磁场练习题

合集下载

高二物理磁场练习题及答案

高二物理磁场练习题及答案

高二物理磁场练习题及答案一、选择题1. 以下哪个不是磁场中的基本物理量?A) 磁感应强度 B) 磁场强度C) 磁通量 D) 磁矩2. 在空间中,某点的磁感应强度最大,磁场强度为零,则该点的磁场中的电流线是从哪个方向来的?A) 上方 B) 下方C) 左方 D) 右方3. 在均匀磁场中,电子的轨道半径和质量均不变,将磁感应强度变为原来的4倍后,电子的运动周期将A) 减至原来的1/4 B) 减至原来的1/2C) 保持不变 D) 增至原来的2倍4. 以下哪种情况不会使磁感应强度发生变化?A) 改变导线长度 B) 改变导线截面积C) 改变导线形状 D) 引入铁芯5. 两根平行的长直导线之间的力是相互的,它们的方向是A) 互相平行 B) 互相垂直C) 互相成60度角 D) 互相成180度角二、填空题1. 测量某区域的磁场强度,使用的仪器是________。

2. 直观地表示磁场分布情况的方法是绘制________。

3. 磁感应线指示出磁场中________的方向。

4. 磁场强度是________的物理量。

5. 真空中磁场中的电流线是________的。

三、解答题1. 描述磁感线的基本特征及其与磁场强度的关系。

2. 一根长直导线通过平面内一点O,与O点的距离为d,点O的水平方向又有一根与之平行的长直导线通过。

导线间的电流为I,分别求:a) 两导线间的相互作用力;b) 对第一根导线单位长度的作用力。

3. 在一个外磁场强度为B的均匀磁场中,一个具有电荷量q,质量m的带电粒子垂直于磁场以速度v运动,由于磁场的作用,其运动轨道发生半径R的圆弧。

求推导出R和v 之间的关系。

四、高分答案1. 答案:D2. 答案:A3. 答案:C4. 答案:C5. 答案:D二、填空题1. 答案:磁力计2. 答案:磁力线3. 答案:磁场强度4. 答案:矢量5. 答案:闭合的三、解答题1. 磁感线是用来表示磁场分布的线条,具有以下特征:- 磁感线起始于北极,终止于南极,是闭合曲线。

初三物理磁现象和磁场练习题

初三物理磁现象和磁场练习题

初三物理磁现象和磁场练习题一、选择题1. 以下哪个不是磁体?A. 铁钉B. 铝片C. 钢块D. 镍块2. 在下列位置中,哪个位置不可能有磁场?A. 电冰箱的门上B. 电视机背后C. 铁皮盒的内侧D. 电磁炉上方3. 下列哪个物质是近似理想磁体?A. 钢铁B. 铝C. 木材D. 玻璃4. 下列哪种不会影响磁体间的相互作用力?A. 磁体的距离B. 磁体的质量C. 磁体间的方向D. 磁体的形状二、填空题1. 同名磁极之间的相互作用力是_吸力_,异名磁极之间的相互作用力是_斥力_。

