人教版九年级数学上典中点课后作业25.1.2概率(B)(含答案)

合集下载

人教版九年级数学上册第25章25.1.2 概率 同步练习题(含答案,教师版)

人教版九年级数学上册第25章25.1.2 概率 同步练习题(含答案,教师版)

人教版九年级数学上册第25章25.1.2 概率同步练习题一、选择题
1.小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面说法正确的是(C)
A.小亮明天的进球率为10%
B.小亮明天每射球10次必进球1次
C.小亮明天有可能进球
D.小亮明天肯定进球
2.掷一枚质地均匀的硬币10次,下列说法正确的是(B)
A.每2次必有1次正面向上
B.可能有5次正面向上
C.必有5次正面向上
D.不可能有10次正面向上
3.在“践行生态文明,你我一起行动”主题有奖竞赛活动中,903班共设置“生态知识、生态技能、生态习惯、生态文化”四个类别的竞赛内容,如果参赛同学抽到每一类别的可能性相同,那么小宇参赛时抽到“生态知识”的概率是(B)
A.1
2
B.
1
4
C.
1
8
D.
1
16
4.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是(A)
A.1
3
B.
1
4
C.
1
5
D.
1
6
5.下列事件中,发生的概率为0的是(D)。

25.1.2概率-九年级数学人教版(上)(解析版)

25.1.2概率-九年级数学人教版(上)(解析版)

第二十五章概率25.1.2概率一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.掷一枚均匀的骰子,骰子的6个面上分别刻有1、2、3、4、5、6点,则点数为奇数的概率是A.16B.13C.12D.23【答案】C【解析】由题意可得,点数为奇数的概率是:36=12,故选C.2.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是A.23B.16C.13D.12【答案】D3.现有四张扑克牌:红桃A、黑桃A、梅花A和方块A.将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A的概率为A.1 B.14C.12D.34【答案】B【解析】∵从4张纸牌中任意抽取一张牌有4种等可能结果,其中抽到红桃A的只有1种结果,∴抽到红桃A的概率为14,故选B.4.已知抛一枚均匀硬币正面朝上的概率为12,下列说法错误的是A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的【答案】A5.在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为13,那么n的值是A.6 B.7 C.8 D.9 【答案】A【解析】根据题意得2n=13,解得n=6,所以口袋中小球共有6个.故选A.二、填空题:请将答案填在题中横线上.6.农历五月初五为端午节,端午节吃粽子是中华民族的传统习俗.小明妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小明随意吃了一个,则吃到腊肉棕的概率为__________.【答案】1 2【解析】由题意可得,小明随意吃了一个,则吃到腊肉棕的概率为:5325++=12,故答案为:12.7.在一个不透明的袋子中装有除颜色外完全相同的5个红球、3个白球、2个绿球,任意摸出一球,摸到白球的概率是__________.【答案】3 10【解析】∵袋子中共有10个球,其中白球有3个,∴任意摸出一球,摸到白球的概率是3 10,故答案为:3 10.8.在“Wish you success”中,任选一个字母,这个字母为“s”的概率为__________.【答案】2 7【解析】任选一个字母,这个字母为“s”的概率为:414=27,故答案为:27.9.有四张看上去无差别的卡片,正面分别写有“兴城首山”、“龙回头”、“觉华岛”、“葫芦山庄”四个景区的名称,将它们背面朝上,从中随机一张卡片正面写有“葫芦山庄”的概率是__________.【答案】1 4三、解答题:解答应写出文字说明、证明过程或演算步骤.10.判断下列说法是否正确,并说明理由.(1)“从布袋中取出一只红球的概率是1”,这句话的意思是说取出一个红球的可能性很大.(2)在医院里看病注射青霉素时,说明书上说发生过敏的概率大约为0.1%,小明认为这个概率很小,一定不会发生在自己的身上,不需要做皮试.(3)小华在一次实验中,掷一枚均匀的正六面体骰子掷了6次,有3次出现了“3”,小华认为“3”出现的频率为12.【解析】(1)错误,“取出一只红球的概率是1”,说明这是一个必然事件,而不是可能性很大的,是100%.(2)错误,虽然发生的概率只有0.1%,发生的可能性很小,但它仍有可能发生,而且有关生命,因此,小明应做皮试.(3)错误,虽然小华在一次实验中,掷一枚均匀的正六面体骰子掷了6次,有3次出现了“3”,但是“3”出现的概率为16.11.投掷一枚正六面体骰子,六个面上依次标有1,2,3,4,5,6.(1)掷得“6”的概率是多少?(2)掷一次“不是6”的概率是多少?(3)掷得数“小于4”的概率是多少?(4)掷得数“小于或等于4”的概率是多少?。

