面有巨大应用前景,是未来固体激光器的发展方向。本实验的目的是熟悉半导体泵浦固体激光器的基本原理和调试技术,以及倍频的原理和技术。 一、实验目的 1.掌握半导体泵浦固体激光器的工作原理和调试方法; 2.了解固体激光器倍频的基本原理; 3.掌握固体激光器被动调Q的工作原理,进行调Q脉冲的测量。(选做) 二、实验原理 1.半导体激光泵浦固体激光器工作原理: 上世纪80年代起,生长半导体激光器(LD)技术得到了蓬勃发展,使得LD的功率和效率有了极大的提高,也极大地促进了DPSL技术的发展。与闪光灯泵浦的固体激光器相比,DPSL 的效率大大提高,体积大大减小。在使用中,由于泵浦源LD的光束发散角较大,为使其聚焦在增益介质上,必须对泵浦光束进行光束变换(耦合)。泵浦耦合方式主要有端面泵浦和侧面泵浦两种,其中端面泵浦方式适用于中小功率固体激光器,具有体积小、结构简单、空间模式匹配好等优点。侧面泵浦方式主要应用于大功率激光器。本实验采用端面泵浦方式。端面泵浦耦合通常有直接耦合和间接耦合两种方式。 直接耦合:将半导体激光器的发光面紧贴增益介质,使泵浦光束在尚未发散开之前便被增益介质吸收,泵浦源和增益介质之间无光学系统,这种耦合方式称为直接耦合方式。 直接耦合方式结构紧凑,但是在实际应用中较难实现,并且容易对LD造成损伤。 间接耦合:指先将LD输出的光束进行准直、整形,再进行端面泵浦。常见的方法有:组合透镜系统聚光:用球面透镜组合或者柱面透镜组合进行耦合。 自聚焦透镜耦合:由自聚焦透镜取代组合透镜进行耦合,优点是结构简单,准直光斑的大小取决于自聚焦透镜的数值孔径。 光纤耦合:指用带尾纤输出的LD进行泵浦耦合。优点是结构灵活。 本实验先用光纤柱透镜对半导体激光器进行快轴准直,压缩发散角,然后采用组合透镜对泵浦光束进行整形变换,各透镜表面均镀对泵浦光的增透膜,耦合效率高。本实验的压缩和耦合如图 2所示。

半导体激光器P-I特性测试

实验一 半导体激光器P-I 特性测试实验 一、 实验目的 1. 学习半导体激光器发光原理和光纤通信中激光光源工作原理 2. 了解半导体激光器平均输出光功率与注入驱动电流的关系 3. 掌握半导体激光器P (平均发送光功率)-I (注入电流)曲线的测试方法 二、 实验仪器 1. ZY12OFCom13BG 型光纤通信原理实验箱 1台 2. 光功率计 1台 3. FC/PC-FC/PC 单模光跳线 1根 4. 万用表 1台 5. 连接导线 20根 三、 实验原理 半导体激光二极管(LD )或简称半导体激光器,它通过受激辐射发光,(处于高 能级E 2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E 1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。)是一种阈值器件。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW )辐射,而且输出光发散角窄(垂直发散角为30~50°,水平发散角为0~30°),与单模光纤的耦合效率高(约30%~50%),辐射光谱线窄(Δλ=0.1~1.0nm ),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz )直接调制,非常适合于作高速长距离光纤通信系统的光源。 对于线性度良好的半导体激光器,其输出功率可以表示为 P e =)(2th D I I q -ηω (1-1) 其中int int a a a mir mir D +=ηη,这里的量子效率η int ,表征注入电子通过受激辐射转化为光 子的比例。在高于阈值区域,大多数半导体激光器的ηint 接近于1。 1-1式表明,激光输出功率决定于内量子效率和光腔损耗,并随着电流而增大, 当注入电流I>I th 时,输出功率与I 成线性关系。其增大的速率即P-I 曲线的斜率,称为斜率效率 D e q dI dP ηω2 = (1-2) P-I 特性是选择半导体激光器的重要依据。在选择时,应选阈值电流I th 尽可能小, I th 对应P 值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,消光比(测试方法见实验四)大,而且不易产生光信号失真。并且要求P-I 曲线的斜率适当。斜率太小,则要求驱动信号太大,给驱动电路带来麻烦;斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,半导体激光器可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即激活介质处于粒子数反转分布,而且产生的增益足以抵消所

