7二次雷达 - 实际系统
二次雷达原理

二次雷达原理
雷达是一种利用电磁波进行探测和测距的设备。
二次雷达是通过接收被测物体反射回来的电磁波来获取目标信息的一种雷达系统。
二次雷达的工作原理是利用电磁波在空间中的传播特性。
当发射机发射出一束电磁波时,它会遇到被测物体并被反射回来。
接收机接收到反射回来的电磁波并进行处理,就可以得到被测物体的相关信息。
二次雷达主要依靠电磁波与被测物体的相互作用来获取目标信息。
当电磁波遇到被测物体时,一部分电磁波会被吸收、散射或者传播。
被吸收的电磁波会转化为被测物体的能量,而被散射的电磁波则会沿不同的方向重新传播。
通过测量被散射电磁波的特性,可以得到被测物体的一些特征信息,比如目标的位置、形状和反射系数等。
在二次雷达系统中,发射机和接收机是分开的,它们通过天线进行信号的传输和接收。
发射机产生一束高频电磁波并通过天线辐射出去,而接收机则用另一个天线接收反射回来的电磁波。
接收机会对接收到的信号进行放大、滤波和解调等处理,从而得到目标的信息。
总的来说,二次雷达是一种利用电磁波与目标物体相互作用来进行探测和测距的系统。
通过测量被测物体反射回来的电磁波的特性,可以获取目标的相关信息。
这种技术在军事、气象、航空等领域有着广泛的应用。
二次雷达原理ppt课件

应答码
相应模式A的回答为应答识别码,其顺序为A、B、C、D。 一共有4096个不同的组成。 应答码有三组代码定义为危急码,不能选作识别码。当地
面站收到这三种危急码时,终端处理设备将优先予以处理, 并在显示器上闪烁告警,提醒管制员采取应急的措施。这 三组码为:
7500 表示飞机被劫持 7600 表示飞机通信系统故障 7700 表示飞机故障危急
器约125微秒),或旁边询问35微秒抑制期,不接受任 何询问,造成目标丢失。
接收机旁瓣抑制( RSLS)
解决异步干扰问题。 异步干扰主要(约三分之二)来自询问机天线的旁瓣。控制波瓣的增益将大于除询问天线主
瓣以外的尾瓣增益。 安装和Σ接收机特性一致的Ω接收机。 比较旁瓣和控制波瓣收到的回答信号,旁瓣收到的信号必然小于控制波瓣收到的信号。 接收机放大检测对这两个信号比较判决。 如果Ω接收机输出的信号大于主接收机(旁瓣收到)信号,就可以判定该信号是旁瓣信号且
管制员从二次雷达上很容易知道飞机的二次雷达应 答机代码、飞行高度、飞行速度、航向等参数,使 雷达由监视的工具变为空中管制的手段,二次雷达 的出现是空中交通管制的最重大的技术进展。
二次雷达基本工作原理
二次监视雷达(SSR)和一次监视雷达的区别在于工作方式不同。
一次监视雷达是依靠目标反射雷达发射的电磁波而主动发现目标并确定其位置。 二次监视雷达则不能靠接收目标反射的脉冲工作。
( interlace )),不译码。
滑窗检测
用于常规二次雷达目标检测。 常规二次雷达测角通常采用波束最大法来
确定目标的方向(方位)。 进行数字化处理,使用滑窗技术对天线波
束的最大指向进行估值。 雷达波瓣扫过同一目标,接收到N个应答信
号,在数量上进行相关积累。 当积累数量达到设置门限时(第二门限),
二次雷达技术交流

强制报告点时,请机组报告,地面统计单雷 达目的显示; C模式代码测试:校飞飞机在穿越每个高度层 时请机组报告高度,地面统计C模式编码显示 高度;
6、二次雷达飞行校验
A模式代码:测试A模式编码0000、1111、 2222、3333、4444、5555、6666、 7777、7500、7600、7700以及SPI测试;
上行询问
下行回答
上行询问 1030MHz 下行回答 1090MHz
1.3、二次雷达工作原理
二次雷达所需目的参数:距离R、方位ɑ、高度、 H
1.3、二次雷达工作原理
问询信号
三脉冲问询体制
P1-P3 模式问询脉 冲 问询波束主瓣
控制波束 辐射P2
P2 旁瓣克制脉冲
(控制脉冲)
尾瓣
询问波束 辐射P1 P3
1.2、SSR与其他监视方式旳区别