2. 磁铁既吸铁物又吸铝物是因为铁磁性_强于_铝。

3. 磁力线的方向由_南_极指向_北_极。

4. 在磁感强弱均匀的磁场中,物体所受磁力的大小与物体所放位置的_距离_、物体的_形状_ 和材质_ 有关。

三、简答题1. 简述磁铁对铁钉的吸引力是如何产生的。

磁铁对铁钉的吸引力是由于磁铁产生了磁场,磁场可以通过空气或其他介质传播。

当铁钉靠近磁铁时,磁场会影响铁钉内部的微观磁性物质排列,使得铁钉成为一个临时磁体。

由于同名磁极之间的相互作用力是吸引力,因此磁铁会吸引铁钉。

2. 什么是磁场?如何描述磁场的方向?磁场是指磁体周围所产生的物理现象,它是由磁性物质(如磁铁)产生的。

磁场是无形的,但可通过磁力线图形来描述。

磁力线是用来表示磁场方向和大小的方法,它们是无数个相互平行、相互密集、自南极指向北极的曲线或曲线段。

3. 请解释磁体之间的相互作用力与磁体间的位置、方向有何关系?磁体之间的相互作用力受到多个因素的影响,包括磁体间的距离、磁体的形状、方向等。

当两个磁体之间的距离较近时,相互作用力较大;当距离增加时,相互作用力减小。

磁体的形状和方向也会影响相互作用力的大小和方向,具体规律需要根据具体情况来判断。

四、计算题1. 两个磁铁分别有N极和S极,它们之间的距离为10厘米。

如果它们之间的相互作用力为1.5牛顿,求这两个磁铁的相互作用力如果距离缩短到5厘米时的大小。

物理带电粒子在磁场中的运动练习题20篇及解析

物理带电粒子在磁场中的运动练习题20篇及解析

物理带电粒子在磁场中的运动练习题20篇及解析一、带电粒子在磁场中的运动专项训练1.如图所示,在长度足够长、宽度d=5cm 的区域MNPQ 内,有垂直纸面向里的水平匀强磁场,磁感应强度B=0.33T .水平边界MN 上方存在范围足够大的竖直向上的匀强电场,电场强度E=200N/C .现有大量质量m=6.6×10﹣27kg 、电荷量q=3.2×10﹣19C 的带负电的粒子,同时从边界PQ 上的O 点沿纸面向各个方向射入磁场,射入时的速度大小均为V=1.6×106m/s ,不计粒子的重力和粒子间的相互作用.求:(1)求带电粒子在磁场中运动的半径r ;(2)求与x 轴负方向成60°角射入的粒子在电场中运动的时间t ;(3)当从MN 边界上最左边射出的粒子离开磁场时,求仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围,并写出此时这些粒子所在位置构成的图形的曲线方程. 【答案】(1)r=0.1m (2)43.310t s -=⨯ (3)3060~o o 曲线方程为222x y R +=(30.1,0.1R m m x m =≤≤) 【解析】 【分析】 【详解】(1)洛伦兹力充当向心力,根据牛顿第二定律可得2v qvB m r=,解得0.1r m =(2)粒子的运动轨迹如图甲所示,由几何关系可知,在磁场中运动的圆心角为30°,粒子平行于场强方向进入电场,粒子在电场中运动的加速度qE a m=粒子在电场中运动的时间2v t a= 解得43.310t s -=⨯(3)如图乙所示,由几何关系可知,从MN 边界上最左边射出的粒子在磁场中运动的圆心角为60°,圆心角小于60°的粒子已经从磁场中射出,此时刻仍在磁场中的粒子运动轨迹的圆心角均为60°,则仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围为30°~60° 所有粒子此时分别在以O 点为圆心,弦长0.1m 为半径的圆周上,曲线方程为22x y R += 30.1,0.120R m m x m ⎛⎫=≤≤ ⎪ ⎪⎝⎭【点睛】带电粒子在组合场中的运动问题,首先要运用动力学方法分析清楚粒子的运动情况,再选择合适方法处理.对于匀变速曲线运动,常常运用运动的分解法,将其分解为两个直线的合成,由牛顿第二定律和运动学公式结合求解;对于磁场中圆周运动,要正确画出轨迹,由几何知识求解半径2.在如图甲所示的直角坐标系中,两平行极板MN 垂直于y 轴,N 板在x 轴上且其左端与坐标原点O 重合,极板长度l =0.08m ,板间距离d =0.09m ,两板间加上如图乙所示的周期性变化电压,两板间电场可看作匀强电场.在y 轴上(0,d /2)处有一粒子源,垂直于y 轴连续不断向x 轴正方向发射相同的带正电的粒子,粒子比荷为qm=5×107C /kg ,速度为v 0=8×105m/s .t =0时刻射入板间的粒子恰好经N 板右边缘打在x 轴上.不计粒子重力及粒子间的相互作用,求:(1)电压U 0的大小;(2)若沿x 轴水平放置一荧光屏,要使粒子全部打在荧光屏上,求荧光屏的最小长度; (3)若在第四象限加一个与x 轴相切的圆形匀强磁场,半径为r =0.03m ,切点A 的坐标为(0.12m ,0),磁场的磁感应强度大小B =23T ,方向垂直于坐标平面向里.求粒子出磁场后与x 轴交点坐标的范围.【答案】(1)40 2.1610V U =⨯ (2)0.04m x ∆= (3)0.1425m x ≥【解析】 【分析】 【详解】(1)对于t =0时刻射入极板间的粒子:0l v T = 7110T s -=⨯211()22T y a =2y T v a= 22yT y v = 122dy y =+ Eq ma =U E d=解得:40 2.1610V U =⨯(2)2Tt nT =+时刻射出的粒子打在x 轴上水平位移最大:032A T x v = 所放荧光屏的最小长度A x x l ∆=-即:0.04x m ∆= (3)不同时刻射出极板的粒子沿垂直于极板方向的速度均为v y . 速度偏转角的正切值均为:0tan y v v β=37β=ocos37v v=o 6110m/s v =⨯即:所有的粒子射出极板时速度的大小和方向均相同.2v qvB m R=0.03m R r ==由分析得,如图所示,所有粒子在磁场中运动后发生磁聚焦由磁场中的一点B 离开磁场.由几何关系,恰好经N 板右边缘的粒子经x 轴后沿磁场圆半径方向射入磁场,一定沿磁场圆半径方向射出磁场;从x 轴射出点的横坐标:tan 53C A R x x ︒=+0.1425m C x =.由几何关系,过A 点的粒子经x 轴后进入磁场由B 点沿x 轴正向运动. 综上所述,粒子经过磁场后第二次打在x 轴上的范围为:0.1425m x ≥3.在水平桌面上有一个边长为L 的正方形框架,内嵌一个表面光滑的绝缘圆盘,圆盘所在区域存在垂直圆盘向上的匀强磁场.一带电小球从圆盘上的P 点(P 为正方形框架对角线AC 与圆盘的交点)以初速度v 0水平射入磁场区,小球刚好以平行于BC 边的速度从圆盘上的Q 点离开该磁场区(图中Q 点未画出),如图甲所示.现撤去磁场,小球仍从P 点以相同的初速度v 0水平入射,为使其仍从Q 点离开,可将整个装置以CD 边为轴向上抬起一定高度,如图乙所示,忽略小球运动过程中的空气阻力,已知重力加速度为g .求:(1)小球两次在圆盘上运动的时间之比; (2)框架以CD 为轴抬起后,AB 边距桌面的高度.【答案】(1)小球两次在圆盘上运动的时间之比为:π:2;(2)框架以CD 为轴抬起后,AB 边距桌面的高度为222v g.【解析】【分析】【详解】(1)小球在磁场中做匀速圆周运动,由几何知识得:r2+r2=L2,解得:r=2 2L,小球在磁场中做圆周运的周期:T=2rvπ,小球在磁场中的运动时间:t1=14T=24Lvπ,小球在斜面上做类平抛运动,水平方向:x=r=v0t2,运动时间:t2=22Lv,则:t1:t2=π:2;(2)小球在斜面上做类平抛运动,沿斜面方向做初速度为零的匀加速直线运动,位移:r=2212at,解得,加速度:a=222vL,对小球,由牛顿第二定律得:a=mgsinmθ=g sinθ,AB边距离桌面的高度:h=L sinθ=222vg;4.如图,平面直角坐标系中,在,y >0及y<-32L 区域存在场强大小相同,方向相反均平行于y轴的匀强电场,在-32L <y <0区域存在方向垂直于xOy 平面纸面向外的匀强磁场,一质量为m ,电荷量为q 的带正电粒子,经过y 轴上的点P 1(0,L )时的速率为v 0,方向沿x 轴正方向,然后经过x 轴上的点P 2(32L ,0)进入磁场.在磁场中的运转半径R =52L (不计粒子重力),求:(1)粒子到达P 2点时的速度大小和方向; (2)EB; (3)粒子第一次从磁场下边界穿出位置的横坐标; (4)粒子从P 1点出发后做周期性运动的周期. 【答案】(1)53v 0,与x 成53°角;(2)043v ;(3)2L ;(4)()04053760L v π+.【解析】 【详解】(1)如图,粒子从P 1到P 2做类平抛运动,设到达P 2时的y 方向的速度为v y , 由运动学规律知32L =v 0t 1,L =2y v t 1可得t 1=032L v ,v y =43v 0 故粒子在P 2的速度为v 220y v v +=53v 0设v 与x 成β角,则tan β=y v v =43,即β=53°; (2)粒子从P 1到P 2,根据动能定理知qEL =12mv 2-12mv 02可得 E =2089mv qL粒子在磁场中做匀速圆周运动,根据qvB =m 2v R解得:B =mv qR =05352m v q L ⨯⨯=023mv qL解得:43v E B =; (3)粒子在磁场中做圆周运动的圆心为O ′,在图中,过P 2做v 的垂线交y =-32L 直线与Q ′点,可得: P 2O ′=3253L cos o=52L =r 故粒子在磁场中做圆周运动的圆心为O ′,因粒子在磁场中的轨迹所对圆心角α=37°,故粒子将垂直于y =-32L 直线从M 点穿出磁场,由几何关系知M 的坐标x =32L +(r -r cos37°)=2L ; (4)粒子运动一个周期的轨迹如上图,粒子从P 1到P 2做类平抛运动:t 1=032Lv在磁场中由P 2到M 动时间:t 2=372360r v π︒⨯o =037120Lv π 从M 运动到N ,a =qE m =289v L则t 3=v a =0158L v 则一个周期的时间T =2(t 1+t 2+t 3)=()04053760Lv π+.5.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1;(3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和 【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d r r α-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒6.(18分)如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L 的平行金属极板MN 和PQ ,两极板中心各有一小孔1S 、2S ,两极板间电压的变化规律如图乙所示,正反向电压的大小均为0U ,周期为0T 。