半导体激光器

半导体激光器 摘要:由于三五族化合物工艺的发展与半导体激光器的多种优点,近几十年来,半导体激光器发展十分迅速,而且在各个领域发挥着越来越重要的作用。本文将介绍半导体激光器的基本理论原理、相关发展历程、研究现状以及其广泛的应用。 1.引言 自1962 年世界上第一台半导体激光器发明问世以来, 半导体激光器发生了巨大的变化, 极大地推动了其他科学技术的发展, 被认为是二十世纪人类最伟大的发明之一[1], 近十几年来, 半导体激光器的发展更为迅速, 已成为世界上发展最快的一门激光技术[2]。激光器的结构从同质结发展成单异质结、双异质结、量子阱(单、多量子阱)等多种形式,制作方法从扩散法发展到液相外延(LPE)、气相外延(VPE)、分子束外延(MBE)、金属有机化合物气相淀积(MOCVD)、化学束外延(CBE) 以及它们的各种结合型等多种工艺[3]。由于半导体激光器的体积小、结构简单、输入能量低、寿命较长、易于调制及价格低廉等优点, 使得它目前在各个领域中应用非常广泛。 2.半导体激光器的基本理论原理 半导体激光器又称激光二极管(LD)。它的实现并不是只是一个研究工作者的或小组的功劳,事实上,半导体激光器的基本理论也是一大批科研人员共同智慧的结晶。 早在1953年,美国的冯·纽曼(John Von Neumann)在一篇未发表的手稿中第一个论述了在半导体中产生受激发射的可能性;认为可以通过向PN结中注入少数载流子来实现受激发射;计算了在两个布里渊区之间的跃迁速率。巴丁在总结了这个理论后认为,通过各种方法扰动导带电子和价带空穴的平衡浓度,致使非平衡少数载流子复合而产生光子,其辐射复合的速率可以像放大器那样,以同样频率的电磁辐射作用来提高。这应该说是激光器的最早概念。 苏联的巴索夫等对半导体激光器做出了杰出贡献,他在1958年提出了在半导体中实现粒子数反转的理论研究,并在1961年提出将载流子注入半导体PN结中实现“注入激光器”,并论证了在高度简并的PN结中实现粒子数反转的可能性,而且认为有源区周围高密度的多数载流子造成有源区边界两边的折射率有一差值,因而产生光波导效应。1961年,伯纳德和杜拉福格利用准费米能级的概念推导出了半导体有源介质中实现粒子数反转的条件,这一条件为次年半导体激光器的研制成功提供了重要理论指导。 1960年,贝尔实验室的布莱和汤姆逊提出了用半导体的平行解理面作为产生光反馈的谐振腔,为激发光提供反馈。 回顾这些理论发展历程,可以总结半导体激光器的基本理论原理:在直接带隙半导体PN结中,用注入载流子的方法实现伯纳德—杜拉福格条件所控制的粒子数反转;由高度简并的电子和空位复合所产生的受激光辐射在光学谐振腔内震荡并得到放大,最后产生相干激光输出[4]。 3.半导体激光器发展历程 在上述理论的影响下,以及1960年产生的红宝石激光器的刺激下,美国和苏