人教版九年级数学上册25.1.2 概 率

人教版九年级数学上册25.1.2 概  率
解:出现A、B、C、D、E五种结果.它们是等
可能的.
课堂检测
3.一个桶里有60个弹珠——一些是红色的,一些是 蓝色的,一些是白色的.拿出红色弹珠的概率是35%, 拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各 有多少?
解:拿出白色弹珠的概率是1- 35%- 25%= 40%; 红色弹珠有60×35%=21; 蓝色弹珠有60×25%=15; 白色弹珠有60×40%=24.
每一次试验中,可能出现的结果只有有 限个;
每一次试验中,各种结果出现的可能 性相等.
在这些试验中出现的事件为等可能事件.
探究新知
具有上述特点的试验,我们可以用事件所 包含的各种可能的结果数在全部可能的结果数 中所占的比,来表示事件发生的概率.
探究新知
【议一议】
一个袋中有5个球,分别标有1、2、3、4、5这5
P( A) m . n
探究新知
事件发生的可能性越大,它的概率越接近于1;反之,事件发生 的可能性越小,它的概率越接近于0.即:0≤P(A)≤1.
0
不可能发生
事件发生的可能性越来越小
1
概率的值
事件发生的可能性越来越大 必然发生
特别地:当A为必然事件时,P(A)=1,当A为不可能事件 时,P(A)=0.
一般地,对于一个随机事件A,我们把刻
画其发生可能性大小的数值,称为随机事件A
发生的概率,记为P(A).
例如:“抽到1”事件的概率:P(抽到1)=
1 5
探究新知
知识点 2 简单概率的计算
试验1:抛掷一个质地均匀的骰子
(1)它落地时向上的点数有几种可能的结果? 6种
(2)各点数出现的可能性会相等吗? 相等
(3)试猜想:各点数出现的可能性大小是多少?

25.1.2 概率(2)(数学人教版九年级上册)

25.1.2 概率(2)(数学人教版九年级上册)

面向上”.它们出现的可能性相等.“正面向上”有 1 种可能,因此
P
(正面向上)
=
1 2

实际问题
每次
事件 试验
可能出现的结果只有有限个 各种结果出现的可能性相等
事件 A 的概率 0≤P(A)≤1
A 为必然事件 P ( A ) = 1
A 为不可能事件 P ( A ) = 0
A 为随机事件
m
P(A)=n
绿红 绿
红 黄红黄
例 2 如图是一个可以自由转动的转盘,转盘分成 7 个大小相同的扇形,颜色分为红、
绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所
指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).求下列事件的概率:
(1)指针指向红色;
解:按颜色把 7 个扇形分别记为:红 1 ,红 2 ,红 3 ,绿 1 , 绿 2 ,黄 1 ,黄 2 ,所有可能结果的总数为 7 ,并且它们出现的 可能性相等.
(1)指针指向红色; (2)指针指向红色或黄色; (3)指针不指向红色.
思考:问题中所有可能出现的结果有几种?各种结果出现 的可能性相等吗?
绿红 绿
红 黄红黄
例 2 如图是一个可以自由转动的转盘,转盘分成 7 个大小相同的扇形,颜色分为红、
绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所
指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).求下列事件的概率:
(1)指针指向红色; (2)指针指向红色或黄色; (3)指针不指向红色.
分析:问题中可能出现的结果有 7 种,把 7 个结果分别记 为:红 1 ,红 2 ,红 3 ,绿 1 ,绿 2 ,黄 1 ,黄 2 ,指针指向每个 扇形的可能性相等.