磁现象磁场练习题

磁现象磁场练习题

磁现象磁场练习题一、选择题1. 磁铁的哪一端是N极?A. 南端B. 北端C. 顶端D. 底端2. 地球的磁场是由什么产生的?A. 地球自转B. 地球内部的液态铁C. 太阳风D. 地壳中的岩石3. 以下哪个现象不是由磁场引起的?A. 指南针指向B. 磁浮列车C. 静电现象D. 磁共振成像4. 磁感线的方向是如何确定的?A. 从南极指向北极B. 从北极指向南极C. 从外向内D. 从内向外5. 磁铁的磁性强弱与什么有关?A. 磁铁的形状B. 磁铁的温度C. 磁铁的材质D. 磁铁的大小二、填空题6. 磁铁的两个磁极分别是________和________。

7. 磁感线是虚拟的线,用来表示磁场的________和________。

8. 地球的磁场对人类生活有重要影响,例如________可以帮助人们辨别方向。

9. 磁铁的磁性可以通过________来减弱或消除。

10. 磁共振成像(MRI)是一种利用磁场和________对人体进行成像的技术。

三、简答题11. 请简述磁铁的磁性是如何产生的。

12. 描述一下磁感线的特点及其在磁场中的作用。

13. 解释为什么指南针总是指向南北方向。

14. 磁铁在日常生活中有哪些应用?15. 磁共振成像(MRI)与X射线成像相比有哪些优点?四、计算题16. 假设有一个长为L的通电直导线,其电流为I,距离导线r处的磁场强度B可以用公式B=μ₀I/(2πr)计算,其中μ₀是真空磁导率,其值为4π×10⁻⁷ T·m/A。

