[高分子材料] 唐本忠院士、丁丹教授《自然·通讯》:“分子内运动诱导的光热转化(iMIPT)”
(完整版)高分子材料成型加工唐颂超第三版第2-10章课后习题答案解析(仅供参考)

1.高分子材料中加入添加剂的目的是什么?添加剂可分为哪些主要类型? ① 满足性能上的要求 ② 满足成型加工上的要求 ③ 满足经济上的要求 添加剂可分为稳定剂、增塑剂、润滑剂、交联剂、填充剂等
2. 什么是热稳定剂?热稳定剂可分为哪些主要类型?其中那些品种可用于食品和医药包装 材料 热稳定剂是一类能防止或减少聚合物在加工使用过程中受热而发生降解或交联,延长复合材 料使用寿命的添加剂。可分为铅盐类、金属皂类、有机锡类、有机锑类、有机辅助、复合 稳定剂和稀土类稳定剂。 食药包装:有机锡类、有机锑类、复合稳定剂和稀土类稳定剂。 3.什么是热稳定剂?哪一类聚合物在成型加工中须使用热稳定剂?对于加有较多增塑剂和 不加增塑剂的两种塑料配方,如何考虑热稳定剂的加入量?请阐明理由。 热稳定剂是指在加工塑料制品时为防止加工时的热降解或者防止制品在长期使用过程中老
滑移越困难,聚合物流动时非牛顿性越强。聚合物分子链刚性增加,分子间作用力愈大, 粘度对剪切速率的敏感性减小,但粘度对温度的敏感性增加,提高这类聚合物的加工温度 可有效改善其流动性。
聚合物分子中支链结构的存在对粘度也有很大的影响。具有短支链的聚合物的粘度低于 具有相同相对分子质量的直链聚合物的粘度;支链长度增加,粘度随之上升,支链长度增 加到一定值,粘度急剧增高。在相对分子质量相同的条件下,支链越多,越短,流动时的 空间位阻越小,粘度越低,越容易流动。较多的长支
晶态聚合物:(1)若聚合物的分子量较小,Tm>Tf,则聚合物达到熔点时已进入粘流态, 则熔融加工温度范围即为 Tm~Td(热分解温度);若聚合物的分子量较大,分子链相互作 用力较大,当晶区熔融时,分子链还需要吸收更多能量克服分子间作用力,才能产生运动, 因此聚合物的 Tm<Tf,则熔融加工温度范围为 Tf~Td。 非晶态聚合物:熔融加工温度范围为 Tf~Td。 比较结晶聚合物和非晶聚合物耐热性的好坏必须在两者化学结构相似的前提下。在两者化 学结构相似时,结晶聚合物由于晶区分子链排列较为规整,聚合物由固态变为熔融状态时, 需要先吸收热量使晶区变为非晶区,然后再进入粘流态,非晶态聚合物由于分子链刚性较 大,链柔顺性较差或者规整度较低,因此结晶聚合物比非晶态聚合物能够耐更高的温度, 作为材料使用时,其耐热性更好些。如结晶的等规聚苯乙烯的耐热性比非晶的无规聚苯乙 烯高 4. 为什么聚合物的结晶温度范围是 Tg~Tm? 答:T>Tm 分子热运动自由能大于内能,难以形成有序结构 T<Tg 大分子链段运动被冻结,不能发生分子重排和形成结晶结构 5. 什么是结晶度?结晶度的大小对聚合物性能有哪些影响 1)力学性能 结晶使塑料变脆(耐冲击强度下降),韧性较强,延展性较差。 2)光学性能 结晶使塑料不透明,因为晶区与非晶区的界面会发生光散射。减小球晶尺寸 到一定程式度,不仅提高了塑料的强度(减小了晶间缺陷)而且提高了透明度,(当球晶尺 寸小于光波长时不会产生散射)。 3)热性能 结晶性塑料在温度升高时不出现高弹态,温度升高至熔融温度 TM 时,呈现粘 流态。因此结晶性塑料的使用温度从 Tg (玻璃化温度)提高到 TM(熔融温度)。 4)耐溶剂性,渗透性等得到提高,因为结晶分排列更加紧密。 6.何谓聚合物的二次结晶和后结晶? 二次结晶:指一次结晶后,在残留的非晶区和结晶不完整的部分区域内,继续结晶并逐步 完善的过程,此过程很缓慢,可能几年甚至几十年。 后结晶:指一部分来不及结晶的区域,在成型后继续结晶的过程,不形成新的结晶区域, 而在球晶界面上使晶体进一步张大,是初结晶的继续。 7. 聚合物在成型过程中为什么会发生取向?成型时的取向产生的原因及形式有哪几种?取 向对高分子材料制品的性能有何影响?