人教版九年级数学上册《25.1.2概率》同步测试题带答案

人教版九年级数学上册《25.1.2概率》同步测试题带答案

人教版九年级数学上册《25.1.2概率》同步测试题带答案学校:___________班级:___________姓名:___________考号:___________1.一个布袋里装有3个红球和5个黄球,它们除颜色外其余都相同.从中任意摸出一个球是红球的概率是()A.13B.15C.38D.582.有4张形状大小质地均相同的卡片,正面印有速度滑冰、冰球、单板滑雪、冰壶四种不同的图案,背面完全相同,现将这4张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是冰壶项目图案的概率是()A.14B.13C.12D.343.如图,电路图上有A,B,C三个开关和一个小灯泡,闭合开关C或者同时闭合开关A,B,都可使小灯泡发光,现在任意闭合其中一个开关,则小灯泡发光的概率等于.4.在三张完全相同的卡片上,分别画有正三角形、正方形、正五边形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率是.5.某班男女同学人数之比为11∶10,则在该班随机抽一名同学,抽到女同学的概率是.6.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为12,则布袋里红球有个.7.如图,已知☉O是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是.8.某商场为了吸引顾客,设立了一个如图所示可以自由转动的转盘(转盘被平均分成16等份),并规定:顾客每购买100元的商品,就能获得一次转转盘的机会,如果转盘停止后,指针正好对准红色、黄色或绿色区域,顾客就可以分别获得玩具熊、童话书、水彩笔.小明和妈妈购买了125元的商品,请你分析计算:(1)小明获得奖品的概率是多少?(2)小明获得玩具熊、童话书、水彩笔的概率分别是多少?9.(抽象能力)如图,D ,E ,F ,G 分别是BC ,AD ,BE ,CE 的中点,若△ABC 内有一点M ,则点M 落在△AFG 内(包括边界)的概率为 .参考答案【分层训练】1. C2. A3.134.135.10216.17.π-24 8.(1)P (获得奖品)=38(2)P (获得玩具熊)=116,P (获得童话书)=18,P (获得水彩笔)=316. 9.38。

人教版九年级数学上册:25.1第2课时概率含答案

人教版九年级数学上册:25.1第2课时概率含答案

25.1 第2课时 概率知识点:⒈对于一个随机事件A ,我们把刻画其发生的数值,称为随机事件A 发生的概率,记为 。

2、一般地,如果在一次实验中,有n 种可能的结果,并且他们发生的可能性都 ,事件A 包含其中的m 种结果,那么事件A 发生的概率P(A)= (0≤P(A)≤1).3、当A 是必然发生的事件时P(A)= ;当A 是不可能发生的事件时P(A)= ;一、选择题1.下列事件中是随机事件有( )个.(1)在标准大气压下水在0℃时开始结成冰;(2)掷一枚六个面分别标有l ~6的数字的均匀骰子,骰子停止转动后偶数点朝上;(3)从一副扑克牌中任意抽出一张牌,花色是红桃;(4)打开电视机,正在转播足球比赛;(5)小麦的亩产量为1000公斤.A . 1个B .2个C .3个D .4个2.下列说法:(1)不可能发生和必然发生的都是确定的;(2)可能性很大的事情是必然发生的;(3)不可能发生的事情包括几乎不可能发生的事情;(4)冬天里武汉一定会下雪.其中,正确的个数为( ).A. 1个B. 2个C. 3个D. 4个3.如图,小明周末到外婆家,走到十字路口处,记不清前面哪条路通往外婆家,那么他能一次选对路的概率是( ).A. B. C. D. 04.下图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等.四位同学各自发表了下述见解:甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形;乙:只要指针连续转六次,一定会有一次停在6号扇形;丙:指针停在奇数号扇形的概率与停在偶数号扇形的概率相等;121314丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大.其中,你认为正确的见解有( )A .1个B .2个C .3个D .4个5.在中考体育达标跳绳项目测试中,1分钟跳160次为达标。

