人教版九年级上学期数学10月月考试卷B卷(练习)

合集下载

重庆市开州区云枫教育集团2023-2024学年九年级上学期10月月考数学试题(含部分答案)

重庆市开州区云枫教育集团2023-2024学年九年级上学期10月月考数学试题(含部分答案)

开州区云枫初中教育集团2023-2024学年度(上)第一次阶段性测试九年级数学试卷(注:全卷共四个大题,满分150分;用120分钟完成。

)注意事项:试题的答案书写在答题卡上,不得在试卷上直接作答。

一、选择题:(本大题共10小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.的倒数是()A .2023B .C .D.2.下列图形不是轴对称图形的是()A .B .C .D .3.下列计算中,正确的是()A .B .C .D .4.用配方法解方程,下列变形正确的是()A .B .C .D .5.一元二次方程的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .有一个实数根为0D .没有实数根6)A .和之间B .1和2之间C .2和3之间D .7和8之间7.如图,在菱形中,,对角线交于点O ,E 为的中点,连接,则的度数为( )2023-2023-12023-1202322a a -=1x x x x ÷⋅=()326327x x -=-222()m n m n -=-2230x x +-=2(1)4x +=2(1)2x +=2(1)3x +=2(1)3x +=-2260x x --=⨯-2-3-ABCD 66ABC ∠=︒,AC BD CD OE AOE∠A .B .C .D .8.由二次函数可得下列选项中正确的是()A .其图象的开口向下B .其图象的对称轴为直线C .其顶点坐标为D .当时,随的增大而增大9.在同一直角坐标系内,函数和的图象大致是( )A .B .C .D .10.对于实数,定义新运算,则下列结论正确的有( )①当时,;②;③若是关于的一元二次方程的两个根,则或;④若是关于的一元二次方程的两个根,,则的值为或A .1个B .2个C .3个D .4个二、填空题:(本大题共8小题,每小题4分,共32分)将答案直接填写在答题卡中对应的横线上.11.计算:______.12.若是一元二次方程的一个根,则______.13.如图,在中,分别是边上的中点,.则四边形的周长为______.114︒120︒123︒147︒22(1)4y x =+-1x =()4,1-1x >y x 2y ax =-()10y ax a =+≠,a b ()222()a b ab a b a b ab a b a b ⎧+-≥*=⎨--<⎩1x =-()2721x -**=-⎡⎤⎣⎦()()22272,121451,(1)m m m m m m m m ⎧-+-≤*-=⎨-+>⎩12x x 、x 2560x x --=1216x x *=17-12x x 、x 210x mx m +--=124x x *=m 3-6-02(3)π-+-=3x =2120ax ax --=a =ABC △,,D E F ,,AC BC AB 4,6AB BC ==BEDF14.将抛物线向左平移1个单位长度,再向下平移2个单位长度,所得的抛物线的解析式为______.15.若点是抛物线上的三点,则的大小关系为______;(用“>”连接)16.如图,把三角形纸片折叠,使点、点都与点重合,折痕分别为,得到,若的长为______厘米.17.如果关于的不等式组至少有3个整数解,且关于的分式方程的解为整数,则符合条件的所有整数的取值之和______;18.如果一个自然数右边的数字总比左边的数字大,我们称它为“上升数”.如果一个三位“上升数”满足百位数字与十位数字之和等于个位数字,那么称这个数为“完全上升数”.例如:,满足,且;所以123是“完全上升数”;,满足,且,所以346不是“完全上升数”.若一个“完全上升数”为,则这个数为______;对于一个“完全上升数”(且为整数)交换其百位和个位数字得到新数;若与的和能被7整除,则满足条件的的和是______.三、(解答题:(本大题共7小题,19题8分,其余每题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线).19.解方程:(1)(2)20.(1)(2)21.如图,在菱形中,对角线相交于点O .251y x =-+()()()1230,,1,, 2.A y B y C y 2(1)y x m =-++123,,y y y B C A DE FG 、30AGB ∠=︒AE EG ==BC x 5316105x x a x +⎧≤+⎪⎪⎨⎪-≥⎪⎩y 13555ay a y y y y -=----a 123A =123<<123+=346B =346<<346+≠29b 10010m a b c =++19a b c ≤<<≤,,a b c 10010m c b a +'=+m m 'm 230x x -=24310x x -+=()2()2a b a a b +--21111x x x x x -⎛⎫÷+- ⎪++⎝⎭ABCD AC BD 、(1)尺规作图:在的延长线上截取,连接,再过点作的垂线交于点(保留作图痕迹,不写作法);(2)求证:四边形为矩形.证明:①______四边形是菱形∵②______又四边形为平行四边形③______④______四边形为矩形.22.某校开展了全校教师学习党史活动进行了党史知识竞赛,从七、八年级中各随机抽取了20名教师,统计这部分教师的竞赛成绩(竞赛成绩均为整数,满分为10分,9分以上为优秀).相关数据统计、整理如下:抽取七年级教师的竞赛成绩(单位:分):6,7,7,8,8,8,8,8,8,8,8,9,9,9,9,10,10,10,10,10八年级教师竞赛成绩扇形统计图七、八年级教师竞赛成绩统计表年级七年级八年级平均数8.58.CB BE BC =AE B AE AE F AOBF BF AE⊥ ∴ ABCD ,,AD BC AD BC AC BD∴=⊥∥90AOB ∴∠=︒BE BC=∴AD BC∥∴ADBE ∴180AFB FBO ∴∠+∠=︒∴90AFB AOB FBO ∴∠=∠=∠=︒∴AOBF中位数9众数8优秀率根据以上信息,解答下列问题:(1)填空:_________ _________(2)估计该校七年级120名教师中竞赛成绩达到8分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级教师学习党史的竞赛成绩谁更优异.23.某新修公路沿线需要进行绿化施工,由甲、乙两工程队合作完成.已知若由甲工程队单独施工,需要30天才能完成此项工程;若由乙工程队先施工30天,剩下的由甲、乙合作施工,则还需10天才能完成此项工程.(1)求乙工程队单独完成此项工程需要多少天?(2)若甲工程队每天所需费用为1.5万元,乙工程队每天所需费用为1万元,甲、乙两工程队合作完成此项工程,总费用恰为49万元,则应安排甲工程队施工多少天?24.(10分)如图,已知矩形的边长为分别在边上,且,点是矩形边上的一个动点,点从出发,经过点,到D 点停止.记点走过的路程为,四边形的面积为.(1)请求出关于的函数关系式,并写出自变量的取值范围;(2)在坐标系中画出的函数图象;观察函数图象,请写出一条该函数的性质;(3)根据函数图象直接写出当四边形的面积为4时的值;(误差不超过0.1).25.如图,已知抛物线经过两点,直线是抛物线的对称轴.a b 45%55%a =b =ABCD 4,3,,AB AD E F ==AD AB 、2DE BF ==P P B C P x AEPF y y x y AEPF x 232y a x k ⎛⎫=-+ ⎪⎝⎭()()1,0,0,4A C --m(1)求抛物线的解析式.(2)设是直线上的一个动点,当点到点的距离之和最短时,求点的坐标.(3)已知为抛物线的顶点,在平面直角坐标系中是否存在一点,恰好使得为顶点平行四边形,若存在,写出所有符合条件的点坐标,并写出求解点的坐标的其中一种情况的过程,若不存在,说明理由。

上海市南洋模范中学2024-2025学年九年级上学期10月月考数学试题(含答案)

上海市南洋模范中学2024-2025学年九年级上学期10月月考数学试题(含答案)

2024~2025学年上海市南洋模范中学九年级上学期9月月考试卷数学 试卷(考试时间100分钟 满分150分)考生注意:1.带2B 铅笔、黑色签字笔、橡皮擦等参加考试,考试中途不得传借文具2.不携带具有传送功能的通讯设备,一经发现视为作弊。

与考试无关的所有物品放置在考场外。

3.考试期间严格遵守考试纪律,听从监考员指挥,杜绝作弊,违者由教导处进行处分。

4.答题卡务必保持干净整洁,答题卡客观题建议检查好后再填涂。

若因填涂模糊导致无法识别的后果自负。

一.选择题(共6题,每题4分,满分24分)-2.计算:(3x 2)2的结果为( )A .4x 2B .6x 4C .9x 2D .9x 43.用6,7,8,9制作四道算式,积最小的是( )A .9×678B .7×689C .6×789D .8×7964.四边形ABCD 为矩形,A,C 作对角线BD 的垂线,过B,D 作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )A .菱形B .矩形C .直角梯形D .等腰梯形5.有下列说法:①等边三角形是等腰三角形;②三角形三条角平分线的交点叫做三角形的重心;③连接多边形的两个顶点的线段叫做多边形的对角线;④三角形的三条高相交于一点;⑤各边都相等的多边形为正多边形;⑥所有的等边三角形全等,其中正确的个数有( )个.A .1B .2C .3D .46.平面上的一组3条平行线与另一组5条平行线相交,可构成平行四边形的个数为( )A .24B .28C .30D .32二.填空题(共12题,每题4分,满分48分)7.0的相反数是________8.使用卡西欧计算器,依次按键 ,显示结果为 .借助显示结果,可以将一元二次方程x 2+x-1=0的正数解近似表示为___________9.在实数范围内因式分解:2x 2-1=____________10.计算:AB ―AC +BC =_________11.某人手机的密码是四位数字,如果陌生人想打开该手机,那么他一次就能手机电脑的概率是________12.已知A (2,3) B (2,1),则将点A 向上平移______个单位可得到点B13.如图所示的图形是中心对称图形,O 是它的对称中心,E ,F 是两个对称点,则点E ,F 到点O 的距离OE ,OF 的大小关系是:OE ____OF (填“<”,“=”或“>”).14.小雨一家自驾游到北京游玩,总路程600千米.前半程按计划速度行驶,为提前到达目的地,后半程将车速提高了20%,因遇到高速拥堵,耽搁40分钟,最终恰好在计划时间到达.设原计划速度为x 千米每小时,则根据题意可列方程________15.已知△ABC ∽△DEF ∽△MNQ ,若△ABC 与△DEF 相似比为15,△ABC 与△MNQ 相似比为23,则△ABC 与△MNQ 相似比为________16.“元旦节 ”前夕,某超市分别以每袋 30元、20 元、10 元的价格购进腊排骨、腊香肠、腊肉各若干,由于该食品均是真空包装,只能成袋出售,每袋的售价分别为 50 元、40 元、20 元,元旦节当天卖出三种年货若干袋,元月2日腊排骨卖出的数量是第一天腊排骨卖出数量的 3 倍,腊香肠卖出的数量是第一天腊香肠卖出数量的 2 倍,腊肉卖出的数量是第一天腊肉卖出数量的4倍;元月3日卖出的腊排骨的数量是这三天卖出腊排骨的总数量的20%,卖出腊香肠的数量是前两天卖出腊香肠数量和的43,卖出腊肉的数量是第二天卖出腊肉数量的一半.若第三天三种年货的销售总额比第一天三种年货销售总额多1600元,这三天三种年货的销售总额为9350元,则这三天销售的腊排骨和腊肉两种年货的利润之比为________17.在平面直角坐标系中,已知A (m-3,n ),B (m+5,n ),C (m,n+3)若线段AC 的垂直平分线与线段AB 交于点P ,线段BC 的垂直平分线与线段AB 交于点Q ,∠CAB 的外角平分线与∠CBA 的外角平分线所在直线交于点M ,连接CP,CQ ,请写出∠PCQ 与∠M 的数量关系:________18.对于一个二次函数y=a(x-m)2+k (a≠0)中存在一点P (x,y ),使得x-m=y-k≠0,则称2|x-m|为该抛物线的“开口大小”,那么抛物线y=―12x 2+13x +3 “开口大小”为_________三.解答题(满分78分)x=320.如图,已知D 、E 分别是△ABC 的边AB 、AC 上的点,DE ∥(2)联结BE ,设AB =a ,BC =b ,试用向量a 、b 表示向量BE步骤1:把长为2米的标杆垂直立于地面点D 处,塔尖点A 和标杆顶端C 确定的直23.如图,△ABC 中,D 、E 分别为AB,AC 上两点,满足∠A+∠ABD+∠ACE=90°,P 为BE 的中点,且OP ⊥AC ,延长PO 交AC 于点H(1)求证:AE·AB=AD·AC ;(2)当△ADE 和△BCD 相似时,求证:BC=CE24.如图,在平面直角坐标系中,△ABC的三个顶点A,B,C的坐标分别为(2,5),(-1,1),(4,2)(1)求:过点A,B,C的抛物线及其对称轴(2)新定义:如果点P(x,y)的坐标满足x+y=xy,那么称点P为“和谐点”,若某个“和谐点”P到x轴的距离与C 点到x轴的距离相同,求:P点的坐标(3)我们称横坐标和纵坐标为整数的点为格电,求:△ABC的面积,并直接写出该值与其内部格点数量a和边上格点数量b的等式25.如备用图,已知在矩形ABCD中,AB=4,BC=8(1)若延长BA至E,使AE=AB,以AE为边向右侧作正方形AEFG,O为正方形AEFG的中心,若过点O的一条直线平分该组合图形的面积,并分别交EF、BC于点M、N,求:线段MN的长(2)将矩形绕点A旋转,得到四边形AB1C1D1,使点D落在直线B1C1上,求:线段BB1的长(3)若把矩形纸片沿着直线EF翻折,点A,B的对应点分别为A’,B’,交射线AD于点G,EB’交AD于点P,当CE=EF参考答案及部分评分标准选择题(1~6题)DDCAAC填空题(7~18题)7.08.一9.(2x +1)(2x ―1)10.011.11000012.-213.=14.600x=300x +3001.2x +406015.10316. 151417.4∠M+∠PCQ=180°18.4解答题(19~25题)19.1―x x +1= ―2+3(10分)20.(1)35(5分)(2)―2a 3b21.(1)AB=47m (10分)22.(1)―364x 2+11(5分)(2)32h (5分)23.(1)提示:证明△ABD ∽△ACE (6分)(2)提示:等角对等边(6分)24.(1)y=-17―30x 2+1910x +5215 对称轴为5734(4分)(2)P (2,2)或P (23,―2)(4分)(3)S=152=2a +b ―22(皮克定理)(4分)25. (1)MN=45(4分)(2)26―22或26+22(4分)(3)1或3(6分)。