高分子的链结构答案

高分子的链结构一、概念1、构型:分子中由化学键所固定的原子在空间的几何排列。
2、构象:由于单键的内旋转而产生的分子中原子在空间位置上的变化3、链段:高分子链上划分出的可以任意取向的最小单元或高分子链上能够独立运动的最小单元称为链段。
4、柔顺性:分子链能够改变其构象的性质。
5、H31螺旋体:每三个链节构成一个基本螺圈。
末端距6、末端距:线行高分子链的一端至另一端的直接距离。
均方末端距:2二、简答1、构型不同的异构体有哪些?旋光,几何,键接。
2、试举例总结影响高分子柔性的因素有哪些?有何影响?(1)主链结构:a.柔性大小-Si-O->-C-N->-C-O->-C-C- b.含双键(非共轭)的高分子有较好的柔性c.含共轭双键或苯环的高分子柔性差(2)取代基:a.极性取代基:1.取代基极性越大,柔性越差 2.取代基密度越大,柔性越差 3.取代基在主链上的分布有对称性,柔性越好 b.非极性取代基:1.取代基增加空间位阻,柔性越差 2.削弱了分子间作用力,柔性越好。
最终决定与哪一方面起主要作用。
(3)支化、交联,柔性越差(4)分子链长,柔性越好,但一定限度后,分子链长短无影响(5)分子间作用力大,柔性越差,有氢键存在,则柔性越差(6)分子越规整,柔性越差(7)温度升高,柔性越好(8)外力作用时间越长,柔性越易显示(9)溶剂:溶剂对大分子运动的影响3、写出自由连接链、自由旋转链、受阻旋转链,等效自由连接链的均方末端距表达式。
自由连接链:自由旋转链:受阻旋转链:等效自由连接链的均方末端距:4、聚合物在溶液中通常呈什么构象?但对于聚乙烯晶体而言,其分子链在晶体中为什么构象?等规聚丙烯晶体的分子链呈什么构象?无规线团;聚乙烯晶体:平面锯齿形构象;等规聚丙烯晶体:H31螺旋构象5、高分子链的柔顺性越大,它在溶液中的构象数多还是少?其均方末端距呢?构象数多;均方末端距小6、构型和构象有何区别?全同立构聚丙烯能否通过化学键(C-C单键)内旋转把“全同”变为“间同”?为什么?构型事指分子中有化学键所固定的原子在空间的几何排列。
2022-2022(28-31届)中国化学奥林匹克(初赛)试题及答案(WORD版)

第28届中国化学奥林匹克初赛试题第1题(6分)合成氨原料气由天然气在高温下与水和空气反应而得。
涉及的主要反应如下:(1)CH4(g)+H2O(g) → CO(g)+3H2(g)(2)2CH4(g)+O2(g) → 2CO(g)+4H2(g)(3)CO(g)+H2O(g) → H2(g)+CO2(g)假设反应产生的CO全部转化为CO2,CO2被碱液完全吸收,剩余的H2O通过冷凝干燥除去。
进入合成氨反应塔的原料气为纯净的N2和H2。
1-1 为使原料气中的N2和H2的体积比为1∶3,推出起始气体中CH4和空气的比例。
设空气中O2和N2的体积比为1∶4,所有气体均按理想气体处理。
1-2 计算反应(2)的反应热。
已知:(4)C(s)+2H2(g) → CH4(g)ΔH4=-74.8 kJ mol-1(5)C(s)+1/2O2(g) → CO(g) ΔH5=-110.5 kJ mol-1第2题(5分)连二亚硫酸钠是一种常用的还原剂。
硫同位素交换和核磁共振实验证实,其水溶液中存在亚硫酰自由基负离子。
2-1 写出该自由基负离子的结构简式,根据VSEPR理论推测其形状。
2-2 连二亚硫酸钠与CF3Br反应得到三氟甲烷亚磺酸钠。
文献报道,反应过程主要包括自由基的产生、转移和湮灭(生成产物)三步,写出三氟甲烷亚磺酸根形成的反应机理。
第3题(6分)2022年,科学家通过计算预测了高压下固态氮的一种新结构:N8分子晶体。