半导体激光器的研究

半导体激光器的研究 半导体激光器是近年来应用非常广泛的一种激光器。在本实验中我们将对半导体激光器的主要发光器件——激光二极管(LD)进行全面的实验研究。 【实验内容】 1.激光二极管(LD)的伏安特性测量。 2.LD的发光强度与电流的关系曲线测量。 3*.LD发光光谱分布测量。 4*.LD发光偏振特性分析。 【实验仪器】 激光二极管,电压表,电流表,激光功率计,分光计,格兰—泰勒棱镜等

阅读材料 半导体激光器件 按照半导体器件功能的基本结构可分为:注入复合发光,即电—光转换;光引起电动势效应,即光—电变换。这里主要讨论前者。 半导体激光光源是半导体激光器发射的激光。它是以半导体材料作为激光工作物质的一类激光器,亦称激光二极管,英文缩写为LD。与其相对应的非相干发光二极管,英文缩写为LED。它具有工作电压低、体积小、效率高、寿命长、结构简单、价格便宜以及可以高速工作等一系列优点。可采用简单的电流注入方式来泵浦,其工作电压和电流与集成电路兼容,因而有可能与之单片集成;并且还可用高达吉赫(109 Hz)的频率直接进行电流调制以获得高速调制的激光输出。由于这些优点,LD在激光通信、光纤通信、光存储、光陀螺、激光打印、光盘录放、测距、制导、引信以及光雷达等方面已经获得了广泛应用,大功率LD 可用于医疗、加工和作为固体激光器的泵浦源等。 半导体激光器自1962年问世以来,发展极为迅速。特别是进入20世纪80年代,借用微电子学制作技术(称为外延技术),现已大量生产半导体激光器。以半导体LD条和LD堆为代表的高功率半导体激光器品种繁多,应有尽有。 1 概述 1)半导体激光器的分类 从半导体激光器的发射的激光看,可分为半导体结型二极管注入式激光器和垂直腔表面发射半导体激光器两种类型;而从结型看,又可分为同质结和异质结两类;从制造工艺看,又可为一般半导体激光器、分布反馈式半导体激光器和量子阱半导体激光器激光器;另外,为了提高半导体激光器的输出功率,增大有源区,将其做成列阵式,又可分为单元列阵、一维线列阵、二维面阵等。 2)半导体激光器的工作原理 半导体激光器与其它激光器没有原则区别,只是因工作物质不同,而有其自身的特点。图示给出了GaAs激光器的外形及其管芯结构,在激光器的外壳上有一个输出激光的小窗口,激光器的电极供外接电源用,外壳内是激光器管芯,管芯形状有长方形、台面形、电极条形等多种。它的核心部分是PN结。半导体激光器PN结的两个端面是按晶体的天然晶面剖切开的,称为解理面,这两个表面极为光滑,可以直接用作平行反射镜面,构成激光谐振腔。激光可以从某一侧解理面输出,也可由两侧输出。 半导体材料是一种单晶体,各原子最外层的轨道互相重叠,导致半导体能级不再是分