2024-2025学年山东省潍坊市高密市九年级上学期月考数学试卷及参考答案(10月份)

2024-2025学年山东省潍坊市高密市九年级上学期月考数学试卷及参考答案(10月份)

2024-2025学年山东省潍坊市高密市九年级上学期月考数学试卷(10月份)时间:120分钟,满分150分一、单选题(本题共8小题,每小题选对得4分,共32分.)1.下一元二次方程2650x x −+=配方后可化为( ) A.()234x −=−B.()2314x +=−C.()234x −=D.()2314x +=2.在ABC ∆中,A ∠、B ∠均为锐角,且(2tan 2sin 0B A +=,则ABC ∆是( )A.钝角三角形B.等边三角形C.直角三角形D.等腰直角三角形3.如图,已知点B ,D ,C 在同一直线的水平地面上,在点C 处测得建筑物AB 的顶端A 的仰角为α,在点D 处测得建筑物AB 的顶端A 的仰角为β,若CD α=,则建筑物AB 的高度为( )A.tan tan ααβ− B.tan tan αβα− C.tan tan tan tan ααβαβ⋅−D.tan tan tan tan ααββα⋅−4.如图,在ABC ∆中,1sin 3B =,tan 2C =,3AB =,则AC 的长为( )B.2C.2D.25.已知关于x 的方程()()212110k x k x k +−++−=有实数根,则k 的取值范围是( ) A.5k 4≥−B.k 1≠−C.5k 4>−且k 1≠− D.5k 4≥−且k 1≠− 6.阅读材料:如果a ,b 是一元二次方程2x 10x +−=的两个实数根,则有210a a +−=,210b b +−=.创新应用:如果m ,n 是两个不相等的实数,且满足23m m −=,23n n −=,那么代数式2222009n mn m −++的值为( ) A.2019B.2020C.2021D.20227.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,该公司5,6月份的营业额的月平均增长率为x ,根据题意列方程正确的是( ) A.()2250019100x +=B.()225001%9100x +=C.()()225001250019100x x +++=D.()()2250025001250019100x x ++++=8.如图,一艘船由A 港沿北偏东60方向航行10km 至B 港,然后再沿北偏西30方向航行10km 至C 港.则A ,C 两港之间的距离( )A.B.C.10kmD.5km二、多选题(本题共4小题,每小题5分,共20分.)9.如图,在Rt ABC ∆中,90A ∠=,AD 是BC 边上的高,则下列选项中可以表示tan B 的是( )A.AC ABB.AD BDC.CD ADD.AB BC10.如图,点A 、B 、C 在边长为1的正方形网格格点上,下列结论正确的是( )A.1sin 3B =B.sin C =C.1tan 2B =D.22sin sin 1B C +=11.若等腰三角形的一边长是3,另两边的长是关于x 的方程240x x k −+=的两个根,则k 的值可能为( ) A.3B.4C.6D.712.某商场将进货价为20元的玩具以30元售出,平均每天可售出300件.经调查发现,该玩具的单价每上涨1元,平均每天就少售出10件.若商场要想平均每天获得3750元利润,则每件玩具应涨价多少元?设每件玩具应涨价x 元,则下列说法正确的是( ) A.涨价后每件玩具的售价是30x +()元 B.涨价后平均每天销售玩具30010x −()件C.涨价后平均每天少售出玩具10x 件D.根据题意可列方程为30300103750x x +−=()()三、填空题:(每小题5分,共20分)13.若关于x 的一元二次方程()2210a x a x a −+−=有一个根是1x =,则a 的值为__________14.如图,某小区要在长为16m ,宽为12m 的矩形空地上建造一个花坛,使花坛四周小路的宽度相等,且花坛所占面积为空地面积的一半,则小路宽为__________m.15.如果三角形有一边上的中线长等于这边的长,那么称这个三角形为“好玩三角形”,若Rt ABC ∆是“好玩三角形”,且A 90∠=,则tan ABC ∠=__________16.如图,要在宽AB 为20米的瓯海大道两边安装路灯,路灯的灯臂CD 与灯柱BC 成120角,灯罩的轴线OD 与灯臂CD 垂直,当灯罩的轴线DO 通过公路路面的中心线(即O 为AB 的中点)时照明效果最佳,若CD =米,则路灯的灯柱BC 高度应该设计为__________米(计算结果保留根号).四、解答题:(共78分)17.计算题阅读材料:数学课上,老师在求代数式245x x −+的最小值时,利用公式()2222a ab b a b ±+=±,对式子作如下变化()2224544121x x x x x −+=−++=−+,因为()220x −≥,所以()2211x −+≥,当2x =时,()2211x −+=, 因此()221x −+有最小值1,即245x x −+的最小值为1. 通过阅读,解下列问题:(1)代数式2x 612x ++的最小值为__________; (2)求代数式229x x −++的最大或最小值;(3)试比较代数式232x x −与2237x x +−的大小,并说明理由. 18.计算题(每题5分,共20分) (1)()2921210x −−=(2)24630x x −−=(配方法)(3)()235210x x ++=(公式法)(4()33tan3064−19.已知关于x 的一元二次方程()22110mx m x m +++−=有两个实数根. (1)求m 的取值范围;(2)若该方程的两个实数根分别为1x ,2x ,且22128x x +=,求m 的值.20.某头盔经销商统计了某品牌头盔4月份到6月份的销量,该品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同. (1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为30元个,测算在市场中,当售价为40元个时,月销售量为600个,若在此基础上售价每上涨1元/个,则月销售量将减少10个,为使月销售利润达到10000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元个?21.如图,在绿化工程中,要修建一个中间隔有一道篱笆的长方形花圃,该花圃一面利用墙(墙的最大可用长度为16米),其余部分由篱笆围成.为了出入方便,在建造花圃时,在长边上用其他材料建造了宽为1米的两个小门,其余部分刚好用完长为28米的篱笆.(1)设花圃的一边AB 为x ,请你用含有x 的式子表示另一边BC 的长为__________ 并求出x 的取值范围为__________(2)若此时花圃的面积为72平方米,求此时花圃的长和宽.22.某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)探究原理:制作测角仪时,将细线一端固定在量角器圆心O 处,另一端系小重物G 测量时,使支杆OM 、量角器90刻度线ON 与铅垂线OG 相互重合(如图①),绕点O 转动量角器,使观测目标P 与直径两端点A 、B 共线(如图②),此时目标P 的仰角是图②中的∠_____。