其中,N8分子呈首尾不分的链状结构;按价键理论,氮原子有4种成键方式;除端位以外,其他氮原子采用3种不同类型的杂化轨道。
3-1 画出N8分子的Lewis结构并标出形式电荷。
写出端位之外的N原子的杂化轨道类型。
3-2 画出N8分子的构型异构体。
第4题(5分)2022年6月18日,发明开夫拉(Kevlar)的波兰裔美国女化学家Stephanie Kwolek谢世,享年90岁。
开夫拉的强度比钢丝高5倍,用于制防弹衣,也用于制从飞机、装甲车、帆船到手机的多种部件。
潘祖仁《高分子化学》(第5版)笔记和课后习题(含考研真题)详解(修订版)

潘祖仁《高分子化学》(第5版)笔记和课后习题(含考研真题)详解(修订版)目录内容简介目录第1章绪论1.1复习笔记1.2课后习题详解1.3名校考研真题详解第2章缩聚和逐步聚合2.1复习笔记2.2课后习题详解2.3名校考研真题详解第3章自由基聚合3.1复习笔记3.2课后习题详解3.3名校考研真题详解第4章自由基共聚合4.1复习笔记4.2课后习题详解4.3名校考研真题详解第5章聚合方法5.1复习笔记5.2课后习题详解5.3名校考研真题详解第6章离子聚合6.1复习笔记6.2课后习题详解6.3名校考研真题详解第7章配位聚合7.1复习笔记7.2课后习题详解7.3名校考研真题详解第8章开环聚合8.1复习笔记8.2课后习题详解8.3名校考研真题详解第9章聚合物的化学反应9.1复习笔记9.2课后习题详解9.3名校考研真题详解第第1章绪论1.1复习笔记【通关提要】通过本章的学习,了解聚合反应的机理特征,掌握聚合度、数均分子量、重均分子量和分子量分布指数的计算。
【知识框架】【重点难点归纳】一、高分子的基本概念1聚合度(见表1-1-1)表1-1-1聚合度的基本知识2三大合成材料(1)合成树脂和塑料。
(2)合成纤维。
(3)合成橡胶。
二、聚合物的分类和命名1分类(见表1-1-2)表1-1-2聚合物的分类2命名(见表1-1-3)表1-1-3聚合物的命名三、聚合反应1按单体-聚合物结构变化分类分为缩聚反应、加聚反应和开环聚合。
2按聚合机理和动力学分类分为:逐步聚合和连锁聚合。
四、分子量及其分布1平均分子量(见表1-1-4)表1-1-4平均分子量2分子量分布分子量分布有两种表示方法:(1)分子量分布指数(2)分子量分布曲线如图1-1-1所示,、、依次增大。
数均分子量接近于最可几分子量。
平均分子量相同,其分布可能不同,因为同分子量部分所占百分比不一定相等。
分子量分布也是影响聚合物性能的重要因素。
图1-1-1分子量分布曲线五、大分子微结构1大分子和结构单元关系大分子具有多层次微结构,由结构单元及其键接方式引起,包括结构单元的本身结构、结构单元相互键接的序列结构、结构单元在空间排布的立体构型等。
高分子化学(第五版)潘祖仁版课后习题答案-(2)

第一章绪论思考题1. 举例说明单体、单体单元、结构单元、重复单元、链节等名词的含义,以及它们之间的相互关系和区别。
答:合成聚合物的原料称做单体,如加聚中的乙烯、氯乙烯、苯乙烯,缩聚中的己二胺和己二酸、乙二醇和对苯二甲酸等。
在聚合过程中,单体往往转变成结构单元的形式,进入大分子链,高分子由许多结构单元重复键接而成。
在烯类加聚物中,单体单元、结构单元、重复单元相同,与单体的元素组成也相同,但电子结构却有变化。
在缩聚物中,不采用单体单元术语,因为缩聚时部分原子缩合成低分子副产物析出,结构单元的元素组成不再与单体相同。
如果用2种单体缩聚成缩聚物,则由2种结构单元构成重复单元。