实验三、半导体泵浦固体激光器综合实验

半导体泵浦固体激光器综合实验 半导体泵浦固体激光器(Diode-Pumped solid-state Laser,DPL),是以激光二极管(LD)代替闪光灯泵浦固体激光介质的固体激光器,具有效率高、体积小、寿命长等一系列优点,在光通信、激光雷达、激光医学、激光加工等方面有巨大应用前景,是未来固体激光器的发展方向。本实验的目的是熟悉半导体泵浦固体激光器的基本原理和调试技术,以及其调Q 和倍频的原理和技术。 【实验目的】 1.掌握半导体泵浦固体激光器的工作原理和调试方法; 2.掌握固体激光器被动调Q的工作原理,进行调Q脉冲的测量; 3.了解固体激光器倍频的基本原理。 【实验原理与装置】 1.半导体激光泵浦固体激光器工作原理: 上世纪80年代起,生长半导体激光器(LD)技术得到了蓬勃发展,使得LD的功率和效率有了极大的提高,也极大地促进了DPSL技术的发展。与闪光灯泵浦的固体激光器相比,DPSL的效率大大提高,体积大大减小。在使用中,由于泵浦源LD的光束发散角较大,为使其聚焦在增益介质上,必须对泵浦光束进行光束变换(耦合)。泵浦耦合方式主要有端面泵浦和侧面泵浦两种,其中端面泵浦方式适用于中小功率固体激光器,具有体积小、结构简单、空间模式匹配好等优点。侧面泵浦方式主要应用于大功率激光器。本实验采用端面泵浦方式。端面泵浦耦合通常有直接耦合和间接耦合两种方式。 ①直接耦合:将半导体激光器的发光面紧贴增益介质,使泵浦光束在尚未发散开之前便被增益介质吸收,泵浦源和增益介质之间无光学系统,这种耦合方式称为直接耦合方式。直接耦合方式结构紧凑,但是在实际应用中较难实现,并且容易对LD造成损伤。 ②间接耦合:指先将LD输出的光束进行准直、整形,再进行端面泵浦。常见的方法有: 组合透镜系统聚光:用球面透镜组合或者柱面透镜组合进行耦合。 自聚焦透镜耦合:由自聚焦透镜取代组合透镜进行耦合,优点是结构简单,准直光斑的大小取决于自聚焦透镜的数值孔径。 光纤耦合:指用带尾纤输出的LD进行泵浦耦合。优点是结构灵活。 本实验先用光纤柱透镜对半导体激光器进行快轴准直,压缩发散角,然后采用组合透镜对泵浦光束进行整形变换,各透镜表面均镀对泵浦光的增透膜,耦合效率高。本实验的压缩和耦合如图 2所示。

半导体激光器实验报告

半导体激光器实验报告 课程:_____光电子实验_____ 学号: 姓名: 专业:信息工程 南京大学工程管理学院

半导体激光器 一.实验目的 (1)通过实验熟悉半导体激光器的光学特性 (2)掌握半导体激光器耦合、准直等光路的调节 (3)根据半导体激光器的光学特性考察其在光电技术方面的应用 二.实验原理 1.半导体激光器的基本结构 半导体激光器大多数用的是GaAs或Gal-xAlxAs材料。P-n结通常在n 型衬底上生长p型层而形成,在p区和n区都要制作欧姆接触,使激励 电流能够通过,电流使结区附近的有源区产生粒子数反转。 2.半导体激光器的阈值条件 当半导体激光器加正向偏置并导通时,器件不会立刻出现激光震荡,小电流时发射光大都来自自发辐射,随着激励电流的增大,结区大量粒 子数反转,发射更多的光子,当电流超过阈值时,会出现从非受激发射 到受激发射的突变。这是由于激光作用过程的本身具有较高量子效率的 缘故,激光的阈值对应于:由受激发射所增加的激光模光子数(每秒) 正好等于平面散射,吸收激光器的发射所损耗的光子数(每秒)。 3.横模和偏振态 半导体激光器的共振腔具有介质波导的结构,所以在共振腔中传播光以模的形式存在。每个模都由固有的传播常数和横向电场分布,这些 模就构成了激光器中的横模。横模经端面射出后形成辐射场,辐射场的 角分布沿平行于结面方向和垂直于结面方向分别成为侧横场和正横场。 共振腔横向尺寸越小,辐射场发射角越大,由于共振腔平行于结面方向 的宽度大于垂直于结面方向的厚度,所以侧横场小于正横场的发散角。 激光器的GaAs晶面对TE模的反射率大于对TM模的反射率,因而TE模需要的阈值增益低,TE模首先产生受激发射,反过来又抑制了TM 模,另一方面形成半导体激光器共振腔的波导层一般都很薄,这一层越