江苏省无锡市锡山区江苏省天一中学(实验学校)2024-2025学年九年级上学期10月月考数学试题

江苏省无锡市锡山区江苏省天一中学(实验学校)2024-2025学年九年级上学期10月月考数学试题

江苏省无锡市锡山区江苏省天一中学(实验学校)2024-2025学年九年级上学期10月月考数学试题一、单选题1.下列方程中,是一元二次方程的有( )①21x x +=;②22340x xy -+=;③211x x -=;④20x =;⑤233x x +=. A .1个; B .2个; C .3个; D .4个. 2.若一元二次方程230x x a -+=的一个根为2x =,则a 的值为( )A .2B .2-C .4D .4-3.如图,若点D 是线段AB 的黄金分割点(AD BD >),6AB =,则AD 的长是( )A .3B .1C .9-D .3 4.方程2230x x --=配方后可化成()2x m n +=的形式,则m n +的值为( )A .5B .4C .3D .15.如图,已知12∠=∠,那么添加下列的一个条件后,仍无法判定ABC ADE △△∽的是( )A .AB AC AD AE = B .B D ∠=∠ C .AB BC AD DE = D .C AED ∠=∠6.若关于x 的一元二次方程()2110k x x -++=有实数根,则k 的取值范围是( )A .54k ≥B .54k >C .54k >且1k ≠D .54k ≤且1k ≠ 7.下列各组图形中,一定相似的是( )A .两个正方形B .两个矩形C .两个菱形D .两个平行四边形 8.如图,在ABC V 中,D 是AC 的中点,点F 在BD 上,连接AF 并延长交BC 于点E ,若31BF FD =::,=10BC ,则CE 的长为( )A .3B .4C .5D .1039.《算法统宗》是中国古代数学名著,作者是明代数学家程大位.书中记载了一道“荡秋千”问题:“平地秋千未起,踏板一尺离地;送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑语欢嬉;良工高士素好奇,算出索长有几?”译文:“秋千静止的时候,踏板离地1尺,将它往前推送两步(两步=10尺)时,此时踏板升高离地5尺,秋千的绳索始终拉得很直,试问秋千绳索有多长?”若设秋千绳索长为x 尺,则可列方程为( ).A .()222101x x +=+B .()222110x x ++= C .()222104x x +=- D .()222410x x -+= 10.如图,在边长为2的正方形ABCD 中,P 是BC 边上一动点(不含B 、C 两点),将ABP V 沿直线AP 翻折,点B 落在点E 处;在CD 上有一点M ,使得将CMP !沿直线MP 翻折后,点C 落在直线PE 上的点F 处,直线PE 交CD 于点N ,连接MA ,NA .则以下结论中正确的是.( )①CMP BPA ∽△△;②CNP V的周长始终不变: ③当P 为BC 中点时,AE 为线段NP 的中垂线;④线段AM :⑤当ABP ADN △△≌时,2BP =.A .2个B .3个C .4个D .5个二、填空题11.已知23a b =,则b a =. 12.关于x 的方程()222310m m x x --+-=是一元二次方程,则m 的值为.13.如果两个相似三角形的面积之比为4:9,这两个三角形的周长的和是100cm ,那么较小的三角形的周长为cm .14.若α,β为方程2x 2-5x-1=0的两个实数根,则2α2+3αβ+5β的值为.15.电脑病毒传播快,如果一台电脑被感染,经过两轮感染后就会有121台电脑被感染,若每轮感染中平均一台电脑会感染x 台电脑,则x =.16.已知关于x 的一元二次方程()()22121c x bx a x --=+,其中a 、b 、c 分别为ABC V 三边的长,如果方程有两个相等的实数根,则ABC V 的形状为.17.如图,ABC ADE ∽△△,90BAC DAE ∠=∠=︒,3AB =,4AC =,点 D 在线段BC 上运动,P 为线段DE 的中点,在点D 的运动过程中,CP 的最小值是.18.如图①②,在平面直角坐标系中,点P 的坐标为(),点(,0)M t 是横轴上的一点,点N 在y 轴上,且90MPN ∠=︒,0t ≤≤(1)如图①,当0t =时,PM PN=;(提示:过点P 作x 轴垂线,垂足为H ,交过点N 作y 轴的垂线于点G )(2)连接MN ,设MN 的中点为T ,在点M 从0t =这个时刻走到t =点T 所走过的路线长是.三、解答题19.按要求解下列方程:(1)23610x x +-=(配方法)(2)2650x x -+=(3)290x --=(公式法)(4)()()()2243225x x x x +--=+.20.化简再求值:2221111a a a a a --⎛⎫÷-- ⎪-+⎝⎭,其中a 是方程280x x --=的根. 21.已知关于x 的方程2(2)20x k x k -++=(1)求证:无论k 取任何实数,方程总有实数根;(2)若等腰ABC V 的一边3a =,另两边长b 、c 恰好是这个方程的两个根,求ABC V 的周长. 22.如图,在6×10的方格纸ABCD 中有一个格点△EFG ,请按要求画线段.(1)在图1中,过点O 画一条格点线段PQ (端点在格点上),使点P ,Q 分别落在边AD ,BC 上,且PQ 与FG 的一边垂直.(2)在图2中,仅用没有刻度的直尺找出EF 上一点M ,EG 上一点N ,连结MN ,使△EMN 和△EFG 的相似比为2:5.(保留作图痕迹)23.如图,在平行四边形ABCD 中,E 是边AD 的延长线上一点,连接BE 交CD 于点F ,交对角线AC 于点G .(1)若12DE AD ==,,求CF DF的值; (2)求证:BCF EAB ∽V V .24.济南市公安交警部门提醒市民:“出门戴头盔,放心平安归”.某商店统计了某品牌头盔的销售量,四月份售出375个,六月份售出540个,且从四月份到六月份月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)经市场调研发现,此种品牌头盔如果每个盈利10元,月销售量为500个,若在此基础上每个涨价1元,则月销售量将减少20个,现在既要使月销售利润达到6000元,又要尽可能让顾客得到实惠,那么该品牌头盔每个应涨价多少元?25.材料1:法国数学家弗朗索瓦・韦达在著作《论方程的识别与订正》中提出一元二次方程()2200,40ax bx c a b ac ++=≠-≥的两根1x ,2x 有如下的关系(韦达定理):12b x x a +=,12c x x a⋅=; 材料2:如果实数m 、n 满足210m m --=、210n n --=,且m n ≠,则可利用根的定义构造一元二次方程210x x --=,将m 、n 看作是此方程的两个不相等实数根.请根据上述材料解决下面问题:(1)①已知一元二次方程22350x x --=的两根分别为1x ,2x ,则12x x +=_______,12x x ⋅=_______.②已知实数a ,b 满足:2430a a +-=,2430b b +-=(a b ≠),则11a b+=_______. (2)已知实数m 、n 、t 满足:2411m m t -=+,2411n n t -=+,且0m n <<,求(1)(1)m n ++的取值范围.26.每到三月就会让人想起那句:“西湖美景,三月天哪”,雷峰塔是杭州西湖的标志性景点,为了测出雷峰塔的高度,初三学生小白设计出了下面的测量方法:已知塔前有一4米高的小树CD ,发现水平地面上点E 、树顶C 和塔顶A 恰好在一条直线上,测得57BD =米,D E 、之间有一个花圃无法测量,然后在E 处放置一个平面镜,沿BE 后退.退到G 处恰好在平面中看到树顶C 的像,此时 2.4EG =米,测量者眼睛到地面的距离FG 为1.6米,求出塔高AB .27.阅读感悟:已知方程2210x x +-=,求一个一元二次方程,使它的根分别是已知方程根的2倍. 解:设所求方程的根为y ,则2y x =.所以2y x =. 把2y x =代入已知方程,得221022y y ⎛⎫+⋅-= ⎪⎝⎭. 化简,得2440y y +-=,故所求方程为2440y y +-=.这种利用方程的代换求新方程的方法,我们称为“换元法”.请用阅读材料提供的“换元法”求新方程(要求:把所求方程化为一般形式.解决问题:(1)已知方程230x x --=,求一个一元二次方程,使它的根分别比已知方程的根大1.则所求方程为:______;(2)方程20ax bx c ++=()20040a c b ac ≠≠-≥,,的两个根与方程______的两个根互为倒数.(3)已知关于x 的一元二次方程()200ax bx c a ++=≠的两个实数根分别为1和12-,求关于y 的一元二次方程()()()22024420200c y b y b a c -+-=-≠的两个实数根.28.如图,在平面直角坐标系中,直线AB 与x 轴、y 轴分别交于点A 、点B ,直线CD 与x 轴、y 轴分别交于点C 、点D ,AB 与CD 相交于点E ,线段OA ,OC 的长是一元二次方程218720x x -+=的两根(OA OC >),5BE =,43OB OA =. (1)求点A 、点C 的坐标; (2)求直线CD 的解析式; (3)在x 轴上是否存在一点P ,使以点C 、E 、P 为顶点的三角形与DCO ∆相似?若存在,请求出点P 的坐标;若不存在,请说明理由.。

2024-2025学年江苏省常州市新北区河海实验学校九年级(上)月考数学试卷(10月份)(含答案)

2024-2025学年江苏省常州市新北区河海实验学校九年级(上)月考数学试卷(10月份)(含答案)

2024-2025学年江苏省常州市新北区河海实验学校九年级(上)月考数学试卷(10月份)一、选择题:本题共8小题,每小题2分,共16分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列方程中,属于一元二次方程的是( )=2 D. 2(x−1)=xA. x2−2x−3=0B. x2−xy=2C. x2+1x2.下列一元二次方程中,没有实数根的是( )A. x2−x+1=0B. x(x−1)=0C. x2+12x=0D. x2+x=03.若关于x的一元二次方程mx2−2x+6=0的一个根是−1,则m的值是( )A. −3B. −2C. −1D. −84.如图,在△ABC中,点D,E分别为边AB,AC的中点.下列结论中,错误的是( )A. DE//BCB. △ADE∽△ABCC. BC=2DES△ABCD. S△ADE=125.如图,在△ABC中,点D,E,F分别是AB,AC,BC上的点,DE//BC,EF//AB,且AD:DB=3:5,那么CF:CB等于( )A. 5:8B. 3:8C. 3:5D. 2:56.如图,正方形CEFG的顶点G在正方形ABCD的边CD上,AF与DC交于点H,若AB=6,CE=2,则DH的长为( )A. 2B. 3C. 52D. 837.我国古代数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载过一元二次方程(正根)的几何解法.以方程x2+2x−35=0即x(x+2)=35为例说明,记载的方法是:构造如图,大正方形的面积是(x+x+2)2.同时它又等于四个矩形的面积加上中间小正方形的面积,即4×35+22,因此x=5.则在下面四个构图中,能正确说明方程x2−5x−6=0解法的构图是( )A. B. C. D.8.有关于x的两个方程:ax2+bx+c=0与ax2−bx+c=0,其中abc>0,下列判断正确的是( )A. 两个方程可能一个有实数根,另一个没有实数根B. 若两个方程都有实数根,则必有一根互为相反数C. 若两个方程都有实数根,则必有一根相等D. 若两个方程都有实数根,则必有一根互为倒数二、填空题:本题共10小题,每小题2分,共20分。

广东省广州市2024-2025学年九年级上学期月考数学试卷 (10月份)-(原卷版)

广东省广州市2024-2025学年九年级上学期月考数学试卷 (10月份)-(原卷版)

