高中数学必修3算法初步基础训练答案

合集下载

(典型题)高中数学必修三第二章《算法初步》测试题(答案解析)(1)

(典型题)高中数学必修三第二章《算法初步》测试题(答案解析)(1)

一、选择题1.若执行如图所示的程序框图,输出S的值为()A.2log23 B.log27 C.3 D.2 n=时,执行如图所示的程序框图,则输出的S值为()2.当4A.9 B.15 C.31 D.63 3.阅读算法框图,如果输出的函数值在区间[]1,8上,则输入的实数x的取值范围是()A .[)0,2B .[]2,7C .[]2,4D .[]0,74.执行如图所示的程序框图,若输出S 的值为511,则判断框内可填入的条件是( )A .4i ≤B .5i ≤C .5i <D .6i ≤5.执行如图所示的程序框图,若输入的a ,b 的值分别为1,1,则输出的S 是( )A .25B .18C .11D .36.执行如图所示的程序框图,则输出S 的值为( )A .-1010B .-1009C .1009D .10107.正整数N 除以正整数m 后的余数为n ,记为()N n MODm ≡,例如()2516MOD ≡.如图所示程序框图的算法源于“中国剩余定理”,若执行该程序框图,当输入49N =时,则输出结果是( )A.58 B.61 C.66 D.768.执行如图所示的程序框图,输出s的值为( )A.1 B20181C20191D202019.朱世杰是我国元代伟大的数学家,其传世名著《四元玉鉴》中用诗歌的形式记载了下面这样一个问题:我有一壶酒,携着游春走.遇务①添一倍,逢店饮斛九②.店务经四处,没了这壶酒.借问此壶中,当原多少酒?①“务”:旧指收税的关卡所在地;②“斛九”:1.9斛.下图是解决该问题的算法程序框图,若输入的x值为0,则输出的x值为()A.5740B.13380C.5732D.58932010.读下面的程序:上面的程序在执行时如果输入6,那么输出的结果为()A.6 B.720 C.120 D.5040 11.执行如下的程序框图,则输出的S是()A .36B .45C .36-D .45-12.如图给出的是计算1111246102+++⋅⋅⋅+的值的一个程序框图,其中判断框中应填入的是( )A .102i >B .102i ≤C .100i >D .100i ≤二、填空题13.某程序框图如图所示,则该程序运行后输出的S 的值为________.14.执行如图所示的程序框图,输出的值为__________.15.如图是一个算法流程图,则输出的S的值为______.16.执行下面的程序框图,如果输入的0.02t =,则输出的n =_______________.17.执行如图的程序框图,则输出的S =__________.18.已知一个算法的程序框图如图所示,当输入的1x =-与1x =时,则输出的两个y 值的和为__________.19.运行如图所示的程序,输出结果为___________.20.程序如下:以上程序输出的结果是_________________三、解答题21.设计算法流程图,要求输入自变量x 的值,输出函数()5,020,0,3,02x x f x x x x ππ⎧->⎪⎪==⎨⎪⎪+<⎩的值,并用复合if 语句描述算法.22.某林业部门为了保证植树造林的树苗质量,对甲、乙两家供应的树苗进行根部直径检测,现从两家供应的树苗中各随机抽取10株树苗检测,测得根部直径如下(单位:mm ): 甲27112110190922131523乙 15 20 27 17 21 14 16 18 24 18(1)画出甲、乙两家抽取的10株树苗根部直径的茎叶图,并根据茎叶图对甲、乙两家树苗进行比较,写出两个统计结论;(2)设抽测的10株乙家树苗根部直径的平均值为x ,将这10株树苗直径依次输入程序框图中,求输出的S 的值,并说明其统计学的意义.23.用程序框图描述算法:已知梯形的两底边长分别为a ,b ,高为h ,求梯形面积.24.图是求239111112222S =+++++的一个程序框图. (1)在程序框图的①处填上适当的语句; (2)写出相应的程序.25.如图,已知单位圆x 2+y 2=1与x 轴正半轴交于点P ,当圆上一动点Q 从P 出发沿逆时针方向旋转一周回到P 点后停止运动设OQ 扫过的扇形对应的圆心角为xrad,当0<x<2π时,设圆心O 到直线PQ 的距离为y,y 与x 的函数关系式y=f(x)是如图所示的程序框图中的①②两个关系式(Ⅰ)写出程序框图中①②处的函数关系式; (Ⅱ)若输出的y 值为2,求点Q 的坐标.26.