如果导线长L=2m,电流I=10A,距离导线r=0.1m,请计算该点的磁场强度B。

五、实验题17. 设计一个实验来验证磁感线的方向性。

请描述实验步骤和预期结果。

18. 利用磁铁和铁粉,展示磁铁周围的磁场分布。

请简述实验方法和观察到的现象。

六、论述题19. 论述地球磁场对人类和动物行为的影响。

20. 讨论磁共振成像技术在医学领域的应用及其重要性。

七、案例分析题21. 某地发现了一个巨大的磁铁矿,该矿的磁场强度对周围环境产生了影响。

初中物理磁场练习题及答案

初中物理磁场练习题及答案

初中物理磁场练习题及答案【典型例题】类型一、磁概念1.(2015•杭州中考)甲铁棒能吸引小磁针,乙铁棒能排斥小磁针,若甲、乙铁棒相互靠近,则两铁棒()A.一定互相吸引B.一定互相排斥C.可能无磁力的作用D.可能互相吸引,也可能排斥【思路点拨】(1)磁铁具有吸引铁、钴、镍等磁性材料的性质。

(2)同名磁极相互排斥,异名磁极相互吸引。

【答案】D【解析】用甲去靠近小磁针,甲能吸引小磁针,说明甲可能没有磁性,也可能具有的磁性和小磁针靠近的磁极的磁性相反;乙能排斥小磁针,说明乙一定有磁性,且和小磁针靠近的磁极的磁性相同.由于小磁针有两个不同的磁极,所以甲、乙铁棒相互靠近,可能相互吸引,也可能相互排斥.故选D。

【总结升华】(1)掌握磁体的吸引铁、钴、镍等磁性材料的性质。

(2)掌握磁极间的相互作用。

2.如图所示,将挂着铁块的弹簧测力计在水平放置的条形磁铁上自左端向右逐渐移动时,测力计的示数将。

【思路点拨】需要注意A是铁块,其没有磁性,它与下面磁铁的力的关系只需考虑条形磁体的磁性,条形磁体的磁性两端最强,中间最弱。

【答案】先减小后变大。

【解析】磁体的不同位置磁性的强弱不同,其中,两端最强称为磁极,中间最弱,几乎没有磁性。

所以当铁块从条形磁铁的左端移动到右端过程中,在到达磁体中间的过程中,磁体对铁块的吸引力变小;从中间到最右端的过程中,磁体对铁块的吸引力变大。

【总结升华】认识磁体上不同部位磁性的强弱不同是解决此题的关键。

举一反三【变式】(2015•淮北模拟)如图所示,甲乙两根外形完全相同的钢棒,用甲的一端接触乙的中间,下列说法中正确的是()A.若甲、乙相互吸引,则甲、乙均有磁性B.若甲、乙相互间没有吸引,则甲一定没有磁性,乙可能有磁性C.若甲、乙相互间没有吸引,则甲、乙均没有磁性D.若甲、乙相互吸引,则甲有磁性乙一定没有磁性【答案】B类型二、磁场、磁感线3.关于磁体和磁场,以下说法中错误的是()A.悬挂起来的小磁针静止时,小磁针的北极指向地理的北极附近B.铁、铜、铝等金属材料都能够被磁化C.磁体之间的相互作用力是通过磁场而发生的D.通电导体周围一定存在磁场【答案】B【解析】磁体的指向性是由于地磁场的作用,小磁针静止时,南极指南,北极指北,故A正确;能够被磁化的物质一定磁性材料,而铜、铝均不能被磁化,故B错误;C、D的说法均是正确的。

物理磁场练习题(含答案)

物理磁场练习题(含答案)

物理高二磁场练习题一、单选题1.关于电场强度和磁感应强度,下列说法正确的是A.电场强度的定义式适用于任何电场B.由真空中点电荷的电场强度公式可知,当r→0时,E→无穷大C.由公式可知,一小段通电导线在某处若不受磁场力,则说明此处一定无磁场D.磁感应强度的方向就是置于该处的通电导线所受的安培力方向2.如图所示,条形磁铁放在水平粗糙桌面上,它的正中间上方固定一根长直导线,导线中通过方向垂直纸面向里(即与条形磁铁垂直)的电流,和原来没有电流通过时相比较,磁铁受到的支持力N和摩擦力f将A、N减小,f=0B、N减小,f≠0C、N增大,f=0D、N增大,f≠03、有电子、质子、氘核、氚核,以同样速度垂直射入同一匀强磁场中,它们都作匀速圆周运动,则轨道半径最大的粒子是A.氘核 B.氚核 C.电子 D.质子4.一带正电荷的小球沿光滑、水平、绝缘的桌面向右运动,如图所示,速度方向垂直于一匀强磁场,飞离桌面后,最终落在地面上. 设飞行时间为t1、水平射程为s1、着地速率为v1;现撤去磁场其它条件不变,小球飞行时间为t2、水平射程为s2、着地速率为v2.则有:A、 v1=v2B、 v1>v2C、 s1=s2D、t1<t25.有一个带正电荷的离子,沿垂直于电场方向射入带电平行板的匀强电场.离子飞出电场后的动能为Ek,当在平行金属板间再加入一个垂直纸面向内的如图所示的匀强磁场后,离子飞出电场后的动能为Ek/,磁场力做功为W,则下面各判断正确的是A、EK <EK',W=0B、EK >EK',W=0C、EK =EK',W=0D、EK>EK',W>06.图是质谱仪的工作原理示意图。