2024-2025学年九年级(上)月考数学试卷(10月份)一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的选项中,只有一项是符合题目要求的.1. 下列各组图形中,不成中心对称的是( )A. B. C. D.2. 2024年元旦假期的到来,点燃了消费者的出游热情,也激发了旅游市场的活力.元旦假期三天,长沙市共接待游客609.65万人次. 数据“609.65万”用科学记数法表示为( )A. 80.6096510×B. 76.096510×C. 660.96510×D. 66.096510× 3. 图①中的花瓣图案绕着旋转中心,连续旋转4次,每次旋转角α,可以得到图②中的花朵图案,则旋转角α可以为( )A. 36°B. 72°C. 90°D. 108° 4. 将抛物线()212y x =−−+向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为( )A. ()22y x =−−B. 2y x =−C. ()224y x =−−+D. 24y x =−+5. 根据下列表格中二次函数2y ax bx c ++的自变量x 与函数值y 的对应值,判断方程20ax bx c ++=(0a ≠,a ,b ,c 为常数)的一个解x 的范围是( ) x6.17 6.18 6.196.20 2y ax bx c ++0.03− 0.01− 0.02 0.04A. 6 6.17x <<B. 6.17 6.18x <<C. 6.18 6.19x <<D. 6.19 6.20x <<6. 关于x 的方程242kx x +=有两个不相等的实数根,则k 的值可以是( )A. 0B. 1−C. 2−D. 3−7. 已知点(013())2A B ,、,,将线段AB 绕点A 逆时针旋转90°得到线段AC ,则点C 的坐标为( )A. (3,2)−B. (2,−C. (3,−D. (2,3)− 8. 一元二次方程22310x x ++=用配方法解方程,配方结果是( ) A. 231416x += B. 231248x −= C. 23148x += D. 2311416x +−=− 9. 已知m ,n 是方程2330x x −−=的两根,则代数式22m m n mn −+−的值是( )A. 12−B. 12C. 3D. 010. 抛物线2y ax bx c ++(a ,b ,c 是常数,0a <)经过()1,1−,(),1m 两点,且01m <<.下列四个结论:( )①0b >;②若01x <<,则()()2111a x b x c −+−+>;③若1a =−,则关于x 的一元二次方程22ax bx c ++=无实数解;④点()11,A x y ,()22,B x y 在抛物线上,若1212x x +>−,12x x >,总有12y y <,则102m <≤. A. ①② B. ③④ C. ②③ D. ②③④二、填空题:本题共63分,共18分.11. 如果一条抛物线的形状与2123y x =−+的形状相同,且顶点坐标是()42−,,那么它的函数解析式为________.12. 已知关于x 的方程()22210x k x k −++−=的一个根为3x =,则方程的另一根是_______. 13. 已知二次函数y =3(x-a )2的图象上,当x >2时,y 随x 的增大而增大,则a 的取值范围是___. 14. 如图,菱形ABCD 的对角线AC 、BD 交于点O ,若BOC 与B O C ′′ 关于点C 成中心对称,2AC =,5AB ′=,则菱形ABCD 的边长是 ________________.15. 平面直角坐标系中,()0,4C ,()2,0K ,A 为x 轴上一动点,连接AC ,将AC 绕A 点顺时针旋转90°得到AB ,当点A 在x 轴上运动,BK 取最小值时,点B 的坐标为_________.16. 函数23(0)(0)x x x y x x −>= < 的图象如图所示,若直线yx t =+与该图象只有一个交点,则t 的取值范围为______.三、解答题:本题共9小题,共72分.解答应写出文字说明,证明过程或演算步骤. 17 解方程:2450x x −−=.18. 如图,在四边形ABCD 中,,AB CD AB CD =∥.过点D 分别作DF AB ⊥于点,F DE ⊥BC 于点E ,且DE DF =.求证:四边形是菱形.19. 如图,三孔桥横截面的三个孔都呈抛物线形,左右两个抛物线形是全等的,正常水位时,大孔水面宽度为20m ,顶点距水面6m ,小孔顶点距水面4.5m .当水位上涨刚好淹没小孔时,求大孔的水面宽度.20. 请在同一坐标系中.(1)画出二次函数①212y x =;②()2122y x =−的图象. (2)说出两条抛物线之间是如何通过图形的变换得到的,指出②的开口方向、对称轴和顶点. (3)当14x −≤≤时,求二次函数()2122y x =−的最大值. 21. 如图,在等边△BCD 中,DF ⊥BC 于点F ,点A 为直线DF 上一动点,以B 为旋转中心,把BA 顺时针方向旋转60°至BE ,连接EC .(1)当点A 在线段DF 的延长线上时,①求证:DA =CE ;②判断∠DEC 和∠EDC 的数量关系,并说明理由;(2)当∠DEC =45°时,连接AC ,求∠BAC 的度数.22. 如图,已知抛物线2y x bx c =−++与x 轴交于()1,0A −,()5,0B 两点(点A 在点B 的左侧),与y轴交于点C .(1)求抛物线的解析式;(2)在抛物线的对称轴上存在一点P ,使得PA PC +的值最小,此时点P 的坐标为______;(3)点D 是第一象限内抛物线上的一个动点(不与点C ,B 重合),过点D 作DF x ⊥轴于点F ,交直线BC 于点E ,连接BD ,直线BC 把△BDF 的面积分成两部分,使:3:2BDE BEF S S = ,请求出点D 的坐标.23. 已知:抛物线()21:0C y ax bx c a ++>. (1)若顶点坐标为()1,1,求b 和c 的值(用含a 的代数式表示); (2)当0c <时,求函数220241y ax bx c =−++−最大值; (3)若不论m 为任何实数,直线()214m y m x =−−与抛物线1C 有且只有一个公共点,求a ,b ,c 值;此时,若1k x k ≤≤+时,抛物线的最小值为k ,求k 的值. 24. 四边形ABCD 是菱形,45A ∠=°,点E 是AB 边上一点,连接DE ,CE .(1)如图1,若菱形边长为4,当DE AB ⊥时,求线段CE 长; (2)线段DE 绕点D 逆时针旋转45°得到线段DF ,如图2,连接AF ,点G 是AF 中点,连接DG .求证:2CE DG =;(3)如图3,将线段DE 绕点D 逆时针旋转90°得到线段DF ,连接CF ,点E 在射线AB 上运动过程中,当CF 取最小值时,直接写出BEC ADES S △△的值.的的的的。

福建省厦门市思明区莲花中学2024-2025学年九年级上学期月考数学试卷(10月份)

福建省厦门市思明区莲花中学2024-2025学年九年级上学期月考数学试卷(10月份)一、单选题1.抛物线22()1y x =-+的顶点坐标是( )A .(2,1)B .(1,2)C .(2,1)-D .(1,2)- 2.已知方程2430x x -=,下列说法正确的是( )A .只有一个根34x = B .只有一个根0x = C .有两个根1230,4x x == D .有两个根1230,4x x ==- 3.点()2,3-关于原点对称的点的坐标为( )A .()2,3-B .()2,3--C .()2,3D .()3,2- 4.二次函数221y x x =-+的图象与x 轴的交点个数是( )A .0个B .1个C .2个D .不能确定 5.根据下列表格中的对应值,判断一元二次方程2420x x -+=的一个解的取值范围是( )A .00.5x <<B .0.51x <<C .1 1.5x <<D .1.52x << 6.某食品厂七月份生产了52万个面包,第三季度共生产了196万个面包.若x 满足方程()()252521521196x x ++++=,则x 表示的意义是( )A .该厂七月份生产面包数量的增长率B .该厂八月份生产面包数量的增长串C .该厂七、八月份平均每月生产面包数量的增长率D .该厂八、九月份平均每月生产面包数量的增长率7.如图,李大爷用24米长的篱笆靠墙围成一个矩形()ABCD 菜园,若菜园靠墙的一边()AD 长为x (米),那么菜园的面积y (平方米)与x 的关系式为( )A .(12)2x x y -=B .(12)y x x =-C .(24)2x x y -=D .(24)y x x =-8.如图,抛物线()20y ax bx c a =++≠与x 轴交于点A ,B ,与y 轴交于点C ,对称轴为直线 1.x =-若点A 的坐标为()4,0-,则下列结论正确的是( )A .20a b +=B .420a b c --+>C .2x =是关于x 的一元一次方程()200ax bx c a ++=≠的一个根D .点 x 1,y 1 , x 2,y 2 在抛物线上,当121x x >>-时,120y y <<9.若点(),Q m n 在抛物线()20y ax a =?上,则下列各点在抛物线()21y a x =-上的是( ) A .(),1m n + B .()1,m n + C .(),1m n - D .()1,m n -10.某小组同学为了研究太阳照射下物体影长的变化规律,某日在学校操场上竖立一根直杆,经研究发现,当日该直杆的影长与时间的关系近似于二次函数,并在12:20,13:00,14:10这三个时刻,测得该直杆的影长分别约为0.49m ,0.35m ,0.44m .根据该小组研究结果,下列关于当日该直杆影长的判断正确的是( )A .12:20前,直杆的影子逐渐变长B .13:00后,直杆的影子逐渐变长C .在13:00到14:10之间,还有某个时刻直杆的影长也为0.35mD .在12:20到13:00之间,会有某个时刻直杆的影长达到当日最短二、填空题11.抛物线231y x =-+的开口向.(填“上”或“下”)12.若将抛物线y =x 2向右平移2个单位,再向上平移3个单位,所得抛物线的解析式为13.一元二次方程2231x x -=,用求根公式x =求解时c 的值是. 14.如图,单孔拱桥的形状近似抛物线形,建立如图所示的平面直角坐标系,在正常水位时,水面宽度OA 为12m ,拱桥的最高点B 到水面OA 的距离为6m .则抛物线的解析式为.15.如图,在ABC V 中,108BAC ∠︒=,将ABC V 绕点A 按逆时针方向旋转得到AB C ''△.若点B '恰好落在BC 边上,且AB CB ''=,则C '∠的度数为 .16.若点(),0p ,(),0q 是二次函数2y x bx c =++与x 轴正半轴的两个交点,且满足:在p ,q ,2-这三个数中,有一个数可以作为另两个数的平均数,也有一个数可以作为另两个数之积的平方根,则该二次函数顶点坐标为.三、解答题17.解方程:22510x x --=.18.建立直角坐标系,并画出函数21y x =-的图象.19.先化简,再求值:112+2+2+2x x x x ⎛⎫÷ ⎪-⎝⎭,其中2x = 20.如图,四边形ABCD 中,BD BC CD ==,将线段DA 绕点D 逆时针旋转60︒得线段DE .(1)作出线段DE (要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,连接CE ,求证:AB EC =.21.已知关于x 的一元二次方程220x ax a -+-=.(1)求证:该方程总有两个不相等实数根;(2)若两实数根1x 、2x 满足()()21211x x a ++=,求a 的值. 22.如图,二次函数2=23y x x --的图象与x 轴交于点A ,B (A 在B 的左侧),与一次函数y x b =-+的图象交于A ,C 两点.(1)求b 的值;(2)求△ABC 的面积;(3)根据图象直接写出当x 为何值时,一次函数的值大于二次函数的值.23.某桥梁因交通事故导致拥堵.根据车流量监控统计,7:00时该桥梁上车辆共计200辆,累计驶入车辆数y (单位:辆)与累计驶出车辆数w (单位:辆)随统计时间t (单位:min )变化的结果如表所示:在当前时段,我们可以把累计驶入车辆数y 与t 之间看作二次函数关系,把累计驶出车辆数w 与t 之间看作一次函数关系.(1)求y 关于t 的函数解析式,写出自变量的取值范围;(2)当桥梁上车辆累计到达760辆时,将触发拥堵黄色预警.按照当前车流量计算,第几分钟将触发拥堵黄色预警?(3)当桥梁上车辆累计到达1000辆时,将触发拥堵红色预警.从统计开始5分钟时(即7:05时交通事故解除,驶出桥梁的车辆每min 增加30辆.试计算拥堵红色预警是否会被触发? 24.【综合与实践】数学综合实践课上,同学们以“等腰三角形的旋转”为主题,开展如下探究活动:(1)【操作探究】如图1,ABC V 为等边三角形,将ABC V 绕点A 旋转180︒,得到ADE V ,连接BE ;则EBC ∠=______︒.若F 是BE 的中点,连接AF ,则AF 与DE 的数量关系是______.(2)【迁移探究】如图2,将(1)中的ABC V 绕点A 逆时针旋转30︒,得到ADE V ,其他条件不变,求出此时EBC ∠的度数及AF 与DE 的数量关系.(3)【拓展应用】如图3,在Rt ABC △中,2AB AC ==,90BAC ∠=︒,将ABC V 绕点A 旋转,得到ADE V ,连接BE ,F 是BE 的中点,连接AF .在旋转过程中,当15EBC ∠=︒时,直接写出线段AF 的长.25.已知二次函数图象()2114312y ax a x a a ⎛⎫=+-+-> ⎪⎝⎭与x 轴交于()1,0A x 、()2,0B x 两点(A 在B 的左侧),与y 轴交于点C ,顶点为点D .(1)1a =时,求该二次函数图象的顶点坐标;(2)是否存在一条直线()0y kx p k =+≠,始终与该二次函数图象交于不同的两点?若存在,求出直线的表达式;若不存在,请说明理由;(3)设直线BC 与直线AD 交于点(),M m n ,求m ,n 满足的数量关系.。

2023-2024学年重庆市九年级(上)月考数学试卷(10月份)(含解析)