某商场第一年销售计算机5 000台,如果平均每年销售量比上一年增加10%,那么从第一年起,大约几年可使总销量达到40 000台?画出解决此问题的程序框图,并写出程序.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【解析】由题意,可得程序的功能是求S =log 23×log 34×log 45×log 56×log 67×log 78的值,原式=×××××==3.故选C.2.C解析:C 【解析】由程序框图可知,1,3,2,7,3,15k s k s k s ======,4,31,54k s k ===>,退出循环,输出s 的值为31,故选C.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.3.D【详解】 解答: 根据题意,得 当x ∈(−2,2)时,f (x )=2x , 1⩽2x ⩽8,∴0⩽x ⩽3;故02x ≤< 当x ∉(−2,2)时,f (x )=x +1, ∴1⩽x +1⩽8, ∴0⩽x ⩽7,∴x 的取值范围是[2,7]. 故选:D点睛:本题考查的实质问题是分段函数,当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.4.B解析:B 【分析】模拟运行程序1i =,满足条件,1013S =+⨯,2i =,满足条件,进入循环体,反复操作,直到输出511S =,核对满足的条件即可. 【详解】1i =,满足条件,1013S =+⨯; 2i =,满足条件,111335S =+⨯⨯; 3i =,满足条件,111133557S =++⨯⨯⨯; 4i =,满足条件,111113355779S =+++⨯⨯⨯⨯; 5i =,满足条件,11111115(1)1335577991121111S =++++=-=⨯⨯⨯⨯⨯; 6i =,不满足条件,输出511S =. 故选:B. 【点睛】本题考查了对程序框图的理解与应用,由程序运行结果,补充条件,数列求和的裂项相消法,属于中档题.5.C【分析】该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量的变化情况,即可得到答案. 【详解】模拟执行程序框图,可得:1,1,1a b n ===, 第1次循环,可得3,1,3,2S a b n ====; 第2次循环,可得5,3,5,3S a b n ====; 第3次循环,可得11,5,11,4S a b n ====, 满足判断条件,输出11S =. 故选:C. 【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中模拟程序框图的运行过程,逐次计算,结合判断条件求解是解答的关键,意在考查运算与求解能力,属于基础题.6.D解析:D 【分析】根据程序框图,先计算出N 和T 的含义,再根据S N T =-即可求得输出值.或利用等差数列的求和公式求解. 【详解】依题意:得1352019N =+++⋯+,02462018T =++++⋯+. 解法一:(10)(32)(54)(20192018)1010S N T =-=-+-+-++-=,故选:D.解法二:(12019)1010101010102N +⨯==⨯,(02018)1010100910102T +⨯==⨯,所以10101010101010091010(10101009)1010S N T =-=⨯-⨯=⨯-=,故选:D. 【点睛】本题考查了程序框图的简单应用,数列求和公式的应用,属于中档题.7.B解析:B 【分析】该程序框图的作用是求被3和5除后的余数为1的数,根据所给的选项,得出结论. 【详解】模拟程序的运行,可得49N =,50N =, 不满足条件()13N MOD ≡,51N =; 不满足条件()13N MOD ≡,52N =;满足条件()13N MOD ≡,不满足条件()15N MOD ≡,53N =;不满足条件()13N MOD ≡,54N =;不满足条件()13N MOD ≡,55N =; 满足条件()13N MOD ≡,不满足条件()15N MOD ≡,56N =;不满足条件()13N MOD ≡,57N =;不满足条件()13N MOD ≡,58N =; 满足条件()13N MOD ≡,不满足条件()15N MOD ≡,59N =;不满足条件()13N MOD ≡,60N =;不满足条件()13N MOD ≡,61N =; 满足条件()13N MOD ≡,满足条件()15N MOD ≡,输出61N =. 