带电粒子被加速电场加速后,进入速度选择器。

速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E。

平板S 上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2。

平板S下方有强度为B0的匀强磁场。

磁场综合练习题-3

磁场(c ích ǎng)综合练习题-3(带*号题为超纲题)一. 选择题:1. 如图所示,直角三角形金属(j īnsh ǔ)框架abc 放在均匀(j ūnyún)磁场中,磁场平行(p íngx íng)于ab 边,bc 的长度(ch ángd ù)为l .当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势 和a 、c 两点间的电势差U a – U c 为(A) =0,U a – U c =. (B) =0,U a – U c =. (C) =,U a – U c =221l B ω. (D) =2l B ω,U a – U c =221l B ω-. [ ] 2. 面积为S 和2 S 的两圆线圈1、2如图放置,通有相同的电流I .线圈1的电流所产生的通过线圈2的磁通用Φ21表示,线圈2的电流所产生的通过线圈1的磁通用Φ12表示,则Φ21和Φ12的大小关系为:(A) Φ21 =2Φ12. (B) Φ21 >Φ12.(C) Φ21 =Φ12. (D) Φ21 =Φ12. [ ]二. 填空题:3. 如图所示,aOc 为一折成∠形的金属导线(aO =Oc =L ),位于xy 平面中;磁感强度为B 的匀强磁场垂直于xy 平面.当aOc 以速度沿x 轴正向运动时,导线上a 、c 两点间电势差U ac =____________;当aOc 以速度v 沿y 轴正向运动时,a 、c 两点的电势相比较, 是____________点电势高.*4. 如图所示,等边三角形的金属框,边长为l ,放在均匀磁场中,ab 边平行于磁感强度B ,当金属框绕ab 边以角速度ω 转动时,bc 边上沿bc 的电动势为 _________________,ca 边上沿ca 的电动势为_________________,金属框内的总电动势为_______________.(规定电动势沿abca 绕向为正值)5. 金属杆AB 以匀速v =2 m/s 平行(p íngx íng)于长直载流导线运动,导线与AB 共面且相互垂直(chu ízh í),如图所示.已知导线载有电流I = 40 A ,则此金属杆中的感应(g ǎny ìng)电动势i =____________,电势(di ànsh ì)较高端为______.(ln2= 0.69)6. 半径(b ànj ìng)为L 的均匀导体圆盘绕通过中心O 的垂直轴转动,角速度为ω,盘面与均匀磁场B 垂直,如图.(1) 图上Oa 线段中动生电动势的方向为_________________.(2) 填写下列电势差的值(设ca 段长度为d ):U a -U O =__________________.U a -U b =__________________.U a -U c =__________________.7. 如图所示,一直角三角形abc 回路放在一磁感强度为B的均匀磁场中,磁场的方向与直角边ab 平行 ,回路绕ab边以匀角速度ω旋转 ,则ac 边中的动生电动势为__________________________,整个回路产生的动生电动势为____________________________.8. 反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为, ①, ②, ③ . ④ 试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的.将你确定的方程式用代号填在相应结论后的空白处.(1) 变化的磁场一定伴随有电场;__________________(2) 磁感线是无头无尾的;________________________(3) 电荷总伴随有电场.__________________________三. 计算题:9. 如图所示,一根(y ī ɡēn)长为L 的金属(j īnsh ǔ)细杆ab 绕竖直(sh ù zh í)轴O 1O 2以角速度ω在水平面内旋转.O 1O 2在离细杆a 端L /5处.若已知地磁场在竖直(sh ù zh í)方向的分量为B .求ab 两端(li ǎn ɡ du ān)间的电势差.*10. 在水平光滑的桌面上,有一根长为L ,质量为m 的匀质金属棒.该棒绕过棒的一端O 且垂直于桌面的轴旋转.其另一端A 在半径为L 的金属圆环上滑动,且接触良好.在棒的O 端和金属环之间接一电阻R (如图).在垂直桌面的方向加一均匀磁场.已知棒在起始时刻的角速度为ω0,在t 时刻的角速度为ω.求磁感强度B 的大小.(机械摩擦可以忽略,金属棒、金属环以及接线的电阻全部归入R ,不另计算,棒对过O 端的轴的转动惯量为.) *11. 如图所示,一长直导线中通有电流I ,有一垂直于导线、长度为l 的金属棒AB 在包含导线的平面内,以恒定的速度v 沿与棒成θ角的方向移动.开始时,棒的A 端到导线的距离为a ,求任意时刻金属棒中的动生电动势,并指出棒哪端的电势高.*12. 一无限长竖直导线上通有稳定电流I ,电流方向向上.导线旁有一与导线共面、长度为L 的金属棒,绕其一端O 在该平面内顺时针匀速转动,如图所示.转动角速度为ω,O 点到导线的垂直距离为r 0(r 0 >L ).试求金属棒转到与水平面成θ角时,棒内感应电动势的大小和方向.答案:一.选择题:1. B2. C二.填空题:3. v BL sinθ 2分a 2分4. 2分-8/Bω 2分32l0 1分5. 1.11×10-5 V 3分A端 2分6. Oa段电动势方向(fāngxiàng)由a指向(zhǐ xiànɡ)O. 1分1分0 1分1分7. 3分0 2分8. ② 1分③ 1分① 1分三.计算题:9. 解:间的动生电动势:4分b点电势(diànshì)高于O点.间的动生电动势:4分a点电势(diànshì)高于O点.∴ 2分 *10. 解:金属棒绕轴O 逆时针旋转(xu ánzhu ǎn)时,棒中的感应电动势及电流分别为3分 方向沿棒指向中心,1分 此时由于金属棒中电流的存在,棒受到磁力的作用,其大小 ① 2分f 的力矩(l ì j ǔ)方向阻碍金属棒的旋转,由刚体定轴转动定律得② 3分 ①代入②,积分(j īf ēn)得故1分 *11. 解:1分 i (指向(zh ǐ xi àn ɡ)以A 到B 为正)3分 式中: 2分A 端的(du ānd ì)电势高. 2分*12. 解:棒上线元d l 中的动生电动势为: 3分金属棒中总的感生(ɡǎn sh ēn ɡ)电动势为1分4分方向由O指向另一端. 2分内容总结。