聚合物是指由许多简单的结构单元通过共价键重复键接而成的分子量高达104-106的同系物的混合物。
聚合度是衡量聚合物分子大小的指标。
以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平X表示。
均值,以DP表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以n2. 举例说明低聚物、齐聚物、聚合物、高聚物、高分子、大分子诸名词的的含义,以及它们之间的关系和区别。
答:合成高分子多半是由许多结构单元重复键接而成的聚合物。
聚合物〔polymer〕可以看作是高分子〔macromolecule〕的同义词,也曾使用large or big molecule的术语。
从另一角度考虑,大分子可以看作1条大分子链,而聚合物则是许多大分子的聚集体。
根据分子量或聚合度大小的不同,聚合物中又有低聚物和高聚物之分,但两者并无严格的界限,一般低聚物的分子量在几千以下,而高聚物的分子量总要在万以上。
多数场合,聚合物就代表高聚物,不再标明“高”字。
齐聚物指聚合度只有几~几十的聚合物,属于低聚物的范畴。
低聚物的含义更广泛一些。
3. 写出聚氯乙烯、聚苯乙烯、涤纶、尼龙-66、聚丁二烯和天然橡胶的结构式〔重复单元〕。
选择其常用4. 举例说明和区别:缩聚、聚加成和逐步聚合,加聚、开环聚合和连锁聚合。
2024年湖北省高考化学真题卷及答案

机密★启用前2024年湖北省普通高中学业水平选择性考试化学本试卷共8页,19题。
主卷满分100分。
考试用时75分钟。
★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并认真核准准考证号条形码上的以上信息,将条形码粘贴在答题卡上的指定位置。
2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.选择题用2B铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚。
4.考试结束后,请将试卷和答题卡一并上交。
可能用到的相对原子质量:H 1 Li 7 O 16 Si 28 Cu 64 I 127 Au 197本卷涉及的实验均须在专业人士指导和安全得到充分保障的条件下完成。
一、选择题:本题共15小题,每小题3分,共45分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 劳动人民的发明创造是中华优秀传统文化的组成部分。
下列化学原理描述错误的是发明关键操作化学原理A制墨松木在窑内焖烧发生不完全燃烧B陶瓷黏土高温烧结形成新的化学键C造纸草木灰水浸泡树皮促进纤维素溶解D火药硫黄、硝石和木炭混合,点燃发生氧化还原反应A AB. BC. CD. D2. 2024年5月8日,我国第三艘航空母舰福建舰顺利完成首次海试。
舰体表面需要采取有效的防锈措施,下列防锈措施中不形成表面钝化膜的是A. 发蓝处理 B. 阳极氧化C. 表面渗镀D. 喷涂油漆3. 关于物质的分离、提纯,下列说法错误的是A 蒸馏法分离22CH Cl 和4CCl B. 过滤法分离苯酚和3NaHCO 溶液C 萃取和柱色谱法从青蒿中提取分离青蒿素D. 重结晶法提纯含有少量食盐和泥沙的苯甲酸4. 化学用语可以表达化学过程,下列化学用语表达错误的是A. 用电子式表示2Cl 的形成:B. 亚铜氨溶液除去合成氨原料气中的CO :()()2+2+33323Cu NH +CO+NH Cu NH CO ⎡⎤⎡⎤⎣⎦⎣⎦C. 用电子云轮廓图示意p-p π键的形成:D. 制备芳纶纤维凯芙拉:5. 基本概念和理论是化学思维的基石。