小敏记录了他预测时1分钟跳的次数分别为145、155、140、162、164,则他在该次预测中达标的概率是( ).A. B. C. D. 16.有两组扑克牌各三张,牌面数字分别为1、2、3,随意从每组中牌中各抽取一张,数字和是奇数的概率是( ).A . B . C . D .7.一个骰子,六个面上的数字分别为1,2,3,4,5,6投掷一次,向上面为数字3的概率及向上面的数字大于3的概率分别是( ).A. 、B. 、C. 、D. 、 8.某商店举办有奖销售活动,购物满100元者发对奖券一张.在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个.若某人购物刚好满100元,那么他中一等奖的概率是( ).A .B .C .D .二、填空题9.粉笔盒中有8支红粉笔,6支黄粉笔1支绿粉笔,从中任取—支,是红粉笔的概率为________.10.某射手在一次射击中,射中10环、9环、8环的概率分别是0.24、0.28、0.19,那么,这个射手在这次射击中,射中10环或9环的概率为________;不够8环的概率为________.11.初三(1)班共有48名团员要求参加青年志愿者活动,根据实际需要,团支部从中随机选择12名团员参加这次活动,该班团员李明能参加这次活动的概率是 .12.一次抽奖活动中印发奖券1000张,其中一等奖20张,二等奖80张,三等奖200张,那么每一位抽奖者(仅买一张奖券)中奖的概率都是_______.13、在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到黄球的概率是54,则n =▲ 2523122913495912161323141216121001100011000011000011114、某班共有50名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学到黑板板演,习惯用左手写字的同学被选中的概率是 .15、从-2、-1、0、1、2这5个数中任取一个数,作为关于x 的一元二次方程20x x k -+=的k 值,则所得的方程中有两个不相等的实数根的概率是16、“上升数”是一个数中右边数字比左边数字大的自然数(如:34、568、2469等).任取三、解答题17.某电视台综艺节目接到热线电话3000个,现要从中抽取“幸运观众”10名,张华同学打通了一次热线电话,那么他成为“幸运观众”的概率为多少?18.甲班56人,其中身高在160厘米以上的男同学10人,身高在160厘米以上的女同学3人,乙班80人,其中身高在160厘米以上的男同学20人,身高在160厘米以上的女同学8人.如果想在两个班的160厘米以上的女生中抽出一个作为旗手,在哪个班成功的机会大?为什么?19.如图所示,每个转盘被分成3个面积相等的扇形,小红和小芳利用它们做游戏:同时自由转动两个转盘,如果两个转盘的指针所停区域的颜色相同,则小红获胜;如果两个转盘的指针所停区域的颜色不相同,则小芳获胜,此游戏对小红和小芳两人公平吗?谁获胜的概率大?20. 如图,用两个相同的转盘(每个圆都平均分成六个扇形)玩配紫色游戏(—个转盘转出“红”,另一个转盘转出“蓝”,则为配成紫色).在所给转盘中的扇形里,分别填上“红’’或“蓝”,使得到紫色的概率是.1625.1 第2课时 概率一、1D ;2A ;3B ;4A ;5A ;6C; 7D; 8C;二、9.; 10. 0.52、0.29; 11. ; 12.;13、8; 14、0.04; 15、0.6 ; 16、25;三、17..18.因为已经限定在身高160厘米以上的女生中抽选旗手,在甲班被抽到的概率为,在乙甲班被抽到的概率为,∵>,∴在甲班被抽到的机会大.19.不公平,小芳获胜的概率()大于小红的().20.[解答]本题是一道答案不惟一的开放题,在解这类题时,可从最简单的形式入手.由已知条件及要求只要符合题意即可.如可把其中一个转盘的六个扇形都填“红”,而另一个转盘的一个扇形填“蓝”,即可保证得到紫色的概率为.如图,一个转盘的六个扇形都填“红”,另一个转盘的一个扇形填“蓝”,余下的五个扇形不填或填其他颜色.(注:一个填两个“红”,另一个填三个“蓝”等也可).81514310130013181318231316。