高中物理【磁场 磁感线】专题练习题

高中物理【磁场磁感线】专题练习题[A组基础达标练]1.如图所示,小磁针正上方的直导线与小磁针平行,当导线中有电流时,小磁针会发生偏转。

首先观察到这个实验现象的物理学家和观察到的现象是()A.物理学家伽利略,小磁针的N极转向纸内B.天文学家开普勒,小磁针的S极转向纸内C.物理学家牛顿,小磁针静止不动D.物理学家奥斯特,小磁针的N极转向纸内解析:首先发现电流的磁效应的科学家是奥斯特,根据右手螺旋定则和小磁针N极受力方向为该点磁场方向可知D正确。

答案:D2.指南针是我国古代的四大发明之一。

司南是春秋战国时期发明的一种指南针,如图所示。

它由青铜盘和磁勺组成,磁勺放置在青铜盘的中心,可以自由转动。

由于受地磁场作用,司南的磁勺尾静止时指向南方。

下列说法正确的是()A.磁勺能够指示方向,是利用了地磁场对磁勺的作用B.磁勺的指向不会受到附近磁体的干扰C.磁勺的指向不会受到附近铁块的干扰D.磁勺的N极位于司南的磁勺尾部解析:司南能够指示南北,是由于地球具有磁性,地磁场是南北指向,故A正确;司南的指向会受到附近磁体和铁块的干扰,故B、C错误;由于司南的磁勺尾静止时指向南方,所以磁勺的S极位于司南的磁勺尾部,故D错误。

答案:A3.关于磁场、磁感线和电场线,下列说法正确的是()A.磁感线是闭合曲线,而电场线不是闭合曲线B.磁感线和电场线都是一些相互平行的曲线C.地磁场起始于地球的北极附近,终止于地球的南极附近D.磁感线和电场线都是真实存在的线解析:磁体周围的磁感线从N极出发回到S极,在内部则是从S极回到N极,磁感线是闭合曲线;电场线从正电荷或无限远出发,终止于无限远或负电荷,电场线不是闭合曲线,A正确;磁感线和电场线不一定都是一些互相平行的曲线,B错误;磁体周围的磁感线从N 极出发回到S极,在内部则是从S极回到N极,故在地球外部,地磁场从地球的地理南极附近出来,进入地球的地理北极附近,不是终止,C错误;磁感线和电场线是为了形象描述磁场和电场而引入的假想的线,实际并不存在,D错误。

磁场强度练习题及答案解析

磁场强度练习题及答案解析
1. 问题:一个细长的导线沿着x轴方向,通有电流I。

一个观察者位于距离导线0.5m的点P处。

求在点P处的磁场强度。

答案解析:根据毕奥-萨伐尔定律,点P处的磁场强度的大小与导线距离的平方反比,与电流的大小成正比。

所以,在点P处的磁场强度可以由下式计算得出:
其中,B是磁场强度,I是电流,r是距离导线的距离。

2. 问题:一个长直导线通有电流I1,距离该线距离d的位置放置一个带电粒子q,受到了一个磁场力F。

当距离d减小一半后,磁场力变为F2。

求F2与F的比值。

答案解析:长直导线对带电粒子产生的磁场力与距离的平方成反比,与电流强度成正比。

所以,F与d的关系可以表示为:当d减小一半后,磁场力变为F2,此时磁场力与新距离的关系可以表示为:
我们可以求出F2与F的比值:
简化上式得:
3. 问题:长直导线通有电流I,求离导线距离为r的点处的磁场强度。

答案解析:使用安培环路定理,对以点P为圆心的任意圆形回路,有:
假设我们以距离r为半径的圆形回路,因此,回路的长度为
2πr,代入上述公式得:
整理上述公式得:
以上为磁场强度练习题及答案解析,希望能帮助到您。