故选:B. 【点睛】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.8.D解析:D 【分析】根据程序框图,模拟程序运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】第一次执行循环体后,2,01)n S ==+,第二次执行循环体后,3,0n S ==+,⋯第n 次执行循环体后, 1,0(1n n S n =+=++++,因为2019n <输出S ,所以01)S =+++++⋯+01)=+++++⋯+1=,故选:D 【点睛】本题主要考查了程序框图,解题时模拟程序运行过程即可,属于中档题.9.C解析:C 【分析】本题首先可以根据题意以及程序框图明确输入的数据为“0x =,0i =”和运算的算式为“119210xx、1i i =+”,然后进行运算并结合条件“4i ”得出结果。

(典型题)高中数学必修三第二章《算法初步》测试题(包含答案解析)

(典型题)高中数学必修三第二章《算法初步》测试题(包含答案解析)

一、选择题1.该程序中k的值是()A.9 B.10 C.11 D.12 2.执行如图所示的程序框图,则输出的S=()A.1-B.2-C.2D.1 23.执行如图所示的程序框图,输出S的值为()A .1-B .0C .1D .24.执行如图所示的程序框图,若输出的结果为126,则判断框内的条件可以为( )A .5n ≤B .6n ≤C .7n ≤D .8n ≤ 5.鸡兔同笼,是中国古代著名的趣味题之一.《孙子算经》中就有这样的记载:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?设计如右图的算法来解决这个问题,则判断框中应填入的是( )A .94m >B .94m =C .35m =D .35m ≤6.读下面的程序:上面的程序在执行时如果输入6,那么输出的结果为()A .6B .720C .120D .50407.执行如图的程序框图,若输出的4n =,则输入的整数p 的最小值是( )A.4B.5C.6D.15 8.执行如图所示的程序框图,若输人的n值为2019,则S=A.B.C.D.9.下列赋值语句正确的是 ()A.S=S+i2B.A=-AC.x=2x+1 D.P=10.执行如图的程序框图,则输出x的值是 ()A .2018B .2019C .12 D .211.执行如图所示的程序框图,若输出的结果为5,则输入的实数a 的范围是( )A .[)6,24B .[)24,120C .(),6-∞D .()5,24 12.执行如图的程序框图,如果输出a 的值大于100,那么判断框内的条件为()A .5k <?B .5k ≥?C .6k <?D .6k ≥?二、填空题13.根据下列算法语句,当输入x 为60时,输出y 的值为_______.14.如图所示的程序框图,输出的S的值为()A.12B.2 C.1-D.12-15.根据如图所示的伪代码可知,输出的结果为______.16.执行如下图所示的程序框图,则输出的结果n=__________.17.执行如图所示的程序框图,输出S的值为___________.18.执行下图所示的程序框图,若输入,则输出的值为_____________.19.如图所示的程序框图,输出的结果是_________.20.一个算法的程序框图如图所示,则该算法运行后输出的结果为________.三、解答题21.(1)作任意五个数12345,,,,x x x x x 中最大数及其序号的算法的流程图框图;(2)初始状态为35,24,23,47,43的五个数,当计算过程第1次,第3次,第5次到达判断框时,M ,k 的值分别为多少?22.用二分法求方程5310x x -+=在(0,1)上的近似解,精确到0.001,写出算法,并画出流程图.23.某快递公司规定甲、乙两地之间物品的托运费用根据下列方法计算:()()()0.5350=500.53+-500.8550f ωωωω⎧≤⎪⎨⨯⨯>⎪⎩.