25.1.2 概率课件 2024-2025学年人教版数学九年级上册


随堂练习
2. 任意掷一枚质地均匀的骰子.
(1) 掷出的点数大于4的概率是多少?
(2) 掷出的点数是偶数的概率是多少?
解:任意掷一枚质地均匀的骰子,掷出的点数可能是1,2,3,4,
5,6,即所有可能的结果有6种.因为骰子是质地均匀的,所以每种
结果出现的可能性相等.
随堂练习
2. 任意掷一枚质地均匀的骰子.
(1) 掷出的点数大于4的概率是多少?
(1)掷出的点数大于4的结果只有2种,即
掷出的点数分别是5,6.
所以P(掷出的点数大于4)=

= .

随堂练习
2. 任意掷一枚质地均匀的骰子.
(2) 掷出的点数是偶数的概率是多少?
(2)掷出的点数是偶数的结果有3种,即掷
出的点数分别是2,4,6.
所以P(掷出的点数是偶数)=
知识点2 简单随机事件的概率的求法
【例 4】一儿童行走在如图所示的地板上,当他随意停下时,最终停
在地板上阴影部分的概率是( A )
A.

B.


C.


D.


解析:观察这个图可知,阴影区域(3块)的面积占
总面积(9块)的


,故其概率为 .


知识讲解
知识点2 简单随机事件的概率的求法
【例 5】如图所示的是一个可以自由转动的转盘,转盘分成7个大小相
1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出
现如图所示的情况.我们把与标号3的方格相邻的方格记为A区
域(画线部分),A区域外的部分记为B区域.数字3表示在A区域
有3颗地雷.下一步应该点击A区域还是B区域?

九年级数学上册 25.1概率2 同步练习习题(含答案)

25.1 概率一、填空题1.从数1、2、3、4、5中任取两个数字,得到的都是偶数,这一事件是_____.2.一个口袋中装有红、黄、蓝三个大小和形状都相同的三个球,从中任取一球得到红球与得到蓝球的可能性_____.3.小明参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,今从中任选一个,选中_____的可能性较小.4.3张飞机票2张火车票分别放在五个相同的盒子中,小亮从中任取一个盒子决定出游方式,则取到_____票的可能性较大.5.在某次花样滑冰比赛中,发生裁判受贿事件,竞赛委员会决定将裁判由原来的9名增加到14人,其中任取7名裁判的评分作为有效分,这样做的目的是_____.6.在线段AB上任三点x1、x2、x3,则x2位于x1与x3之间的可能性_____(填写“大于”、“小于”或“等于”)x2位于两端的可能性.二、选择题7.一个口袋内装有大小和形状相同的一个白球和两个红球,从中任取一个球,得到白球,这个事件是( )A.必然事件B.随机事件C.不可能事件D.不能确定8.有5个人站成一排,“小亮站在正中间”与“小亮站在两端”这两个事件发生的可能性 ( )A.相等B.不相等C.有时相等,有时不等D.不能确定9.从一副扑克牌中任取一张摸到大王与摸到小王的可能性( )A.相等B.不相等C.有时相等,有时不等D.无法确定10.某班共有学生36人,其中男生20人,女生16人,今从中选一名班长,任何人都有同样的当选机会,下列叙述正确的是( )A.男生当选与女生当选的可能性相等B.男生当选的可能性大于女生当选的可能性C.男生当选的可能性小于女生当选的可能性D.无法确定11.8个足球队中有2个强队,现将这8个队任意分成两组,每组4个队进行比赛,对两个强队是否在同一组的可能性大小叙述正确的是( )A.两个强队在同一组与不在同一组的可能性大小相同B.在同一组的可能性较大C.不在同一组的可能性较大D.无法确定三、解答题12.为了支援体育事业,政府决定发行电脑体育彩票,彩票的每注投注号由7个号码组成,每位号码均从0到9这10个数字中产生,每注2元,每期彩票的销售总额扣除当期彩票设奖的奖金,剩下的均作为发展体育事业的资金.某一期摇中的中奖号及对应的奖金额如下:四等奖×××××或××××小明任意抓取一张,请你按获奖的可能性由小到大排列顺序.13.让我们做一个有趣的实验一个口袋里边装有2个红球、2个白球,这4个球除颜色不同外,形状、大小、重量都相同,将袋内的球搅匀后,伸手到袋中摸球,每次摸出一球,记住球的颜色,然后放回袋中……这样连续摸4次,记住4个球的颜色.规定:4个全红记 2分3红一白记 0分2红2白记-2分1红3白记 0分4个全白记 2分得正分为胜,得负分为败,重复上面的试验,你能获胜吗?参考答案一、1.随机事件 2. 3.判断题 4.5.减少有6.二、7.B 8.B 9.A 10.B 11.C三、12.略 13.。