磁场练习题

磁场练习题第一节:磁现象和磁场1.奥斯特实验说明了( )A.磁场的存在 B.磁场具有方向性C.通电导线周围存在磁场 D.磁体间有相互作用2.(多选)下列说法正确的是( )A.磁体磁性最强的部分叫磁极,任何磁体都有两个磁极B.磁体与磁体之间的相互作用是通过磁场发生的C.在地球表面各点磁场强弱相同D.地球地理两极与地磁两极并不重合3.把一个条形磁铁悬挂起来,则条形磁铁的N极应指向( )A.地理正北极 B.地理正南极 C.地磁北极 D.地磁南极4.下列说法正确的是( )A.指南针指出的“北”不是真正的北,两者有一定的差别B.地球两极与地磁两极不重合,地磁南极在地球南极附近,地磁北极在地球北极附近C.在任何星球上都能利用指南针进行方向判断D.我国是最早在航海上使用指南针的国家5.(多选)下列说法正确的是( )A.磁体磁性最强的部分叫磁极,任何磁体都有两个磁极B.磁体与磁体之间的相互作用是通过磁场发生的C.在地球表面各点磁场强弱相同D.地球地理两极与地磁两极并不重合6.在做奥斯特实验时,下列操作中现象最明显的是( )A.沿电流方向放置小磁针,使小磁针在导线的延长线上B.沿电流方向放置小磁针,使小磁针在导线的正下方C.导线沿南北方向放置在小磁针的正上方D.导线沿东西方向放置在小磁针的正上方第二节:磁感应强度1.下列关于磁场力、磁感应强度的说法中正确的是( )A.通电导线不受磁场力的地方一定没有磁场B.将I、L相同的通电导线放在同一匀强磁场中的不同位置,所受磁场力一定相同C.通电导线所受磁场力的方向就是磁感应强度的方向D.以上说法都不正确2.关于磁感应强度B、电流强度I、导线长度L和导线所受磁场力F的关系,下列正确的是( )A.在B=0的地方,F一定等于零B.在F=0的地方,B一定等于零C.若B=1T,I=1A,L=1m,则F一定等于1ND.若L=1m,I=1A,F=1N,则B一定等于1T3.以下说法中正确的是( )A.通电导线在某处所受磁场力为零,那么该处的磁感应强度必定为零B.若长为L、电流为I的导线在某处受到的磁场力为F,则该处的磁感应强度必为FILC.如果将一段短导线(有电流)放入某处,测得该处的磁感应强度为B,若撤去该导线,该处的磁感应强度为零4.(多选)某地的地磁场强度大约是4.0×10-5T,一根长为500 m的导线,通入大小为10 A的电流,该导线可能受到的磁场力为( )A.0B.0.1 NC.0.3 ND.0.4 N5.先后在磁场中A、B两点引入长度相等的短直导线,导线与磁场方向垂直,如图所示,图中a、b两线分别表示在磁场中A、B两点导线所受的力F与通过导线的电流I的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、如图所示,一条形磁铁从静止开始,穿过采用双线绕成的闭合线圈,条形磁铁在
穿过线圈过程中做( )
A.减速运动 B.匀速运动
C.自由落体运动 D.非匀变速运动
2、如图所示,匀强磁场中放置有固定的abc金属框架,导体棒ef在框架上匀速向右
平移,框架和棒所用材料、横截面积均相同,摩擦阻力忽略不计。则在ef棒脱离框架前,
保持一定数值的物理量是 ( )
A.ef棒所受的拉力 B.电路中的磁通量
C.电路中的感应电流 D.电路中的感应电动势

3、图中的四个图分别表示匀强磁场的磁感应强度B、闭合电路中一部分直导线的运动速度v

和电路中产生的感应电流I的相互关系,其中正确是( )

4、图,闭合线圈上方有一竖直放置的条形磁铁,磁铁的N极朝下。当磁铁向下运动时(但
未插入线圈内部)( )
A.线圈中感应电流的方向与图中箭头方向相同,磁铁与线圈相互吸引
B.线圈中感应电流的方向与图中箭头方向相同,磁铁与线圈相互排斥
C.线圈中感应电流的方向与图中箭头方向相反,磁铁与线圈相互吸引
D.线圈中感应电流的方向与图中箭头方向相反,磁铁与线圈相互排斥
5、如图所示,矩形导线框从通电直导线EF左侧运动到右侧的过程中,关于导
线框中产生的感应电流的正确说法是( )
A.感应电流方向是先沿abcd方向流动,再沿adcb方向流动
B. 感应电流始终是沿abcd方向流动
C.感应电流始终是沿adcb方向流动
D.感应电流方向是先沿adcb方向流动,然后沿abcd方向流动,再沿adcb方向流动
6、如图所示,一闭合金属圆环用绝缘细线悬挂于O点,将圆环拉离平衡位置并释
放,使圆环在竖起平面内摆动,摆动过程中经过有界的水平匀强磁场区域,A、
B为该磁场的竖直边界,不计空气阻力,则( )
A.圆环向右穿过磁场后,还能摆至原来的高度。
B.在进入和离开磁场时,圆环中均有感应电流
C.圆环进入磁场后离平衡位置越近速度越大,感应电流也越大
D.圆环最终将静止在平衡位置。

7、如图所示,两根和水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R,
下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B,一质量为m

N
S
B
R
α
的金属杆从轨道上由静止滑下,经过足够长的时间后,金属杆的速度会达到最大值vm,
则 ( )
A.如果B增大,vm将变大 B.如果α增大,vm将变大
C.如果R增大,vm将变大 D.如果m减小,vm将变大
8、矩形导线框abcd放在匀强磁场中,在外力控制下静止不动,磁感线方向与线圈平面垂直,
磁感应强度B随时间变化的图象如图甲所示。t=0时刻,磁感应强度的方向垂直纸面向
里;在0~4s时间内,线框ab边受匀强磁场的作用力随时间变化的图象(力的方向规定
以向左为正方向)是图中的 ( )