其中f (单位:元)为托运费,ω为托运物品的重量(单位:千克),试写出一个计算费用f 的算法,并画出相应的程序框图.24.编写一个程序,要求输入两个正数a 和b 的值,输出a b 和b a 的值,并画出程序框图. 25.求两底面半径分别为2和4,高为5的圆台的表面积及体积.写出解决该问题的一个算法,并画出程序框图.26.设计算法输出1 000以内既能被3整除又能被5整除的所有正整数,画出程序框图.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】本题只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可(注意避免计算错误).【详解】3,2,8,814x k y ===<,第一次循环,4,10,1014k y ==<;第二次循环,6,12,1214k y ==<;第三次循环,8,14,1414k y ===;第四次循环,10,16,1614k y ==>,退出循环,输出10k =,故选:B.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.2.D解析:D【分析】列举出前四次循环,可知,该算法循环是以3为周期的周期循环,利用周期性可得出输出的S 的值.【详解】第一次循环,02020k =≤成立,1112S ==--,011k =+=; 第二次循环,12020k =≤成立,()11112S ==--,112k =+=; 第三次循环,22020k =≤成立,12112S ==-,213k =+=;第四次循环,32020k =≤成立,1112S ==--,314k =+=; 由上可知,该算法循环是周期循环,且周期为3,依次类推,执行最后一次循环,20202020k =≤成立,且202036731=⨯+,此时12S =, 202012021k =+=,20212020k =≤不成立,跳出循环体,输出S 的值为12. 故选:D.【点睛】本题考查利用程序框图计算输出结果,推导出循环的周期性是解题的关键,考查计算能力,属于中等题.3.C解析:C【分析】由函数()πsin 2x f x =,可求周期为4,()(1)(2)(3)40+++=f f f f ,由题意可知()(1)(2)(2021)=2021(1)1=+++==S f f f f f【详解】 由函数()πsin 2x f x =的周期为2π4π2T ==, ()π1sin 12f ==,()2π2sin 02f ==, ()3π3sin 12f ==-,()4π4sin 02f ==,()(1)(2)(3)40+++=f f f f ()(1)(2)(2021)=2021(1)1∴=+++==S f f f f f .故选:C【点睛】本题考查了程序框图求和,正弦型三角函数的周期等基本知识,考查了运算求解能力和逻辑推理能力,属于一般题目.4.B解析:B【分析】根据框图,模拟程序运行即可求解.【详解】根据框图,执行程序,12,2S n ==;1222,3S n =+=;⋯12222,1i S n i =++⋯+=+,令12222126i S =++⋯+=,解得6i =,即7n =时结束程序,所以6n ≤,故选 :B【点睛】本题主要考查了程序框图,循环结构,条件分支结构,等比数列求和,属于中档题.genju 5.B解析:B【分析】由题意知i 为鸡的数量,j 为兔的数量,m 为足的数量,根据题意可得出判断条件.【详解】由题意可知i 为鸡的数量,j 为兔的数量,m 为足的数量,根据题意知,在程序框图中,当计算足的数量为94时,算法结束,因此,判断条件应填入“94m =”.故选B.【点睛】本题考查算法程序框图中判断条件的填写,考查分析问题和解决问题的能力,属于中等题. 6.B解析:B【解析】【分析】执行程序,逐次计算,根据判断条件终止循环,即可求解输出的结果,得到答案.【详解】由题意,执行程序,可得:第1次循环:满足判断条件,1,2S i ==;第2次循环:满足判断条件,2,3S i ==;第3次循环:满足判断条件,6,4S i ==;第4次循环:满足判断条件,24,5S i ==;第5次循环:满足判断条件,120,6S i ==;第6次循环:满足判断条件,720,7S i ==;不满足判断条件,终止循环,输出720S =,故选B.【点睛】本题主要考查了循环结构的程序框图的计算输出,其中解答中正确理解循环结构的程序框图的计算功能,逐次计算是解答的关键,着重考查了推理与运算能力,属于基础题. 