高分子物理习题集及解答

6)
-CH2-CH2->
>
取代基的体积越大,空间位阻越大,内旋转受阻,柔性变差。 7)
5
高分子物理习题解答
>
>
[侧链为脂肪族时,侧链越长,分子构象数越多,分子链越柔顺。] 8)
> 后者含有苯环结构,分子链刚性增加。 9)
> 前者碳链长,构象数增加,柔性较好。 10. 为什么真实的内旋高分子链比相应的高斯链的均方末端距要大些? 不同于理想化的高斯链, 真实的高分子链占有一定的体积,单键的内旋转需要克服一定的能垒 且有键角的限制,即链段之间的并非是自由连接的,所以真实的均方末端距要大于高斯 链。???? 11. 分子量不相同的聚合物之间用什么参数比较其大分子链的柔顺性? 可用单位分子量的均方末端距作为衡量分子柔顺性的参数,令
全同,间同,无规。头头,头尾。
全同,间同,无规。头头,头尾。
顺式,反式。
3
高分子物理习题解答
6. 分子间作用力的本质是什么?影响分子间作用力的因素有哪些?试比较聚乙烯、聚氯乙 烯、聚丙烯、聚酰胺(尼龙-66) 、聚丙烯酸各有那些分子间作用力? 分子间作用力是分子偶极之间的相互作用,本质是电场力(静电力) 。可以分为取向力,诱导 力,色散力。取向力是分子固有偶极之间的相互作用,存在于极性分子之间。诱导力是固有偶 极与诱导偶极之间的相互作用,极性分子有固有偶极,当极性分子和极性分子靠近时,会产生 额外的诱导偶极,所以极性分子间存在诱导力; 当极性分子和非极性分子靠近时,非极性分 子产生诱导偶极, 所以诱导力也存在于极性分子和非极性分子间; 非极性分子间不存在诱导力; 色散力是瞬时偶极之间的相互作用力, 广泛存在于各种分子之间, 是分子间作用力的主要形式。 影响分子间作用力的因素有分子的极性,分子的变形性,以及相对分子质量等。 PP 是非极性分子,故其分子间作用力为色散力。PVC 是极性分子,故分子间作用力为色散力, 诱导力,取向力。PP:取向力,诱导力,色散力。聚酰胺:色散力,诱导力,取向力,氢键。 聚丙烯酸:色散力,诱导力,取向力,氢键。 7. 下列那些聚合物没有旋光异构,并解释原因。 A.聚乙烯 B.聚丙烯 C.1,4-聚异戊二烯 D.3,4-聚丁二烯 E.聚甲基丙烯酸甲酯 F.硫化橡胶 没有旋光异构即分子内不存在手性碳:A,C,F。 8. 何谓大分子链的柔顺性?试比较下列高聚物大分子链的柔顺性,并简要说明理由。
高化习题-浙江大学

选择与填空1、对于可逆平衡缩聚反应,在生产工艺上,到反应后期往往要在(1)下进行,(a、常压,b、高真空,c、加压)目的是为了(2、3)。
2、动力学链长ν的定义是(4),可用下式表示(5);聚合度可定义为(6)。
与ν的关系,当无链转移偶合终止时,ν和的关系是为(7),歧化终止时ν和的关系是(8)。
3、苯乙烯(St)的pKd=40~42,甲基丙烯酸甲酯(MMA)pKd=24,如果以KNH2为引发剂进行(9)聚合,制备St-MMA嵌段共聚物应先引发(10),再引发(11)。
KNH2的引发机理(12),如以金属K作引发剂则其引发机理是(13)。
4、Ziegler-Natta引发剂的主引发剂是(14),共引发剂是(15),要得到全同立构的聚丙烯应选用(16),(a、TiCl4+Al(C2H3)3,b、α-TiCl3+Al(C2H5)3,C、α-TiCl3+Al(C2H5)2Cl),全同聚丙烯的反应机理为(17)。
5、已知单体1(M1)和单体2(M2)的Q1=2.39,e1=-1.05,Q2=0.60,e2=1.20,比较两单体的共轭稳定性是(18)大于(19)。