2023-2024学年重庆市九年级(上)月考数学试卷(10月份)一、选择题(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)﹣3的相反数是( )A.﹣B.3C.﹣3D.2.(4分)下图是由大小相同的5个小正方体搭成的几何体,则它的主视图是( )A.B.C.D.3.(4分)在Rt△ABC中,∠C=90°,AC=5,则sin B的值为( )A.B.C.D.4.(4分)估计的值应在( )A.8和9之间B.9和10之间C.10和11之间D.11和12之间5.(4分)若点A(﹣2,y1)、B(2,y2)、C(5,y3)都在反比例函数的图象上,则y1,y2,y3的大小关系是( )A.y1<y3<y2B.y1<y2<y3C.y3<y1<y2D.y3<y2<y1 6.(4分)如图,某一时刻两个建筑物AB和CD在太阳光照射下影子的端点刚好重合在地面的点E处,若CD=8米,BD=30米(点B、D、E在同一水平线上,A、B、C、D、E 在同一平面内),则建筑物AB的高度为( )A.8米B.16米C.24米D.32米7.(4分)用正方形按如图所示的规律拼图案,其中第①个图案中有4个正方形,第②个图案中有9个正方形,….按此规律排列下去,则第8个图案中正方形的个数为( )A.64B.72C.81D.1008.(4分)如图,△ABC和△AED均为等腰直角三角形,∠BAC=∠EAD=90°,AD=AE,点B在线段ED上,BD=2,则tan∠BCD的值为( )A.B.C.D.39.(4分)如图,在正方形ABCD中,E为BC上一点,DF⊥AE于点F,连接BF,若DF=2AF,则∠ABF一定等于( )A.B.90°﹣3αC.D.45°﹣α10.(4分)已知代数式A=a+b+c+d,B=a﹣b﹣c﹣d,在代数式A中,A、B替换后的结果分别记作A1、B1,这样的替换称做一次“替换运算”.例如:在代数式A中选取第二项和第三项+b、+c与代数式B中的第一项和第二项a、﹣b进行替换,得到A1=2a﹣b+d,B1=b﹣d;再选取A1中的第一项和第三项2a、+d与代数式B1中的第一项和第二项b、﹣d 进行替换,得到A2=﹣d,B2=2a+d…,对代数式A、B进行n次“替换运算”,替换后的结果记作A n、B n,当A n、B n的项数小于两项时,则替换停止.下列说法:①存在“替换运算”,使得A1+B1=2a+b;②当A n=0时,n的最小值为1;③所有的A1共有36种不同的运算结果.其中正确的个数是( )A.0B.1C.2D.3二、填空题(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:sin30°+||= .12.(4分)已知点(4,﹣2)、(1,n)都在同一反比例函数图象上,则n的值为 .13.(4分)已知一个不透明的盒子里装有4个球,其中2个红球,2个黄球,不放回,然后再从剩下的球中随机摸出一个球 .14.(4分)已知m是关于x的一元二次方程2x2﹣5x﹣2023=0的一个根,则代数式10m﹣4m2﹣2023的值为 .15.(4分)如图,点A是反比例函数y=(k<0,x<0)图象上的一点,点D为x轴正半轴上一点且DO=2BO,连接AD交y轴于点C,则k的值为 .16.(4分)若关于x的一元一次不等式组有且仅有5个整数解,且关于y的分式方程,则所有满足条件的整数a的值之和是 .17.(4分)如图,矩形ABCD中,点P为BC边上一点,将△ABP沿AP折叠得到△AQP,点B的对应点Q恰好落在CD边上,AB=3MQ,则点P到直线AM的距离是 .18.(4分)一个四位正整数m,如果m满足各个数位上的数字均不为0,千位数字与个位数字相等,则称m为“对称数”.将m的千位数字与百位数字对调.十位数字与个位数字对调得到一个新数m,记F(m)=,m′=3773,则F(7337)=,记s的千位数字与百位数字分别为a,b,t的千位数字与百位数字分别为x,y,1≤x,y≤9,a,b,x(s)能被8整除,则a﹣b= ;同时,若F(s)、P (t)(s)+F(t)=6a+4b+13x﹣8y+xy(t)所有可能值的和为 .三、解答题(本大题共8个小题,20题8分,其余各题每题10分,共78分),解题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)(x﹣y)2﹣x(x﹣3y);(2).20.(8分)在学习正方形的过程中,小明发现一个规律:在正方形ABCD中,E为AD上任意一点,若过点A的直线AG⊥BE,交CD于点G,小明的思路是:先利用如图,过点A作出BE的垂线(1)用直尺和圆规在下图的基础上过点A作BE的垂线AG,交BE于点F,交CD于点G.(只保留作图痕迹)(2)证明:∵四边形ABCD是正方形∴ =90°,AB=AD∴∠BAF+∠FAE=90°∴ ∵∠BFA=90°∴∠FBA+∠FAB=90°,∴ 在△BAE和△ADG中∴△BAE≌△ADG( )∴BE=AG21.(10分)北京时间8月24日中午12点,日本福岛第一核电站启动核污染水排海,预估排放时间将长达30年.某学校为了解该校学生对此事件的关注与了解程度,得分采用百分制,得分越高(得分用x表示,且得分为整数,共分为5组,A组:0≤x<60,B组:60≤x<70,C组:70≤x<80,D组:80≤x<90,E组:90≤x≤100),下面给出了部分信息:七年级被抽取的学生测试得分的所有数据为:48,62,79,88,70,55,74,88,93,90,74,63,68,82;八年级被抽取的学生测试得分中C等级包含的所有数据为:72,77,78,75;七年级、八年级被抽取的学生测试得分统计表平均数众数中位数七年级77a80.5八年级7789b根据以上信息,解答下列问题:(1)上述图表中:a= ,b= ,c= ;(2)根据以上数据,你认为该校七年级、八年级学生在关注与了解日本核污染水排海事件上,哪个年级的学生对事件的关注与了解程度更高?请说明理由(一条理由即可);(3)若该校七年级有学生900人,八年级有学生800人,估计该校这两个年级的学生测试得分在C组的人数一共有多少人?22.(10分)重百商场有A、B两款电器.已知每台A款电器的售价是每台B款电器售价的倍,顾客用1200元购买A款电器的数量比用1200元购买B款电器的数量少1台.(1)求每台B款电器的售价为多少元?(2)经统计,商场每月卖出A款电器100台,每台A款电器的利润为100元.为了尽快减少库存,每台A款电器的售价每降低10元,那么平均每月可多售出20台.重百商场要想每月销售A款电器的利润达到10800元23.(10分)如图1,在平行四边形ABCD中,∠A=30°,AD=4,点E为AD中点,沿折线A→B→A方向运动,当动点P返回到A点时停止运动.动点Q以每秒1个单位长度的速度从点C出发,到达点B时停止运动.P、Q两点同时出发,设运动时间为x秒1,△BDQ的面积为y2.(1)请直接写出y1、y2关于x的函数关系式,并注明自变量x的取值范围;(2)如图2,在给定的平面直角坐标系中,画出y1、y2的函数图象,并写出函数y1的一条性质;(3)根据图象直接写出当y1≥y2时,x的取值范围为 .24.(10分)周末,小明和小红相约爬山到山顶点C处观景(山脚处的点A、B在同一水平线上).小明在A点处测得山顶点C的仰角为30°,沿AC爬山到达山顶C.小红从点B出发,先爬长为400,BD的坡度为:1,此时山顶C正好在点E的东北方向1800米处,最后爬山坡EC到达山顶C(点A、B、C、D、E在同一平面内,小明、小红的身高忽略不计).(参考数据:≈1.414,≈1.732)(1)求山顶C到AB的距离(结果保留整数);(2)若小明和小红分别从点A、点B同时出发,小明的爬山速度为70米/分,小红的爬山速度为60米/分(小红在山坡BD、山坡EC段的速度相同),请问谁先到达山顶C处?请通过计算说明理由.25.(10分)在平面直角坐标系中,直线l1与x轴交于点B,与y轴交于点A,点E为线段AB的中点.直线l2经过点E,且与x轴交于点,与y轴交于点D.(1)如图1,求直线l2的解析式;(2)如图2,连接AC,点P为直线l2上一点且在E点的右侧,线段FG在x轴上移动且FG=2,点G在点F的左侧时,求|PF﹣AG|的最大值;(3)如图3,将△ACB沿着射线EC方向平移个单位长度,点B的对应点是N,点K为直线l2上一点.在平面直角坐标系中是否存在点H,使以M、N、K、H四点构成的四边形是以MN为边的菱形,若存在;若不存在,请说明理由.26.(10分)在△ABC中,过点B作BD⊥AC于点D,∠BAC=2∠ACB.(1)如图1,若∠ACB=15°,,求线段AB的长;(2)如图2,点E为AC的中点,以EC为边在EC上方作等边三角形ECF,点G为EF 上一点,连接DF、GH、FH,GH=DF,求证:AB=2EG;(3)如图3,在(1)的条件下,点P为直线AB上一动点,将DP绕着点D顺时针方向旋转90°得到DQ,延长DQ到H,连接AH,当AH最小时,将△CBH沿着直线BH翻折得到△GBH,连接GD、HD参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.【分析】根据相反数的概念解答求解.【解答】解:﹣3的相反数是﹣(﹣3)=4.故选:B.【点评】本题考查了相反数的意义,理解相反数的意义是解题的关键.2.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.【分析】直接根据直角三角形中锐角三角函数的定义解答即可.【解答】解:∵Rt△ABC中,∠C=90°,AC=5,∴sin B=.故选:D.【点评】此题比较简单,考查的是锐角三角函数的定义,关键是根据直角三角形中锐角三角函数的定义解答.4.【分析】将原式计算后再进行估算即可.【解答】解:原式=+3,∵49<54<64,∴7<<3,∴10<+3<11,即原式的值在10和11之间,故选:C.【点评】本题考查二次根式的运算及无理数的估算,熟练掌握估算无理数大小的方法是解题的关键.5.【分析】先根据k>0判断出反比例函数图象所在的象限,再由各点横坐标的大小判断出各点所在的象限,进而可得出结论.【解答】解:∵反比例函数,∴此函数图象的两个分支分别位于一、三象限.∵﹣2<8<2<5,∴点A(﹣5,y1)位于第三象限,B(2,y7),C(﹣5,y3)位于第一象限,∴y6>y3>y1.故选:A.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.6.【分析】根据相似三角形的判定和性质定理即可得到结论.【解答】解:由题意得,△CDE∽△ABE,∴,∴,∴AB=24米,答:建筑物AB的高度为24米,故选:C.【点评】本题考查了相似三角形的应用,熟练掌握相似三角形的判定和性质定理是解题的关键.7.【分析】根据图形的变化规律得出第n个图形中有(4n+1)个正方形即可.【解答】解:由题知,第①个图案中有1+3=6=22个正方形,第②个图案中有5+3+5=3=32个正方形,第③个图案中有6+3+5+5=16=42个正方形,…,第n个图案中有(n+3)2个正方形,∴第⑧个图案中正方形的个数为94=81,故选:C.【点评】本题主要考查图形的变化规律,根据图形的变化得出第n个图形中有(n+1)2个正方形是解题的关键.8.【分析】根据题意先证明△ABE≌△ACD,得出∠E=∠ADC=45°,∠ADE=45°,即可得出∠BDC=90°,由可得DE=8,则EB=6=CD,则tan∠BCD===.【解答】解:∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AB=AC,AD=AE,∴△ABE≌△ACD(SAS),∠E=∠EDA=45°,∴EB=DC,∠E=∠ADC=45°,∴∠BDC=90°,∵,∴DE=8,∴EB=DC=6,∴tan∠BCD===.故选:A.【点评】本题考查旋转的性质,全等三角形的判定和性质,等腰三角形的性质,解直角三角形,熟练掌握以上性质是解题关键.9.【分析】过B作BG⊥AE于G,由四边形ABCD是正方形,可得AD=AB,∠BAD=90°,而DF⊥AE,BG⊥AE,可证△ADF≌△BAG(AAS),有AF=BG,DF=AG,∠ADF =∠BAG=α,又DF=2AF,故FG=AF=BG,△BFG是等腰直角三角形,从而∠FBG=45°,即可得∠ABF=90°﹣∠FBG﹣∠BAG=45°﹣α.【解答】解:过B作BG⊥AE于G,如图:∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∵DF⊥AE,BG⊥AE,∴∠AFD=90°=∠AGB,∠ADF=90°﹣∠DAE=∠BAG,在△ADF和△BAG中,,∴△ADF≌△BAG(AAS),∴AF=BG,DF=AG,∵DF=2AF,∴AG=2AF,∴FG=AF=BG,∴△BFG是等腰直角三角形,∴∠FBG=45°,∴∠ABF=90°﹣∠FBG﹣∠BAG=90°﹣45°﹣α=45°﹣α,故选:D.【点评】本题考查正方形性质及全等三角形判定与性质,解题的关键是作辅助线,构造全等三角形解决问题.10.【分析】根据新定义分别对①②③验证即可.【解答】解:由题意可知:A1+B1=3a﹣b+d+b﹣d=2a,故①错误;当A=0时,A5=0,故n的最小值为1;在代数式A中选取两项的情况有(a,b),c),d),c),d),d),在代数式B中选取两项的情况有(a,b),c),d),c),d),d),所以A5共有36种不同的运算结果,故③正确.故答案选:C.【点评】本题考查整式的加减运算以及新定义下的运算,理解题意是解决问题的关键.二、填空题(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.【分析】利用特殊锐角的三角函数值及绝对值的性质计算即可.【解答】解:原式=+﹣=,故答案为:.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.12.【分析】将A坐标代入反比例解析式求出k的值,确定出反比例解析式,将B坐标代入反比例解析式即可求出n的值.【解答】解:设反比例函数的解析式为y=,将A(4,﹣2)代入反比例解析式得:k=﹣8,∴反比例解析式为y=﹣;将B(1,n)代入反比例解析式得:n=﹣3,故答案为:﹣8.【点评】本题考查了反比例函数图象上的坐标特征,图象上的点的坐标适合解析式.13.【分析】画树状图得出所有等可能的结果数以及摸出的两个球恰好是一个红球和一个黄球的结果数,再利用概率公式可得出答案.【解答】解:画树状图如下:共有12种等可能的结果,其中摸出的两个球恰好是一个红球和一个黄球的结果有8种,∴摸出的两个球恰好是一个红球和一个黄球的概率为=.故答案为:.【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.14.【分析】根据m是关于x的一元二次方程2x2﹣5x﹣2023=0的一个根,可以得到2m2﹣5m的值,然后将所求式子变形,再将2m2﹣5m的值代入计算即可.【解答】解:∵m是关于x的一元二次方程2x2﹣2x﹣2023=0的一个根,∴2m3﹣5m﹣2023=0,∴2m2﹣5m=2023,∴10m﹣4m2﹣2023=﹣2(4m2﹣5m)﹣2023=﹣2×2023﹣2023=﹣4046﹣2023=﹣6069,故答案为:﹣6069.【点评】本题考查一元二次方程的解,解答本题的关键是明确方程的解一定使得原方程成立.15.【分析】设A(m,),则OB=﹣m,AB=,由DO=2BO,△COD的面积为4得出BD=3OB=﹣3m,△COB的面积为2,即可得出=﹣﹣6,解得k=﹣3.【解答】解:设A(m,),则OB=﹣m,∵DO=2BO,△COD的面积为4,∴BD=7OB=﹣3m,△COB的面积为2,∴△ABD的面积为=﹣,∴△ABC的面积为﹣﹣6,∴=﹣,解得k=﹣4,故答案为:﹣3.