7.A解析:A【分析】列举出算法的每一步循环,根据算法输出结果计算出实数p 的取值范围,于此可得出整数p 的最小值.【详解】0S p =<满足条件,执行第一次循环,0021S =+=,112n =+=;1S p =<满足条件,执行第二次循环,1123S =+=,213n =+=;3S p =<满足条件,执行第二次循环,2327S =+=,314n =+=.7S p =<满足条件,调出循环体,输出n 的值为4.由上可知,37p <≤,因此,输入的整数p 的最小值是4,故选A.【点睛】本题考查算法框图的应用,解这类问题,通常列出每一次循环,找出其规律,进而对问题进行解答,考查分析问题和解决问题的能力,属于中等题.8.B解析:B【分析】 根据程序框图可知,当时结束计算,此时 . 【详解】 计算过程如下表所示:周期为6 n2019 k1 2 … 2018 2019 S… k<n 是 是 是 是 否故选B.【点睛】本题考查程序框图,选用表格计算更加直观,此题关键在于判断何时循环结束. 9.B解析:B【解析】在程序语句中乘方要用“^”表示,所以A 项不正确;乘号“*”不能省略,所以C 项不正确;DSQR(x)表示,所以D 项不正确;B 选项是将变量A 的相反数赋给变量A ,则B 项正确.选B.10.D解析:D【分析】模拟执行程序框图,依次写出每次循环得到的x ,y 的值,当2019y = 时,不满足条件退出循环,输出x 的值即可得解.【详解】解:模拟执行程序框图,可得2,0x y ==.满足条件2019y <,执行循环体,1,1x y =-=;满足条件2019y <,执行循环体,1,22x y == ; 满足条件2019y <,执行循环体,2,3x y ==; 满足条件2019y <,执行循环体,1,4x y =-= ;…观察规律可知,x 的取值周期为3,由于20196733⨯=,可得:满足条件2019y <,执行循环体,当2,2019x y == ,不满足条件2019y <,退出循环,输出x 的值为2.故选D .【点睛】本题主要考查了循环结构的程序框图,依次写出每次循环得到的x ,y 的值,根据循环的周期,得到跳出循环时x 的值是解题的关键.11.A解析:A【解析】【分析】模拟程序的运行,依次写出每次循环得到的x ,n 的值,由题意判断退出循环的条件即可得解.【详解】模拟程序的运行,可得n =1,x =1不满足条件x >a ,执行循环体,x =1,n =2不满足条件x >a ,执行循环体,x =2,n =3不满足条件x >a ,执行循环体,x =6,n =4不满足条件x >a ,执行循环体,x =24,n =5此时,由题意应该满足条件x >a ,退出循环,输出n 的值为5.可得:6≤a <24.故选:A .【点睛】本题考查的知识点是循环结构的程序框图的应用,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.12.C解析:C【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量a 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】由题意,模拟程序的运算,可得k 1=,a 1=满足判断框内的条件,执行循环体,a 6=,k 3=满足判断框内的条件,执行循环体,a 33=,k 5=满足判断框内的条件,执行循环体,a 170=,k 7=此时,不满足判断框内的条件,退出循环,输出a 的值为170.则分析各个选项可得程序中判断框内的“条件”应为k 6<?故选:C .【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.二、填空题13.31【解析】分析程序中各变量各语句的作用再根据流程图所示的顺序可知:该程序的作用是计算并输出分段函数的函数值当时则故答案为31点睛:算法是新课程中的新增加的内容也必然是新高考中的一个热点应高度重视程 解析:31【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算并输出分段函数()0.550{250.65050x x y x x ≤=+-,,> 的函数值,当60x =时,则y 250.6605031=+-=(),故答案为31.