二次雷达(A/C/S模式):独立旳、合 作式监视系统 经过地面问询系统根据问询和机 载设备旳应答计算目旳旳距离和方位 角。同步S模式二次雷达增强了飞机寻 址和双向数据链旳功能。
优点:相对一次雷达旳信息愈加详细 缺陷:无法监视没有安装应答机或应答机 失效旳飞机
1.2、SSR与其他监视方式旳区别
2.1、二次雷达总体构造图
2.2二次雷达航空管制信号流程简图
2.3、二次雷达数据信号流程简图
天线座
天线 控制箱
通道切 换开关
询问机 A通道
本地监控显示器 询问机B通道
空中交通管制中心监控席位 机场塔台调度席位 其他引接数据使用者
2.4、二次雷达系统工作流程图
目标数据输出 机载应答机
工作模式设置 监控界面
浅谈航管二次雷达航迹和点迹相关的基本原理

科技资讯2016 NO.22SCIENCE & TECHNOLOGY INFORMATION信 息 技 术7科技资讯 SCIENCE & TECHNOLOGY INFORMATION 航管二次雷达系统是对空中目标鉴别与监视的系统,在空中的目标识别与跟踪和空中交通管制等很多方面都有极大的应用。
1 航管二次雷达的航迹跟踪现在,边扫描边跟踪已经成为航管二次雷达的必备能力,对于多个目标的跟踪,可以在它监视的空域范围内,针对各个需要跟踪的目标建立对应的相关航迹文件,将每次扫描得到的点迹、航迹与文件里面的航迹进行相关性对比,然后把跟踪目标现在的坐标位置进行优化,与此同时,用新的目标报告得到的估值参数将原来的航迹进行更新。
2 航迹和点迹的相关在进行点迹和航迹的相关处理之前,首先应该仔细研究点迹报告与所存的航迹报告中含有的信息,后续相关的计算都要按照这些信息来进行。
雷达处理单元中存在的航迹报告和雷达录取器中存在的点迹报告主要含有下列信息,见表1。
2.1 唯一代码相关由于一问一答的询问接收方式是民用航管二次雷达所采用的,所以其中询问与回答的过程中存在一些信息量,大家可以对携带的信息进行分析并且将其解码,这对点迹与航迹的相关起到了特别重要的帮助作用,使相关计算量变得简单。
可以猜测在这些关联中最好的情况,比如,唯一代码的相关,就是说点迹报告或者是航迹报告里面的所有码位都是高置信度,代码c4与d1位置上最少有一位是非零位,点迹报告里面的代码交换位是零,而且仅有一个目标报告的a码和唯一代码的航迹可以匹配,还要符合以下条件:Δρij ≤Δρp ;ΔO ij ≤ΔO p ;Δh ij ≤1/2Δh max (有代码交换位标记);Δh ij ≤Δh max (无代码交换位标记)。
其中,Δρij 表示第i个点的点迹报告和第j个点的点迹报告在距离上的差值,ΔO ij 表示它们在方位上的差值,Δh max 则表示它们在高度上的差值。
《二次雷达原理》课件

气象
用于气象预测和天气监测。
科研
用于天文观测和地质勘探。
雷达波段的分类
微波波段
毫米波波段
工作波段在1毫米到1米之间。
工作波段在0.1毫米到1毫米 之间。
紫外线波段
工作波段在200纳米到400纳 米之间。
二次雷达的波段选择
1 工作频率
通过选择合适的工作频率,可以获得更好的波束特性和探测性能。
2 环境干扰
在选择波段时,需要考虑周围环境波有不同的反射和吸收特性。
二次雷达的探测距离
信号强度
信号强度与目标物体到雷 达的距离成反比。
噪声干扰
噪声会降低信号的幅度, 从而影响探测距离。
功率和灵敏度
通过提高发射功率和接收 灵敏度,可以增加探测距 离。
发展历史
二次雷达起源于上世纪中叶,随着技术的发展,已经成为现代雷达系统的重要组成部分。
二次雷达的基本原理
1
发射信号
二次雷达向目标物体发射电磁波信号。
2
目标反射
目标物体接收到信号并反射回来。
3
接收信号
二次雷达接收目标物体反射的信号。
4
信号处理
接收到的信号经过处理,提取出目标物体的相关信息。
二次雷达的组成
《二次雷达原理》PPT课 件
在这个《二次雷达原理》PPT课件中,我们将探讨二次雷达的工作原理、应用 领域以及发展的前景。通过这个课件,你将深入了解雷达技术背后的科学原 理和实际应用。