从电子效应看,M1是具有(20)取代基的单体,M2是具有(21)取代基的单体。
比较两单体的活性(22)大于(23)。
当两单体均聚时的kp 是(24)大于(25)。
6、阳离子聚合的反应温度一般都(26),这是因为(27、28)。
7、苯酚和甲醛进行缩聚反应,苯酚的官能度f=(29),甲醛的官能度f=?0)。
当酚∶醛=5∶6(摩尔比)时,平均官能度=(31),在碱催化下随反应进行将(32),(a、发生凝胶化;b、不会凝胶化)。
如有凝胶化,则Pc=(33)。
当酚∶醛=7∶6(摩尔比),则=(34),以酸作催化剂,反应进行过程中体系(35)。
(a、出现凝胶化;b、不出现凝胶化)8、聚乙烯醇的制备步骤是:①在甲醇中进行(36)的溶液聚合,②(37)。
形成聚乙烯醇的反应称为(38)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
唐本忠院士、丁丹教授《自然·通讯》:“分子内运动诱导的光热转化(iMIPT)”
有机光热材料通过非辐射跃迁将光能转化为热能,其在光热催化,光声成像,光热治疗以及海水淡化等方面的重要应用受到广泛关注。
传统有机光热材料的设计较为单一,主要依赖于扩大共轭体系以及引入给受体结构,其面临着溶解性差,光稳定性差以及合成复杂等问题。
除此之外,所得到的平面型材料其非辐射跃迁也十分依赖固态下的堆积,许多平面材料易于形成J聚集体或其他聚集方式,其辐射跃迁通道并不能被完全关闭,从而降低了其光热转化效率。
近日,香港科大唐本忠教授课题组与南开大学丁丹教授合作,提出了一种新的分子设计理念,利用固态下分子运动促进非辐射跃迁产热来构建高效光热材料,也被称为分子内运动诱导光热转化(Intramolecular moiton-induced photothermy, iMIPT,图1)。
相关成果以“Highly efficient
AHAHAGAHAGAGGAGAGGAFFFFAFAF
photothermal nanoagent achieved by harvesting energy via excited-state intramolecular motion within nanoparticles”为题,发表于Nature Communications。
论文的共同第一作者为香港科技大学博士后赵征博士,南开大学的博士研究生陈超同学以及中科院上海有机所的博士研究生吴文婷同学。
通讯联系人为唐本忠院士和南开大学的丁丹教授。
图1聚集诱导发光(aggregation-induced emission, AIE)与分子内运动诱导光热转化(Intramolecular moiton-
induced photothermy, iMIPT)概念的对比示意图.该工作是对前期所提出的聚集诱导发光(AIE)概念的一次逆向思维,相对于AIE类型分子力图抑制分子运动来打开辐射跃迁途径而发出荧光,该工作则致力于最大程度的实现固态下的分子运动来增强非辐射跃迁将光能转化为热能。
以往报道表明强的给受体结构以及扭曲的AIE基元的引入可以有效的促进分子内运动进而促进非辐射跃迁,但在固体状态下分子运动往往被抑制。
而在本工作中,作者在以往分子设计的基础上引入长烷基分叉型侧链来克服固体状态下分子运AHAHAGAHAGAGGAGAGGAFFFFAFAF
动的抑制(图2)。
实现聚集体以及固体状态下活跃的分子运动以及高效的非辐射跃迁。
该结果明显不同于以往通过引入TPE分子将平面型分子转化为AIE分子的实例,证实了iMIPT型分子引入长烷基侧链分子设计的合理性以及有效性。