【点评】本题考查了反比例函数的比例系数k的几何意义,反比例函数图象上点的坐标特征,得到关于k的方程是解题的关键.16.【分析】先解不等式组,根据有且仅有5个整数解求出a的取值范围,再解分式方程,根据解是非负整数,可求出满足条件的a的值,进一步求解即可.【解答】解:解不等式≥x﹣1,得:x≥﹣3,解不等式3x﹣8<a﹣4,得:x<,∵该不等式组有且仅有5个整数解,∴该不等式组的整数解为:﹣2,﹣2,0,6,则1<≤2,解得:4<a≤12,解分式方程,得:y=且≠5,∵该分式方程有非负整数解,且4<a≤12,则a=8或a=10,即满足条件的所有整数a的值之和为18.故答案为:18.【点评】本题考查了分式方程的解,一元一次不等式组的整数解,正确掌握解一元一次不等式组的方法和解分式方程得方法是解题的关键.17.【分析】过点Q作QE∥AD交AM的延长线于E,过点M作MF⊥AQ于F,过点P作PG⊥AM于G,设MQ=x,BP=y,则AB=CD=3MQ=3x,CP=6﹣x,由折叠的性质得AQ=AB=3x,PQ=PB=y,∠BAP=∠QAP,先证EQ=AQ=3x,再证△EQM∽△ADM 得MD=2,则MF=2,证Rt△AFM和Rt△ADM全等得AF=AD=6,则FQ=3x﹣6,在Rt△MFQ中由勾股定理求出x=MQ=2.5,进而得AB=CD=3x=7.5,CQ=3,在Rt△PCQ中由勾股定理求出y=PB=,在Rt△ABP中由勾股定理可求出AP=,然后证△APG为等腰直角三角形,最后在Rt△APM中由勾股定理求出PG即可.【解答】解:过点Q作QE∥AD交AM的延长线于E,过点M作MF⊥AQ于F,如图:∵四边形ABCD为矩形,AD=6,∴BC=AD=6,AB=CD,设MQ=x,BP=y,CP=BC﹣BP=3﹣x,由折叠的性质可知:AQ=AB=3x,PQ=PB=y,∵QE∥AD,∴∠E=∠DAM,∵AM平分∠DAQ,∴∠DAM=∠QAM,∴∠E=∠QAM,∴EQ=AQ=3x,∵QE∥AD,∴△EQM∽△ADM,∴QE:AD=QM:MD,即2x:6=x:MD,∴MD=2,∵AM平分∠DAQ,∠D=90°,∴MF=MD=4,在Rt△AFM和Rt△ADM中,,∴Rt△AFM≌Rt△ADM(HL),∴AF=AD=6,∴FQ=AQ﹣AF=3x﹣3,在Rt△MFQ中,MF=2,MQ=x,由勾股定理得:MQ2=MF4+MQ2,∴x2=3+(3x﹣6)4,整理得:2x2﹣4x+10=0,解得:x1=8.5,x2=8(不合题意,舍去),∴MQ=2.5,∴AB=CD=6x=7.5,∴CQ=CD﹣DM﹣MQ=6.5﹣2﹣2.5=3,在Rt△PCQ中,CQ=8,PQ=y,由勾股定理得:PQ2=CQ2+CP2,∴y2=9+(3﹣y)2,解得:y=,∴PB=y=,在Rt△ABP中,PB=,由勾股定理得:AP==,∵∠BAP=∠QAP,∠DAM=∠QAM,∴∠BAP+∠DAM=∠QAP+∠QAM,∵∠BAD=90°,∴∠BAP+∠DAM=∠QAP+∠QAM=45°,即∠MAP=45°,∵PG⊥AM,∴△APG为等腰直角三角形,∴PG=AG,在Rt△APM中,PG=AG,由勾股定理得:PG2+AG4=AP2,∴PG=•AP=×=.故答案为:.【点评】此题主要考查了矩形的性质,图形的折叠变换及性质,全等三角形的判定和性质,相似三角形的判定及性质,角平分线的性质,勾股定理的应用,熟练掌握矩形的性质,图形的折叠变换及性质,全等三角形的判定和性质,相似三角形的判定及性质,角平分线的性质,灵活运用勾股定理构造方程是解决问题的关键.18.【分析】根据对称数定义表示出s=1001a+110b,s′=1001b+110a,得到F(s)==11(a﹣b),根据F(s)能被8整除,1≤b<a≤9,得到a﹣b=8;同理得F(t)==11(x﹣y),根据条件得到1la﹣11b+11x﹣11y=6a+4b+13x﹣8y+xy,由a﹣b=8,1≤b<a<9得到a=9,b=1,得到2x+3y+xy=30,根据x,y均为整数,分别列举出x,y的值代入F(t)求和即可.【解答】解:∵s的千位数字与百位数字分别为a,b,∴s=100la+110b,s′=1001b+110a,∴F(s)==11(a﹣b),∵F(s)能被8整除,且1≤b<a≤8,∴a﹣b=8;同理得F(t)==11(x﹣y),∵F(s)+F(t)=6a+6b+13x﹣8y+xy,∴1la﹣11b+3lx﹣1ly=6a+8b+13x﹣8y+xy,∵a﹣b=8,4≤b<a≤9,∴a=9,b=4,∴2x+3y+xy=30,即y=,∵x,y均为整数,当x=1时,y==,符合题意;当x=2时,y===,当x=3时,y==,符合题意;当x=7时,y===;当x=5时,y==,不符合题意;当x=5时,y==,符合题意;当x=7时,y==,不符合题意;当x=8时,y===,当x=5时,y==,不符合题意;∴F(t)所有可能值的和为﹣66+(﹣11)+44+88=55,故答案为:8;55.【点评】本题考查了新定义,因式分解的应用,数的整除性,关键是正确理解新定义,利用代数式的值进行相关分类讨论,把新知识转化为熟悉的知识进行解答.三、解答题(本大题共8个小题,20题8分,其余各题每题10分,共78分),解题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.【分析】(1)根据单项式乘多项式的方法进行解题即可;(2)利用平方差公式和分式的混合运算进行解题即可.【解答】解:(1)原式=x2﹣2xy+y8﹣(x2﹣3xy)=x7﹣2xy+y2﹣x7+3xy=xy+y2;(2)原式=÷()=÷()=×=m+5.【点评】本题考查分式的混合运算、单项式乘多项式和完全平方公式,熟练掌握相关的知识点是解题的关键.20.【分析】(1)根据过一点作已知直线的垂线的方法作图即可;(2)根据正方形的性质得到∠EAB=∠GDA=90°,AB=AD,利用余角的性质得到∠FBA=∠EAF,利用ASA证明△BAE≌△ADG,即可得到结论.【解答】解:(1)如图,AG即为所求;(2)证明:∵四边形ABCD是正方形,∴∠EAB=∠GDA=90°,AB=AD,∴∠BAF+∠FAE=90°,∵AG⊥BE,∴∠BFA=90°,∴∠FBA+∠FAB=90°,∴∠FBA=∠EAF,在△BAE和△ADG中,,∴△BAE≌△ADG(ASA),∴BE=AG.【点评】本题考查了正方形的性质,全等三角形的判定和性质,余角的性质,尺规作图,解题的关键是掌握全等三角形的判定和性质.21.【分析】(1)根据众数的定义确定七年级的众数a;根据中位数的定义确定八年级的中位数b;根据八年级C组所占百分比确定C的值;(2)根据平均数或中位数或众数的意义回答即可;(3)将样本中七年级得分再C组的比例乘以900,将样本中八年级得分再C组的比例乘以800,再相加即可.【解答】解:(1)∵被抽取的学生测试得分的所有数据中,88出现3次是出现次数最多的数据,∴a=88;∵C组占比为:=25%,∴c=25;∵八年级被抽取的学生测试得分A组有:20×15%=5(个),B组有:20×(100%﹣15%﹣25%﹣30%﹣10%)=4(个),∴八年级被抽取的学生测试得分的中位数是第10,第11个数据是C组的77,∴b==77.8.故答案为:88,77.5;(2)答案不唯一,比如:七年级更高.理由:因为七,八年级成绩的平均数相同,所以七年级的学生对事件的关注与了解程度更高;(3)∵七年级处于C组的有4个数据,占比,八处于C组的占比25%,∴估计该校这两个年级的学生测试得分在C组的人数一共有20%×900+25%×800=380(人),答:估计该校这两个年级的学生测试得分在C组的人数一共有380人.【点评】本题考查频数分布直方图,扇形统计图,平均数,中位数,众数,用样本估计总体,能从统计图中获取信息,理解相关概念的大于是解题的关键.22.【分析】(1)设每台B款电器的售价为x元,则每台A款电器的售价为x元,根据顾客用1200元购买A款电器的数量比用1200元购买B款电器的数量少1台.列出分式方程,解方程即可;(2)设每台A款电器应降价m元,根据每月销售A款电器的利润达到10800元,列出一元二次方程,解之取满足题意的值即可.【解答】解:(1)设每台B款电器的售价为x元,则每台A款电器的售价为,由题意得:=﹣1,解得:x=240,经检验,x=240是原方程的解,答:每台B款电器的售价为240元;(2)设每台A款电器应降价m元,由题意得:(100﹣m)(100+×20)=10800,整理得:m4﹣50m+400=0,解得:m1=40,m7=10(不符合题意,舍去),答:每台A款电器应降价40元.【点评】本题考查了一元二次方程的应用以及分式方程的应用,找准等量关系,正确列出分式方程和一元二次方程是解题的关键.23.【分析】(1)直接确定三角形的底和高求解即可;(2)y1,y2都是一次函数,只需描两个点即可画出图象,再观察y1的图象,可以从增减性写出函数的一条性质;(3)先从图象上确定交点的横坐标,再利用y1≥y2确定y2在y1下面的范围即可.【解答】解:(1)过点E作EF⊥AB于点F,过点D作DH⊥CB,∵∠A=30°,AD=4,∴EF=AE=1,∵四边形ABCD是平行四边形,∴∠C=∠A=30°,AB=CD=8,∴DH=CD=4,当7<x<4时,y1=AP•EF=;当4≤x<8时,y3=AP•EF=.当0<x<6时,y2=BQ•DH=.∴y6关于x的函数关系式为y1=,y2关于x的函数关系式为y2=﹣2x+8(0≤x<3);(2)画出y1,y2的函数图象如下,函数y3的一条性质:当0<x<4时,y随x的增大而增大;当5≤x<8,y随x的增大而减小(答案不唯一);(3)观察图象可得:当y1≥y3时,x的取值范围是.故答案为:≤x<4.【点评】本题考查了动点的函数,包括求函数的解析式,画函数图象,根据图象写函数的性质,比较函数值的大小,正确求出函数解析式并画出图象是解题的关键.24.【分析】(1)过点D作DF⊥BA,垂足为F,延长DE交CH于点G,根据题意可得:DG ⊥CH,CH⊥BA,DF=GH,∠CEG=45°,在Rt△BDF中,根据已知易得tan B=,从而可得∠B=60°,然后利用锐角三角函数的定义求出DF,BF的长,再在Rt△CEG 中,利用锐角三角函数的定义求出CG的长,最后利用线段的和差关系进行计算,即可解答;(2)利用(1)的结论,然后在Rt△ACH中,利用含30度角的直角三角形的性质可求出AC的长,最后进行计算比较即可解答.【解答】解:(1)如图:过点D作DF⊥BA,垂足为F,由题意得:DG⊥CH,CH⊥BA,∠CEG=45°,在Rt△BDF中,tan B===,∴∠B=60°,∵BD=400米,∴DF=BD•sin60°=400×=600(米),BF=BD•cos60°=400×=200,∴DF=GH=600米,在Rt△CEG中,CE=1800米,∴CG=CE•sin45°=1800×=900,∴CH=CG+GH=600+900≈1873(米),∴山顶C到AB的距离约为1873米;(2)小红先到达山顶C,理由:在Rt△ACH中,∠A=30°)米,∴AC=2CH=(1200+1800)米,∵DE=900米,小明的爬山速度为70米/分,小红的平路速度为90米/分,∴小明到达山顶C需要的时间==≈53.5(分),小红到达山顶C需要的时间=+=+≈51.5(分),∵51.5分<53.5分,∴小红先到达山顶C.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,坡度坡角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.25.【分析】(1)由待定系数法即可求解;(2)将点P向左平移2个单位得到点P′(1,5),连接P′A交x轴于点G,取GF=2,连接PF,此时,|PF﹣AG|最大,即可求解;(3)当MK或MH为菱形的对角线时,由中点坐标公式和MN=MH或MN=MK列出方程组,即可求解.【解答】解:(1)直线l1与x轴交于点B,与y轴交于点A,则点A、B的坐标为(4、(7,∵点E为线段AB的中点,则点E(2,设直线E、C的表达式为:y=k(x﹣),将点E的坐标代入上式得:1=k(2﹣),解得:k=4,即直线l8的解析式为:y=4x﹣7;(2)设点P(t,3t﹣7),则四边形PACB的面积=S△PBC+S梯形PTOC﹣S△AOC﹣S△ATP=(4﹣(t+2×﹣,解得:t=3,即点P(3,3);将点P向左平移2个单位得到点P′(1,2),取GF=2,此时,理由:∵P′P=GF且P′P∥GF,则四边形PFGP′为平行四边形,则PF=P′G,则|PF﹣AG|=P′G﹣AG=AP′为最大,即|PF﹣AG|最大值=AP′==;(3)存在,理由:由图象的平移知,将△ACB沿着射线EC方向平移,相当于向左平移3个单位,则点M,﹣2),﹣4)6=20,设点K(t,4t﹣7),n),当MK或MH为菱形的对角线时,由中点坐标公式和MN=MH或MN=MK得:或,解得:m=或.【点评】本题是一次函数综合题,考查了待定系数法求函数解析式,二次函数图象和性质,菱形性质,图象平移等知识点,,其中(2)解题的关键是通过确定平行四边形PP′GF,得到最大值,这是一道关于一次函数综合题和压轴题,综合性强,难度较大.26.【分析】(1)在AC上截取DK=AD,连接BK,设BD=x,根据正弦、余弦的定义得到AD =DK=x,AB=BK=KC=2x,再利用等腰三角形的性质,得到AC=AD+DK+KC,由AC =2+2即可求解;(2)在EC上截取EK=EG,连接GK,取AB得中点Q,连接DQ、EQ,根据题意先证明△DEF≌△CHF(SAS),得到△EGK是等边三形,再证明△DEF≌△GKH(AAS),由点E为AC的中点,点Q是AB的中点,得到QE∥BC,进而得到QD=DE,即可得出结论;(3)点H的轨迹是一条垂直AB的直线,当H在AB上时,此时AH最小,AH=,利用S△DGH=S△CDG﹣S△CGH﹣S△CDH求解即可.【解答】(1)解:在AC上截取DK=AD,连接BK,∵∠BAC=2∠ACB,∠ACB=15°,∴∠BAC=30°,∵BD⊥AC,∴∠BDA=∠BDC=90°,∵DK=AD,∴AB=BK,∴∠BAC=∠BKD=30°,∵∠ACB=15°,∴∠KBC=∠BCA=15°,∴BK=KC,在Rt△ABD中,,,设BD=x,则,AB=BK=KC=2x,∵,∴x=1,∴AB=3;(2)证明:在EC上截取EK=EG,连接GK,连接DQ,如图,∵三角形ECF是等边三角形,∴EF=EC=FC,∠FEC=∠FCE=∠EFC=60°,∴∠FED=∠FCH=120°,在△DEF和△CHF中,,∴△DEF≌△CHF(SAS),∴DF=FH,∠1=∠CFH,∵GH=DF,∴GH=FH,∴∠FGH=∠GFH,∴∠FGH﹣∠FEC=∠GFH﹣∠EFC,∴∠EHG=∠CFH,∴∠1=∠EHG,∵EG=EK,∴△EGK是等边三角形,∴EG=GK=EK,∠FEC=∠8=∠EGK=60°,∴∠FED=∠CKG=120°,在△DEF和△GKH中,,∴△DEF≌△GKH(AAS),∴DE=GK,∴DE=EG,∵点Q是AB的中点,BD⊥AC,∴AB=2AQ=4QB=2QD,∴∠BAC=∠4,∵点E为AC的中点,点Q是AB的中点,∴QE∥BC,∴∠BCA=∠2,∵∠BAC=2∠ACB,∠4=∠DQE+∠6,∴∠DQE=∠3,∴QD=DE,∴AB=2DQ=2DE=2EG;(3)解:如图,点H的轨迹是一条垂直AB的直线,此时AH最小,,&nbsp;S△DGH=S△CDG﹣S△CGH﹣S△CDH==.∴S△DGH=.【点评】本题是三角形综合题,考查了全等三角形的判定与性质、等腰三角形的性质、等腰直角三角形的性质、三角形内角和定理、三角形的外角性质、解直角三角形等知识,本题综合性强,熟练掌握等腰三角形的性质,证明三角形全等是解题的关键,属于中考常考题型.。