【教育资料】人教版数学九年级上册 第二十五章 概率初步 25.1.2 概率 同步练习题 含答案学习专用

第二十五章 概率初步 25.1.2 概率 同步练习题1. 某种彩票中奖的概率是1%,下列说法正确的是( )A .买1张这种彩票一定不会中奖B .买1张这种彩票一定会中奖C .买100张这种彩票一定会中奖D .买这种彩票中奖的可能性很小2. “兰州市明天降水概率是30%”,对此消息下列说法中正确的是( )A .兰州市明天将有30%的地区降水B .兰州市明天将有30%的时间降水C .兰州市明天降水的可能性较小D .兰州市明天肯定不降水3.下列说法错误的是( )A .必然发生的事件发生的概率为1B .不可能发生的事件发生的概率为0C .随机事件发生的概率大于0且小于1D .不确定事件发生的概率为04. 掷一枚质地均匀的硬币10次,下列说法正确的是( )A .每两次必有1次正面向上B .可能有5次正面向上C .必有5次正面向上D .不可能有10次正面向上5. 九(1)班在参加学校4×100m 接力赛时,安排了甲、乙、丙、丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为( )A .1 B.12 C.13 D.146. 从下列四张卡片中任取一张,卡片上的图形是中心对称图形的概率是( )A .0 B.34 C.12 D.147. 某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池.小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是( ) A.12 B.13 C.23 D.168. 在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里摸出1个球,则摸到红球的概率是 .9. 从标有1到9序号的9张卡片中任意抽取一张,抽到序号是3的倍数的概率是 .10. 某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是 .11. 如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是 .12. 从分别标有数-3,-2,-1,0,1,2,3的七张卡片中,随机抽取一张,所抽卡片上数的绝对值小于2的概率是 .13. 一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是13,那么添加的球是 .14. 如图是一个转盘,转盘分成8个相同的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).求下列事件的概率:(1)指针指向红色;(2)指针指向黄色或绿色.15. 掷一个骰子,观察向上一面的点数,求下列事件的概率:(1)点数为偶数;(2)点数大于2且小于5.参考答案;1---7 DCDBD DC8. 239. 1310. 75011. 1312. 3713. 红球14. 解:(1)14(2)38.15. 解:(1)掷一个骰子,向上一面的点数可能为1、2、3、4、5、6,共6种,这些点数出现的可能性相等,点数为偶数的有3种可能,即点数为2、4、6,∴P(点数为偶数)=36=12;(2)点数大于2且小于5有2种可能,即点数为3、4,∴P (点数大于2且小于5) =26=13.。

25.1.2 概率++课件-2024-2025学年人教版数学九年级上册


右边的扇形).求下列事件的概率:
图25-1-3





(1)指针指向红色;
解:按颜色把7个扇形分别记为:红1,红2,红3,绿1,绿2,黄1,黄2.所有可
能结果的总数为7,并且它们出现的可能性相等.
(1)指针指向红色(记为事件A)的结果有3种,即红1,红2,红3,因此
3
P(A)= .
7
图25-1-3
谢 谢 观 看!
生的可能性都
相等
件A发生的概率P(A)=
,事件A包含其中的m种结果,那么事


.