点睛:算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.14.A 【解析】【分析】模拟执行程序框图依次写出每次循环得到的k 的值当k=2012时不满足条件退出循环输出的值为【详解】模拟执行程序框图可得满足条件满足条件满足条件满足条件由此可见S 的周期为3故当k=20解析:A【解析】【分析】模拟执行程序框图,依次写出每次循环得到的k ,S 的值,当k=2012时不满足条件2011k ≤ ,退出循环,输出S 的值为12. 【详解】模拟执行程序框图,可得2,1S k ==满足条件2011k ≤,1,22S k ==, 满足条件2011k ≤,1,3S k =-=, 满足条件2011k ≤,2,4S k ==,满足条件2011k ≤,1,52S k ,== 由此可见S 的周期为3,20113670...1,÷= 故当k=2012时不满足条件2011k ≤ ,退出循环,输出S 的值为12. 故选A.【点睛】本题主要考查了循环结构的程序框图,属于基础题. 15.72【分析】模拟程序的运行依次写出每次循环得到的的值可得当时不满足条件退出循环输出的值为72【详解】模拟程序的运行可得满足条件执行循环体满足条件执行循环体;满足条件执行循环体;满足条件执行循环体;不 解析:72【分析】模拟程序的运行,依次写出每次循环得到的S i ,的值,可得当9i = 时不满足条件8i <,退出循环,输出S 的值为72.【详解】模拟程序的运行,可得10,i S ==, 满足条件8i <,执行循环体,39;i S ==,满足条件8i <,执行循环体,524i S ==, ;满足条件8i <,执行循环体,745i S ==, ;满足条件8i <,执行循环体,9i =,72S =;不满足条件8i <,退出循环,输出S 的值为72,故答案为72【点睛】本题考查循环结构的程序框图的应用,当循环的次数不多或有规律时,常采用模拟执行程序的方法解决,属于基础题.16.9【解析】模拟程序的运行可得第一次执行循环不满足则返回继续循环;不满足则返回继续循环;不满足则返回继续循环;当时则最小值为此时故答案为点睛:识别运行程序框图和完善程序框图的思路:(1)要明确程序框图 解析:9【解析】模拟程序的运行,可得0S =,1n =,第一次执行循环,20log 21S =+=,12n n =+=,不满足3S >,则返回继续循环;231log 2S =+,13n n =+=,不满足3S >,则返回继续循环;22341log log 11223S =++=+=,14n n =+=,不满足3S >,则返回继续循环;⋅⋅⋅当n k =时,222234111log log log 1log 232k k S k ++=+++⋅⋅⋅+=+,1n k =+则211log 32k S +=+>,8k ≥,k 最小值为8,此时19n k =+=. 故答案为9.点睛:识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构;(2)要识别、运行程序框图,理解框图所解决的实际问题;(3)按照题目的要求完成解答并验证.17.48【解析】第1次运行成立第2次运行成立第3次运行成立第3次运行不成立故输出的值为48解析:48【解析】第1次运行,1,2,122,4i S S i ===⨯=<成立第2次运行,2,2,224,4i S S i ===⨯=<成立第3次运行,3,4,3412,4i S S i ===⨯=<成立第3次运行,4,12,41248,4i S S i ===⨯=<不成立,故输出S 的值为4818.【解析】试题分析:当时;当时;当时此时故答案为考点:程序框图的应用解析:2【解析】试题分析:当16x =时,2log 1641y ==>;当4x =时,2log 421y ==>;当2x =时,2log 21y ==,此时2x =.故答案为2.考点:程序框图的应用.19.1【解析】试题分析:根据程序框图可知该程序执行的是所以输出的的值为1考点:本小题主要考查程序框图的执行和对数的运算点评:高考中程序框图的题目一般离不开循环结构要分清是当型循环还是直到型循环要搞清楚退 解析:1【解析】 试题分析:根据程序框图可知,该程序执行的是34103410lg 2lg lg lg lg(2)lg101239239b =++++=⋅⋅⋅⋅==,所以输出的的值为1. 