半导体激光器工作原理及主要参数

半导体激光器工作原理及主要参数 OFweek激光网讯:半导体激光器又称为激光二极管(LD,Laser Diode),是采用半导体材料作为工作物质而产生受激发射的一类激光器。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)。激励方式有电注入、电子束激励和光泵浦激励三种形式。半导体激光器件,一般可分为同质结、单异质结、双异质结。同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。半导体激光器的优点在于体积小、重量轻、运转可靠、能耗低、效率高、寿命长、高速调制,因此半导体激光器在激光通信、光存储、光陀螺、激光打印、激光医疗、激光测距、激光雷达、自动控制、检测仪器等领域得到了广泛的应用。 半导体激光器工作原理是:通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时便产生受激发射作用。半导体激光器的激励方式主要有三种:电注入式、电子束激励式和光泵浦激励式。电注入式半导体激光器一般是由GaAS(砷化镓)、InAS(砷化铟)、Insb(锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。电子束激励式半导体激光器一般用N型或者P型半导体单晶(PbS、CdS、ZhO等)作为工作物质,通过由外 部注入高能电子束进行激励。光泵浦激励式半导体激光器一般用N型或P型半导体单晶(GaAS、InAs、InSb等)作为工作物质,以其它激光器发出的激光作光泵激励。 目前在半导体激光器件中,性能较好、应用较广的是:具有双异质结构的电注入式GaAs 二极管半导体激光器。 半导体光电器件的工作波长与半导体材料的种类有关。半导体材料中存在着导带和价带,导带上面可以让电子自由运动,而价带下面可以让空穴自由运动,导带和价带之间隔着一条禁带,当电子吸收了光的能量从价带跳跃到导带中去时就把光的能量变成了电,而带有电能的电子从导带跳回价带,又可以把电的能量变成光,这时材料禁带的宽度就决定了光电器件的工作波长。 小功率半导体激光器(信息型激光器),主要用于信息技术领域,例如用于光纤通信及光交换系统的分布反馈和动态单模激光器(DFB-LD)、窄线宽可调谐激光器、用于光盘等信息处理领域的可见光波长激光器(405nm、532nm、635nm、650nm、670nm)。这些 器件的特征是:单频窄线宽、高速率、可调谐、短波长、光电单片集成化等。 大功率半导体激光器(功率型激光器),主要用于泵浦源、激光加工系统、印刷行业、生物医疗等领域。 半导体激光器主要参数: 波长nm:激光器工作波长,例如405nm、532nm、635nm、650nm、670nm、690nm、780nm、810nm、860nm、980nm。 阈值电流Ith:激光二极管开始产生激光振荡的电流,对小功率激光器而言其值约在数 十毫安。

直接半导体激光器DirectDiodeLaserSystem

直接半导体激光器 Direct Diode Laser System 锐科公司研制的RFL-DDL系列直接半导体激光器,具有电光转换效率高、调制频率宽、可靠性高、寿命长、运行免维护、结构紧凑等优点,可广泛应用于钎焊、塑料焊接、熔覆、表面热处理等领域。在熔覆应用中,锐科直接半导体激光器相对传统激光器的加工效率明显提高。此系列直接半导体激光器产品基于单管半导体芯片封装及大功率合束器技术,完全由锐科公司自主研制生产,电光转换效率接近50%,具有良好的兼容性,性价比高。 Raycus' RFL-DDL direct diode laser series feature high electrical-optical conversion efficiency, wide modulation frequency range, compact design, excellent long-term reliability and maintenance free stable operation. They can be used in brazing, plastic welding, cladding and surface heat treatment. RFL-DDL laser series have been proved with significant high efficiency in cladding applications compared with traditional lasers. Based on in-house single-emitter diode packaging and high power combiner technologies, Raycus can provide customized products for some specific requirements. 特点:Features 极高的电光转换效率Near 50% efficiency QBH输出光纤QBH beam delivery cable 免维护稳定运行maintenance free stable operation 连续/调制模式CW/Modulated mode 应用:Applications 塑料焊接Plastic welding 熔覆Cladding 热处理Heat treatment 钎焊Brazing

相关文档
最新文档