3.必然事件A的概率:P(A)=
1
不可能事件A的概率:P(A)=
0
随机事件A的概率:
0
<P(A)<
.
.
1
.





活动2 理解并掌握概率的计算公式
例1 (教材典题)掷一枚质地均匀的骰子,观察向上一面的点
数,求下列事件的概率:
区域的面积
在A区域(A在S内)的概率P=
.
区域的面积





例3 (教材典题)图25-1-4是计算机中“扫雷”游戏的画面.在一
个有9×9个方格的正方形雷区中,随机埋藏着10颗地雷,每个
方格内最多只能埋藏1颗地雷.
小王在游戏开始时随机地点击一个方格,点击后
出现了如图所示的情况.我们把与标号3的方格
的概率是
3
A.
8
1
B.
2
5
C.
8
D.1
( A )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25.1 随机事件与概率
第2课时概率
课后作业:方案(B)
一、教材题目:P134 T2-T5
2. 足球比赛前,由裁判员抛掷一枚硬币,若正面向上则由甲队首先开球,
若反面向上则由乙队首先开球.这种确定首先开球一方的做法对参赛的甲、乙
两队公平吗?为什么?
3. 10件外观相同的产品中有1件不合格,现从中随机抽取1件进行检测,抽到不合格产品的概率为多少?
4.一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”.掷小正方体后,观察朝上一面的数字.
(1)出现“5”的概率是多少?
(2)出现“6”的概率是多少?
(3)出现奇数的概率是多少?
5.如图是一个可以自由转动的质地均匀的转盘,被分成12个相同的扇形.请你在转盘的适当
地方涂上红、蓝两种颜色,使得转动的转盘停止时,指针指向红、蓝两色的概率分别为11 ,. 36
二、补充: 部分题目来源于《点拨》
3.某商店举办有奖购物活动,购物满100元者发兑奖券一张,在10 000张兑奖券中,设特等奖1个,一等奖10个,二等奖100个.若某人获得一张兑奖券,则他中一等奖的概率是( )
A .1100
B .11 000
C .110 000
D .1110 000
5.在英语句子“Wish you success !”(祝你成功!)中任选一个字母,这个字母为“s”的概率是________.
8.〈广西南宁〉在边长为1的小正方形组成的网格中,有如图所示的A ,B 两点,在格点中任意放置点C ,恰好能使△ABC 的面积为1的概率为( )
A.325
B. 425
C.15
D.625
(第8题)
13.一个口袋中放着若干个红球和白球,这两种球除了颜色以外没有其他区别,口袋中
的球已经搅匀,蒙上眼睛从口袋中取出一个球,取出红球的概率是14
. (1)取出白球的概率是多少?
(2)如果口袋中的白球有18个,那么口袋中的红球有多少个?
答案
一、 教材
2.解:公平.因为抛掷一枚硬币,正面向上和反面向上的可能性都是12
,所以甲、乙两队谁首先开球的可能性也是相同的.
点拨:判断是否公平主要看事件发生的可能性是否相同.
3.解:抽到不合格产品的概率为110
. 4.解:(1)出现“5”的概率是26=13
; (2)出现“6”的概率是0;
(3)出现奇数的概率是46=23
. 5.略. 点拨:涂4个红色的,2个蓝色的扇形即可.
二、
点拨
3.B 5.27
8.D 点拨:可以找到6个恰好能使△ABC 的面积为1的点,如图所示,∴所求概率为625.
(第8题)
13.解:(1)P (取出白球)=1-P (取出红球)=1-14=34
. (2)设口袋中的红球有x 个,则有x x +18=14(或18x +18=34
),解得x =6.经检验,x =6是分式方程的根,且符合题意,所以口袋中的红球有6个.。

相关文档
最新文档