什么是二次雷达
定义
二次雷达是一种通过接收目标物体反射的电磁波并进行信号处理的雷达系统。
作用
二次雷达用于探测、跟踪和测量目标物体位置、速度、轨迹等信息。
一次雷达 通过发射和接收连续的电磁波工作 适用于目标物体较大且距离较远的情况 具有较大的扫描范围
二次雷达原理

二次雷达原理二次雷达是一种利用二次辐射原理进行目标探测的雷达系统。
它与常见的一次雷达相比,具有更高的分辨率和更好的抗干扰能力,因此在军事、航空航天、地质勘探等领域得到了广泛的应用。
下面我们将详细介绍二次雷达的原理和工作方式。
首先,二次雷达的工作原理是基于目标对电磁波的反射和辐射。
当雷达系统向目标发射脉冲电磁波时,目标会对电磁波进行反射。
一次雷达是通过接收目标反射的一次辐射来实现目标探测,而二次雷达则是利用目标对电磁波的反射和辐射来实现目标探测。
具体来说,当目标反射电磁波时,会产生二次辐射,这种二次辐射包含了目标的特征信息,通过接收和分析目标的二次辐射,就可以实现对目标的探测和识别。
其次,二次雷达的工作方式包括发射、接收和信号处理三个步骤。
首先,雷达系统向目标发射脉冲电磁波,然后接收目标反射和辐射的信号。
接收到的信号经过放大、滤波等处理后,送入信号处理系统进行分析和处理。
信号处理系统会提取目标的二次辐射特征,并将其与数据库中的目标特征进行比对,从而实现对目标的识别和跟踪。
最后,二次雷达具有许多优点。
首先,由于二次辐射包含了目标的特征信息,因此二次雷达具有更高的分辨率和更好的抗干扰能力。
其次,二次雷达可以实现对隐身目标的探测和识别,对于军事领域具有重要意义。
此外,二次雷达还可以应用于地质勘探、环境监测等领域,为人类社会的发展做出贡献。
总之,二次雷达是一种利用二次辐射原理进行目标探测的雷达系统,具有更高的分辨率和更好的抗干扰能力。
它的工作原理是基于目标对电磁波的反射和辐射,工作方式包括发射、接收和信号处理三个步骤。
二次雷达在军事、航空航天、地质勘探等领域具有广泛的应用前景,对于人类社会的发展具有重要意义。
二次雷达原理分析

二次雷达原理分析作者:付广荣来源:《硅谷》2014年第03期摘要二次雷达作为当前民用航空的监视工具之一,在保障民航飞机安全飞行中扮演者重要的角色,它不仅能保障航班的正常运行,同时也丰富了管制手段,提高了航班运行效率。
但二次雷达运行过程中也经受着反射、目标丢失、异步干扰、错觉等一系列问题的困扰,因此如何有效发现并解决这些问题就成了关键所在。
关键词二次雷达;管制;反射;目标丢失;异步干扰;错觉中图分类号:TN95 文献标识码:A 文章编号:1671-7597(2014)03-0072-01雷达—无线电检测与测距,顾名思义:雷达的最终目的是发现目标,并测量其距离。
其中一次雷达(PSR)与二次雷达(SSR)是雷达家族中最常见的成员,其中一次雷达是检测自己发射的电磁波遇到物体后的反射信号来对空中飞行物进行检测的,其优点是具有较高的距离与方位精度,并能得出飞行物体的飞行速度;而二次雷达通过发射一组询问编码信号,装有机载应答机的飞机接收到询问信号后,转发一组应答编码信号。
通过“询问-应答”式工作,因此需要两次辐射,因此称为二次雷达。
因为二次雷达是双工作频率,其发射频率为1030 MHZ,接收频率为1090 MHZ,所以它具有作用距离远,无地物杂波和气象杂波干扰,又因其是“询问-应答”式工作模式,因此又具有交换信息丰富等特点。
下面就重点介绍下二次雷达的基本原理以及常见的问题及分析。
二次雷达询问信号采取的是P1P2P3三脉冲体制,其中P2为旁瓣抑制脉冲,P1与P2的时间间隔恒为2 μs,P1P3脉冲为模式询问脉冲,P1与P3之间的时间间隔决定了不同的询问模式,ICAO规定使用模式3/A与模式C,即为我们熟知的识别码和高度码,模式3/A的时间间隔为8 μs,模式C的时间间隔为21 μs。