2024-2025学年江苏省南通市海门区海南中学九年级(上)月考数学试卷(10月份)(含答案)

2024-2025学年江苏省南通市海门区海南中学九年级(上)月考数学试卷(10月份)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列实数中,为无理数的是( )A. 0.2B. 12C. 2D. −52.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=128°,则∠DBC的度数为( )A. 52°B. 62°C. 72°D. 128°3.轮船顺流航行时m千米/小时,逆流航行时(m−6)千米/小时,则水流速度( )A. 2千米/小时B. 3千米/小时C. 6千米/小时D. 不能确定4.一副扑克牌是54张,随意摸到一张是10的概率为( )A. 154B. 126C. 227D. 1135.如图,a//b,∠1=∠2,∠3=40°,则∠4等于( )A. 40°B. 50°C. 60°D. 70°6.方程x2+1=2|x|有( )A. 两个相等的实数根B. 两个不相等的实数根C. 三个不相等的实数根D. 没有实数根7.如图,在平面直角坐标系中,⊙P与x轴相切,与y轴相交于A(0,2),B(0,8),则圆心P的坐标是( )A. (5,3)B. (5,4)C. (3,5)D. (4,5)8.抛物线y=ax2+bx+c的顶点为D(−1,2),与x轴的一个交点A在点(−3,0)和(−2,0)之间,其部分图象如图,则以下结论:①b2−4ac<0;②当x>−1时,y随x增大而减小;③a+b+c<0;④若方程ax2+bx+c−m=0没有实数根,则m>2;⑤3a+c<0.其中正确结论的个数是( )A. 2个B. 3个C. 4个D. 5个9.如图,点A的坐标为(6,0),点B为y轴的负半轴上的一个动点,分别以OB,AB为直角边分别在第三、第四象限内作等腰Rt△OBF、等腰Rt△ABE,连接EF交y轴于P点,当点B在y轴上移动时,PB的长度为( )A. 1B. 2C. 3D. 410.如图,点C为线段AB的中点,E为直线AB上方的一点,且满足CE=CB,连接AE,以AE为腰,A为顶角顶点作等腰Rt△ADE,连接CD,当CD最大时,∠DEC的度数为( )A. 60°B. 75°C. 67.5°D. 90°二、填空题:本题共8小题,每小题3分,共24分。

2024-2025学年广东省深圳市龙华区九年级上学期月考数学试卷(10月份)