9、如图所示,ab为一金属杆,它处在垂直于纸面向里的匀强磁场中,可
绕a点在纸面内转动;S为以a为圆心位于纸面内的金属圆环;在杆转动
过程中,杆的b端与金属环保持良好接触;A为电流表,其一端与金属环
相连,一端与a点良好接触。当杆沿顺时针方向转动时,某时刻ab杆的
位置如图,则此时刻
A.有电流通过电流表,方向由c→d;作用于ab的安培力向右
B.有电流通过电流表,方向由c→d;作用于ab的安培力向左
C.有电流通过电流表,方向由d→c;作用于ab的安培力向右
D.无电流通过电流表,作用于ab的安培力为零
10、如图所示,一电子以初速度v沿与金属板平行的方向飞入MN极板间,发现电子向M
板偏转,则可能是 ( )
A.电键S闭合瞬间
B.电键S由闭合到断开瞬间
C.电键S是闭合的,变阻器滑片P向左迅速滑动
D.电键S是闭合的,变阻器滑片P向右迅速滑动
二填空题
11、图所示,水平面上有两根相距0.5m的足够长的平行金属导轨MN

和PQ,它们的电阻可忽略不计,在M和P之间接有阻值为R的定值电
阻.导体棒ab长l=0.5m,其电阻为r,与导轨接触良好.整个装置处于方
向竖直向上的匀强磁场中,磁感应强度B=0.4T.现使ab以v=10m/s的
速度向右做匀速运动. 则ab中的感应电动势为 ,ab中电流的方
向 ,若定值电阻R=3.0Ω,导体棒的电阻r=1.0Ω,则电路中的电流
为 ,ab两端的电压是 。

12、用如图所示的实验装置研究电磁感应现象.当有电流从电流表的正极流入时,
指针向右偏转.下列说法哪些是正确的: ( )
A.当把磁铁N极向下插入线圈时,电流表指针向左偏转

d
a
b
c

B
t/s
0
2
4

图甲

F t/s 0 2 4 A F t/s 0 2 4 B F
t/s
0
2
4

C

F
t/s
0
2 4

D

N
S

M
N

P
Q

a

b
v
R
B
B.当把磁铁N极从线圈中拔出时,电流表指针向左偏转
C.保持磁铁在线圈中静止,电流表指针不发生偏转
D.磁铁插入线圈后,将磁铁和线圈一起以同一速度向上运动,电流表指针向左偏
13、如图所示,边长为L的闭合正方形金属线框的电阻为R,经以速度v匀速
穿过宽度为d的有界匀强磁场,磁场方向与线框平面垂直,磁感应强度为
B,若L<d,线框穿过磁场的过程中产生的焦耳热为______________;若
L>d,线框穿过磁场的过程中产生的焦耳热为________________。
三、计算题

14、如图所示,宽度为L=0.20 m的足够长的平行光滑金属导轨固定在绝缘水平面上,导轨
的一端连接阻值为R=1.0Ω的电阻。导轨所在空间存在竖直向下的匀强磁场,磁感应强度大
小为B=0.50 T。一根质量为m=10g的导体棒MN放在导轨上与导轨接触良好,导轨和导体
棒的电阻均可忽略不计。现用一平行于导轨的拉力拉动导体棒沿导轨向右匀速运动,运动速
度v=10 m/s,在运动过程中保持导体棒与导轨垂直。求:
(1)在闭合回路中产生的感应电流的大小;
(2)作用在导体棒上的拉力的大小;

14、如图所示,竖直放置的足够长的光滑平行金属导轨,间距为l=0.50m,导轨上端接有
电阻R=0.80Ω,导轨电阻忽略不计。空间有一水平方向的有上边界的匀强磁场,磁感应强
度大小为B=0.40T,方向垂直于金属导轨平面向外。质量为m=0.02kg、电阻r=0.20Ω
的金属杆MN,从静止开始沿着金属导轨下滑,下落一定高度后以v=2.5m/s的速度进入
匀强磁场中,在磁场下落过程中金属杆始终与导轨垂直且接触良好。已知重力加速度为
g=10m/s2,不计空气阻力,求在磁场中,金属杆刚进入磁场区域时加速度?

L
d

R
N
M

v
B
R

M

N
16、如图所示,位于竖直平面内的矩形平面导线框abcd,ab长L1=1.0m,bd长L2=0.5m,线
框的质量m=0.2kg,电阻R=2Ω。其下方有一匀强磁场区域,该区域的上、下边界PP/和QQ
/

均与ab平行,两边界间距离为H,H>L2,磁场的磁感应强度B=1T,方向与线框平面垂直。
现令线框的dc边从离磁场区域的上边界PP/的距离为h=0.7m处从静止开始自由下落,已知
在线框的dc边进入磁场以后,ab边到达边界PP/之前的某一时刻线框的速度已达到这一阶
段的最大值,求从线框开始下落到dc边刚刚到达磁场区域下边界QQ/的过程中,线框中产
生的焦耳热。(不计空气阻力,g=10m/s2)

17、(13分)如图所示,一小型发电机内有n=100匝的矩形线圈,线圈面积S=0.10 m2,线
圈电阻可忽略不计.在外力作用下矩形线圈在B=0.10 T的匀强磁场中,以恒定的角速度ω
=100π rad/s绕垂直于磁场方向的固定轴OO′匀速转动,发电机线圈两端与R=100 Ω的电
阻构成闭合回路.求:
(1)线圈转动时产生感应电动势的最大值;
(2)从线圈平面通过中性面时开始,线圈转过90°角的过程中通过电阻R横截画的电荷量;

H h L2 L1 a b c d P P′ Q′ Q B

相关文档
最新文档