二次雷达的编码信号经由天线、发射机进行信号的发送,而应答信号则由接收机、信号处理机、终端设备进行信号的接收,应答信号代码则有16个脉冲构成,图一中SPI位脉冲未进行标识,因其只有在管制员要求时发送,因此一般情况下不使用,其中脉宽为0.45 μs,脉冲间隔为1.45 μs,整个脉冲框架即F1到F2的时间间隔为20.3 μs,F2到SPI位的时间间隔为4.35 μs,脉冲编码经过处理就是我们所需的识别码与高度码,而在这16为脉冲信息编码中,其中F1、X、F2以及SPI位不用,因此有用的脉冲为12位,即会有4096种编码的可能性。
关于二次雷达探测和卫星导航定位探测系统应用的探讨

关于二次雷达探测和卫星导航定位探测系统应用的探讨摘要:通过定向天线(雷达)高空气象探测系统和卫星导航定位高空气象探测系统的历史发展、原理分析、两种探测系统的对比分析及两种探测系统的应用探讨,使我们对这两种高空气象探测系统有了进一步深刻认识,有益于帮助气象探测员对高空探测系统的掌握,同时提供给高空探测员或气象爱好者参考。
关键词:雷达探测卫星定位引言:随着我国高空气象探测事业的迅速发展,开始在近几年内由(北斗)卫星导航定位探测系统取代目前正在使用的L波段雷达探测系统,除了能提高高空探测质量外,卫星定位跟踪后不会丢球,能够减轻高空气象业务员工作量,考虑到目前处在两种高空气象探测系统换型期,有必要从新老两种高空探测系统的历史发展、工作原理、对比分析等探讨,从而更加深刻认识到高空探测系统换型的重要性,有益于提升今后气象台站高空探测工作。
一、历史发展:高空气象探测来讲定向天线(雷达)探测系统主要是指我国曾经使用过的57-701探测系统、58-701探测系统、59-701探测系统、59-701B探测系统、59-701C探测系统和2002年开始使用的L波段二次雷达-电子探空仪系统即GTS1型探测系统,目前正在使的GTS1型探测系统升级版GTS11型探测系统、GTS12型探测系统、GTS13型探测系统等,同时在西方发达国家例如芬兰等在本世纪初已经普及使用卫星导航定位系统的高空气象探测系统即GPS定位探测系统,由于我国高空气象探测比较西方欧美发达国家较晚,直接引进成本很高,不能实现普及,随着我国北斗气象卫星系统的建设,打破了西方技术的控制,降低了成本,估计在未来几年就能在全国普及开来,从而推动我国高空气象探测事业的迅速发展。
二、原理分析天线(雷达)探测系统的高空气象观测包括701雷达、701B雷达、701C雷达与57型、58型、59型探空仪组成的雷达探测系统和L波段GFE(L)1型雷达与GTS1、GTS11、GTS12、GTS13型探空仪组成雷达探测系统等,都是二次测风雷达的简称,能测定高空各个高度上的气压、温度、湿度、风向、风速等五个重要气象要素,为气象台站提供准确的气象高空宝贵资料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9Hale Waihona Puke Components -- Antenna
二次雷达(SSR)
电子信息工程学院
10
ATC coax switch
The ATC coax switches connect the active ATC transponder to the top and bottom ATC antennas. These are the electrical connector inputs: ATC antenna switch circuit breaker ATC/TCAS control panel. The ATC coax switches supply an RF interface for the ATC system interrogation and reply signals. These are the connectors: ATC transponder 1 connector ATC antenna connector ATC transponder 2 connector.