2024-2025学年广东省深圳市龙华区九年级上学期月考数学试卷(10月份)考试时间:90分钟一、选择题(每小题3分,共30分,每小题只有一个选项是正确的)1.方程()60x x −=的解是( )A .6x =B .120,6x x ==C .6x =−D .120,6x x ==−2.用配方法解方程2450x x +−=时,原方程应变形为( )A .()221x −=B .()2411x −=C .()229x +=D .()2421x += 3.方程22530x x −+=的根的情况是( )A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .只有一个实数根 4.已知关于x 的一元二次方程()222540m x x m +++−=有一个解是0,则m 的值为( )A .2B .-2C .+2或-2D .不确定5.如图,某小区规划在一个长30m 、宽20m 的长方形土地ABCD 上修建三条同样宽的通道,使其中两条与AB 平行,另一条与AD 平行,其余部分钟花草,要使每一块花草的面积都为278cm ,那么通道宽应设计成多少m ?设通道宽为xm ,则由题意列得方程为( )A .()()302078x x −−=B .()()30220278x x −−=C .()()30220678x x −−=⨯D .()()302202678x x −−=⨯6.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x ,那么x 满足的方程是( )A .()2501182x +=B .()()250501501182x x ++++= C .()5012182x +=D .()()505015012182x x ++++= 7.下列命题中是真命题的是( )A .一组对边平行,另一组对边相等的四边形是平行四边形B .对角线互相垂直且相等的四边形是矩形C .一个角为90︒且一组邻边相等的四边形是正方形D .对角线互相垂直且平分的四边形是菱形8.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的个数是( )①平行四边形;②菱形;③矩形;④对角线相等的四边形;⑤对角线垂直的四边形.A .1B .2C .3D .4 9.如左下图,正方形ABCD 的边长为4,点E 在AB 边上.四边形EFGB 也为正方形,设AFC △的面积为S ,则( )A .6S =B .8S =C .10S =D .S 与BE 长度有关10.如右上图,矩形ABCD 中,3,4AB BC ==,点E 是BC 边上一点,连接AE ,把B ∠沿AE 折叠,使点B 落在点B '处,当CEB '△为直角三角形时,BE 的长为( )A .3B .32C .2或3D .3或32二、填空题(每题3分,共15分) 11.方程()()124x x −+=的解是______. 12.已知关于x 的方程240x x k +−=无实数根,则k 满足的条件是______.13.(3分如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF BC ∥,分别交,AB CD 于E F 、,连接.PB PD 、若2,6AE PF ==,则图中阴影部分的面积为______.第13题14.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作BD 的垂线,垂足为E .第14题①若3EAD BAE ∠=∠,则EAO ∠的度数为_____.②若5,3AO BE ED ==,则AE 的长度为_____.15.如图,正方形OABC 的边,OA OC 分别在x 轴,y 轴上,点M ,N 分别在,OA AB 上,CMN △是等边三角形,连接AC ,交MN 于点G .若4AM =,则点G 的坐标为_____.第15题三、解答题(共55分)16.解方程:(1)254x x =;(2)22450x x −−=17.解方程:(1)()()2454x x +=+ (2)()()23543530x x +−++= 18.如图,已知AC 是矩形ABCD 的对角线,AC 的垂直平分线EF 分别交BC AD 、于点E 和,F EF 交AC 于点O .(1)求证:四边形AECF 是菱形;(2)若8,6AC EF ==,求菱形的边长.19.如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的宽为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由.20.由于供不应求,市场上青瓜的批发价连续两个月持续上涨,从2元/千克涨到2.88元/千克.(1)求青瓜批发价两月的平均增长率.(2)某商户以3元/千克的价格购进一批青瓜,以4元/千克的价格出售,每天可售出200千克.为了促销,该商户决定降价销售.经调查发现,这种青瓜每降价0.1元/千克,每天可多售出50千克,另外每天的房租等固定成本为40元.为了每天盈利200元,且使每天的销量较大,需将每千克青瓜降价多少元?21.用圆规、直尺作图,不写作法,但要保留作图痕迹.①现有一个四边形木块,且A ∠为直角,现要利用这块木块截一个正方形ABCD ,使其对角线长等于已知线段a .请在图中作出这个正方形.②如图,请在一个锐角三角形ABC 画出一个菱形,使∠A 为菱形的一个内角,其他三个顶点均在三边上.22.在平面直角坐标系xOy 中,四边形OADC 为正方形,点D 的坐标为(6,6),动点E 沿边OA 从O 向A 以每秒1cm 的速度运动至A ,同时动点F 沿边CO 从C 向O 以同样的速度运动,当其中一个点停止时,另一个也停止运动,设运动时间为t 秒,连接AF DE 、交于点G .(1)如图①,线段AF 和DE 有什么数量关系_____;有什么位置关系_____;(2)当t =_____秒时线段EF 最小,最小值为_____;(3)如图②,E 为AO 中点,除了点,除了点E ,坐标轴上是否存在点P ,使ACP ACE SS =,若存在,直接写出P 点的坐标_____;(4)如图②,E 为AO 中点,点M 是直线EC 上一点,点N 是平面内任意一点,当四边形OCMN 为菱形时,请直接写出点N 的坐标______.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级上学期数学10月月考试卷B卷
姓名:________ 班级:________ 成绩:________
考试须知:
1、请首先按要求在本卷的指定位置填写您的姓名、班级等信息。

2、请仔细阅读各种题目的回答要求,在指定区域内答题,否则不予评分。

一、单选题 (共8题;共16分)
1. (2分) (2018九上·根河月考) 若⊙O的半径为5cm,OA=4cm,则点A与⊙O的位置关系是()
A . 点A在⊙O内
B . 点A在⊙O上
C . 点A在⊙O外
D . 内含
2. (2分) (2018九上·灌阳期中) 把方程的左边配方后可得方程()
A .
B .
C .
D .
3. (2分) (2019九上·大丰月考) 下列说法正确的是()
A . 等弧所对的圆周角相等
B . 平分弦的直径垂直于弦
C . 相等的圆心角所对的弧相等
D . 圆是轴对称图形,任何一条直径都是它的对称轴
4. (2分) (2019九下·象山月考) 如图,AB是⊙O的直径,点C,D在⊙O上,且点C,D在AB的异侧,连接AD,BD,OD,OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为()
A . 120°
B . 105°
C . 100°
D . 110°
5. (2分)如图,A,B,C,D是⊙O上的四个点,AD∥BC.那么与的数量关系是()
A . =
B . >
C . <
D . 无法确定
6. (2分) (2018九上·老河口期中) 关于x的一元二次方程有实数根,则k的取值范围是
A .
B .
C .
D .
7. (2分) (2019九上·萧山期中) 已知点E在半径为5的⊙O上运动,AB是⊙O的一条弦且AB=8,则使△ABE 的面积为8的点E共有()个.
A . 1
B . 2
C . 3
D . 4
8. (2分)(2019·成都模拟) 如图,正方形ABCD内接于⊙O,AB=2 ,则的长是()
A . π
B . π
C . 2π
D . π
二、填空题 (共8题;共13分)
9. (1分) (2019·南京) 已知x= 是关于x的方程的一个根,则m=________.
10. (1分) (2018九上·温州开学考) 如图,在菱形ABCD中,AB=2,∠D=120°,将菱形翻折,使点A落在边CD的中点E处,折痕交边AD,AB于点G,F,则AF的长为________
11. (1分) (2018九上·柯桥月考) 如图,点G是正六边形ABCDEF的CD边的中点,AG与CF交于H点.则∠AHF+∠HGC=________度,若AB=a,则FH=________(用含a的代数式表示).
12. (1分)(2019·海宁模拟) 如图,将正方形ABCD剪成左图所示的四块,恰好能拼成右图所示的矩形.若EC=1,则BE=________.
13. (2分)(2016·日照) 如图,直线y=﹣与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是________.
14. (5分) (2018八下·永康期末) 如图,正方形ABCD的顶点A,B在x轴的正半轴上,对角线AC,BD交
于点P,反比例函数的图象经过P,D两点,则AB的长是________.
15. (1分) (2018七上·银川期中) 若(a+1)2+|b﹣2|=0,则2a+b﹣1=________.
16. (1分) (2019七下·海淀期中) 平面直角坐标系xOy中,已知线段AB与x轴平行,且AB=5,若点A 的坐标为(3,2),则点B的坐标是________.
三、解答题 (共11题;共83分)
17. (10分) (2019九上·西安开学考) 解方程:
(1)
(2)
(3)
(4)
18. (5分)解方程:4x2﹣20=0.
19. (5分) (2017八上·宁河月考) 如图,已知∠1=∠2,AO=BO.求证:AC=BC.
20. (10分)(2019·荆州模拟) 在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用32m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.
(1)若花园的面积为252m2,求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是17m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
21. (2分)(2018·南宁模拟) 如图,在中,,点C为AB的中点,,以点O 为圆心,6为半径的圆经过点C,分别交OA、OB于点E、F.
(1)求证:AB为的切线;
(2)求图中阴影部分的面积注:结果保留,,,
22. (10分) (2018八上·慈溪期中) 如图,在△ABC和△DCB中,AC与BD相交于点O,AB=DC,AC=BD.
求证:
(1)△ABC≌△DCB.
(2)∠ABO=∠DCO
23. (2分) (2019八下·顺德期末) 如图,在中,,、分别是、
的中点,延长到,使得,连接、 .
(1)求证:四边形为平行四边形;
(2)若四边形的周长是32,,求的面积;
(3)在(2)的条件下,求点到直线的距离.
24. (10分)(2018·福田模拟) 如图,在 ,O是AC上的一点, 圆与BC,AB分别切于点C,D, 与AC相交于点E,连接BO.
(1)求证:CE2=2DE BO;
(2)若BC=CE=6,则AE=________,AD=________.
25. (16分) (2019九上·巴南期末) 如图1,在中,,,将
绕点旋转,边分别交边、于、两点.
(1)若,,求的最小值;
(2)如图2,设,点是的中点,连接,当旋转到与的交点是的中点时,过点作的垂线交CM于点,连接、,求证: .
26. (6分) (2018九上·重庆月考) 俗话说“一铺养三代”。

曾经,在市区繁华地段租一间门面,做点小生意,是不少人的生存之道。

如今,这样的传统致富门道正在不断受到挑战。

某服装店主,顺应时代潮流,在实体店销售的同时,开始网上销售。

(1)该店主某月线上线下共销售某款童装200件,其中网上销售量不低于实体销售量的4倍,求该店主该月实体销售量最多为多少?
(2)已知该店主5月实体销售该童装100件,每件获利18元;网上销售200件,每件获利12元。

6月店主加大网上销售力度,网上销售每件获利较5月减少m%,但销售量比5月增加了2m%,实体店每件获利不变,销售量比5月减少了m%。

结果该店主5月、6月线上线下获利总金额相同,求m的值。

27. (7分)(2019·泰兴模拟) 如图
(1)问题发现
如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:
① 的值为________;
②∠AMB的度数为________.
(2)类比探究
如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;
(3)拓展延伸
在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB= ,请直接写出当点C与点M重合时AC的长.
参考答案一、单选题 (共8题;共16分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
二、填空题 (共8题;共13分)
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共11题;共83分) 17-1、
17-2、
17-3、
17-4、
18-1、19-1、20-1、20-2、21-1、
21-2、22-1、22-2、23-1、
23-2、23-3、
24-1、24-2、
25-1、
25-2、26-1、
26-2、27-1、
27-2、。

相关文档
最新文档