图2 iMIPT分子设计以及分子在溶液和聚集状态下
下的光物理性质。
如图2所示,相对于NDTA分子,含有TPE单元的两个分子无论是在溶液,纳米聚集体还是固体薄膜中均没有发光行为。
超快光谱实验证明随着TPE的引入,2TPE-NDTA和2TPE-2NDTA分子的单线态寿命相比NDTA(纳秒级别)缩短至皮秒级别,激子的非辐射跃迁成为主导。
低温实验和溶剂化效应证明在77k下以及非极性溶剂中,当分子运动被抑制后,两个分子均在近红外区800900 nm表现出强的荧光发射。
图3固体核磁实验数据
固体核磁实验证实相对于典型的AIE化合物TPE,2TPE-NDTA和2TPE-2NDTA表现出非常短的弛豫时间(图3)。
弛豫时间可以用来表征分子在固体状态下的运动状况,弛豫时间的长短分别对应分子固体状态AHAHAGAHAGAGGAGAGGAFFFFAFAF
下运动的快与慢。
这说明其固体下2TPE-NDTA和2TPE-2NDTA具有非常快的分子运动,这与其固体下不发光的特点是一致的。
图4iMIPT分子的光热转化效率
光热转化效率测试表明,和文献所报道的明星半导体分子SPNs对比发现,iMIPT型分子表现出比SPNs (%)更高的光热转换效率(%)。
光声信号测试表明,与商业化的亚甲基蓝(MB)和已知的明星半导体高分子SPNs相比,iMIPT型分子制备的纳米颗粒表现出更强的光声信号,而且表现出优异的光学稳定性(图4)。
最后,作者将iMIPT型分子制备的纳米颗粒成功用于活体近红外光声成像。
该工作的意义在于:从应用的角度,提出了一条新的利用分子运动构建先进功能材料的思路,不拘泥于分子运动的精准控制;从机理上,反向证实了聚集诱导发光机理的合理性和普适性,并且证实了激发态分子运动调控在发展多功能π材料方面的可行性。
该工作也得到了南开大学王粉粉博士以及孙平川教授在固体核磁实验和解析方面的帮助;超快光谱实验和解析得到了香港大学杜莉莉博士以及Phillips教授
的帮助。
上海有机所高希珂研究员对本工作给出了重AHAHAGAHAGAGGAGAGGAFFFFAFAF
要帮助和建议。
通讯联系人为香港科技大学唐本忠教授以及南开大学的丁丹教授。
该研究受到国家自然科学基金以及香港ITC,RGC等项目的资助。
文章作者:
Zheng Zhao, Chao Chen, Wenting Wu, Fenfen Wang, Lili Du, Xiaoyan Zhang,
Yu Xiong, Xuewen He, Yuanjing Cai, Ryan . Kwok, Jacky . Lam, Xike Gao, Pingchuan Sun, David Lee Phillips, Dan Ding* & Ben Zhong Tang*
文章链接:
来源:0
声明:凡本平台注明“来源:XXX”的文/图等稿件,本平台转载出于传递更多信息及方便产业探讨之目的,并不意味着本平台赞同其观点或证实其内容的真实性,文章内容仅供参考。
我们的微博:0,欢迎和我们互动。
添加主编为好友(eeee,请备注:名字-单位-研究方向),邀请您加入学术圈、企业界、硕博联盟、北美、欧洲、塑料、橡塑弹性体、纤维、涂层黏合剂、油墨、凝胶、生物医用高分子、高分子合成、膜材料、石墨AHAHAGAHAGAGGAGAGGAFFFFAFAF
AHAHAGAHAGAGGAGAGGAFFFFAFAF 烯、纳米材料、表征技术、车用高分子、发泡、聚酰亚胺等一系列技术0。
同时可以在菜单中回复
“0”,获取群目录。
投稿 荐稿 合作:editor@
用户设置不下载评论。