The transponder select switch is a two-position switch used to select ATC transponder 1 or ATC transponder 2 as the active transponder. The flight crew uses the code selectors to set the four digits of the identification code. The four digits show on the liquid crystal display (LCD). Codes are from 0000 to 7777, with 4096 different selections.
二次雷达(SSR)
电子信息工程学院
12
ATC/TCAS CONTROL PANEL
二次雷达(SSR)
电子信息工程学院
13
ATC/TCAS CONTROL PANEL
二次雷达(SSR)
电子信息工程学院
14
ATC/TCAS CONTROL PANEL
二次雷达(SSR)
电子信息工程学院
15
ATC/TCAS CONTROL PANEL
二次雷达(SSR) 电子信息工程学院
17
ATC/TCAS CONTROL PANEL
IDENT Switch. When the ATC controller requests the airplane identifier, the flight crew pushes the momentary IDENT switch. The transponder adds a special position identification (SPI) pulse to the interrogation reply for the next 18 seconds. Altitude Source Switch. Use the two-position switch to set the source of altitude data for the ATC transponder. XPNDR FAIL Light. The XPNDR FAIL light comes on for these conditions: Transponder failure; Antenna failure; Control data failure; Altitude input failure.
二次雷达(SSR)
电子信息工程学院
2
Introduction
The air traffic control (ATC) ground stations interrogate the airborne ATC system. The ATC transponder replies to the interrogations in the form of coded information that the ground station uses. The ATC transponder also replies to mode S interrogations from the traffic alert and collision avoidance systems (TCAS) of other airplanes or ground stations. When a ground station or a TCAS computer from another airplane interrogates the ATC system, the transponder transmits a pulse-coded reply signal. The reply signal identifies and shows the altitude of the airplane.
二次雷达(SSR)
电子信息工程学院
16
ATC/TCAS CONTROL PANEL
Transponder Mode Selector TEST - Starts an ATC transponder functional test. STBY (standby) - A ground discrete goes to both transponders. This ground discrete prevents operation of the transponder, but does not prevent built-in-test-equipment (BITE) functions. ALT RPTG OFF (altitude reporting off) - The reply does not contain an altitude report. XPNDR (transponder) - The active transponder responds to ATC interrogations. Mode C and Mode S altitude replies contain altitude information.
二次雷达(SSR) 电子信息工程学院
3
Introduction
二次雷达(SSR)
电子信息工程学院
4
Introduction
These are the components of the ATC system: Top antenna Bottom antenna ATC coax switch (2) ATC/TCAS control panel ATC transponder (2)
二次雷达(SSR)
电子信息工程学院
5
Introduction
二次雷达(SSR)
电子信息工程学院
6
COMPONENT LOCATION
Flight Compartment The ATC/TCAS control panel is on the P8 aft electronics panel. Electronic Equipment Compartment These are the ATC transponder system components in the electronic equipment compartment: ATC transponder 1 ATC transponder 2 Program switch module (2) Top ATC coax switch Bottom ATC coax switch. ATC Antenna Location The ATC antennas are on the forward fuselage near the centerline. The top ATC antenna is at STA 430.25. The bottom ATC antenna is at STA 355.
二次雷达(SSR) 电子信息工程学院
7
Introduction
二次雷达(SSR)
电子信息工程学院
8
Components -- Antenna
Purpose: The ATC L-band blade antenna receives 1030 MHZ interrogation signals from ATC ground stations and other airplanes that have TCAS. The ATC transponder transmits the reply signals through the L-band antenna. Physical Description: The coaxial cable connector connects to the antenna. The antenna has an O-ring moisture seal and attaches to the airplane by four screws. The ATC and DME antennas are the same and are interchangeable. The ATC coax switches get power through the ATC ANT SWITCH circuit breaker. When you select ATC transponder 1 on the ATC/TCAS control panel, the ATC coax switches do not energize and the antennas connect to ATC transponder 1. When you select ATC transponder 2, the ATC/TCAS control panel sends a discrete ground to the ATC coax switches. This energizes the coax switches and connects the top and bottom antennas to ATC transponder 2.