考点:本小题主要考查程序框图的执行和对数的运算. 点评:高考中程序框图的题目一般离不开循环结构,要分清是当型循环还是直到型循环,要搞清楚退出循环的条件,避免多执行或少执行一步. 20.1320【分析】由题意结合所给的流程图执行程序确定其输出值即可【详解】程序运行如下:首先初始化数据:第一次循环满足执行;第二次循环满足执行;第三次循环不满足跳出循环输出故答案为【点睛】识别运行程序框 解析:1320【分析】由题意结合所给的流程图执行程序,确定其输出值即可.【详解】程序运行如下:首先初始化数据:12,1i S ==,第一次循环,满足10i ≥,执行12,111S S i i i =⨯==-=;第二次循环,满足10i ≥,执行132,110S S i i i =⨯==-=;第三次循环,不满足10i ≥,跳出循环,输出1320S =.故答案为1320.【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.三、解答题21.(1)见解析;(2)第1次:35,1M k ==;第3次:35,1M k ==;第5次:47,4M k ==【分析】(1)直接画出流程框图得到答案.(2)直接根据流程框图计算得到答案.【详解】(1)(2)根据程序框图:35,1M k ==,24M <不成立,23M <不成立,47M <成立, 故47,4M k ==,43M <不成立,输出结果,故第1次:35,1M k ==;第3次:35,1M k ==;第5次:47,4M k ==.【点睛】本题考查了程序框图,意在考查学生的理解能力和应用能力.22.见解析【分析】利用二分法得到算法:取[,]a b 中点01()2b x a =+,判断()0()f a f x 符号,依次进行直到满足精度,再画出流程图得到答案.【详解】算法:第一步:取[,]a b 中点01()2b x a =+,将区间一分为二; 第二步:若()00f x =,则0x 就是方程的根;否则所求根*x 在0x 左侧或右侧; 若()0()0f a f x >,则()*0,x x b ∈,以0x 代替a ; 若()0()0f a f x <,则()*0,x a x ∈,以0x 代替b ;第三步:若||a b c -<,计算终止,此时*0x x ≈,否则转到第一步.【点睛】本题考查了利用二分法解方程的算法和程序框图,意在考查学生的理解能力和应用能力. 23.见解析【解析】【分析】根据分段函数的解析式,设置判断框并设置出判断条件,确定好判断框的“是”与“否”,由此可得出程序框图,即可求解.【详解】解算法如下:第一步:输入物品重量ω;第二步:如果50ω≤,那么0.53f ω=,否则,(500.535)500.8f ω⨯⨯=+-;第三步:输出物品重量ω和托运费f .程序框图如下:【点睛】本题主要考查了算法与程序框图的实际应用,解答中根据分段函数的解析式,设置出判断框,并设置出判断条件是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.24.见解析;【解析】试题分析: 先利用INPUT 语句输入两个正数a 和b 的值,再分别赋值a b 和b a 的值,最后输出a b 和b a 的值试题程序和程序框图分别如下:25.见试题解析.【解析】【分析】根据圆台的体积和表面积公式依次按顺序输入公式,写成顺序结构即可.【详解】算法步骤如下:第一步:12r =,24r =,5h =.第二步:计算()2221l r r h =-+.第三步:计算211S r π=,222S r π=,()312S r r l π=+.第四步:计算123S S S S =++,()112213V S S S S h =++. 第五步:输出S 和V .程序框图如下图所示.【点睛】(1)程序框图是流程图的一种,程序框图有一定的规范和标准,而日常生活中的流程图则相对自由一些,可以使用不同的色彩,也可以添加一些生动的图形元素.(2)画算法的程序框图,一般需要将自然语言描述的算法的每一个步骤分解为若干输入、输出、条件结构、循环结构等基本算法单元,然后根据各单元的逻辑关系,用流程线将这些基本单元连接起来.即基本单元是构成程序框图的基本要素,基本要素之间的关系由流程线建立. 26.见解析【解析】试题分析:分析程序中各变量、各语句的作用,再根据循环语句找到能被15整除的正整数,在1000n > 时结束循环体,由此设计算法及画出框图.试题算法如下:S1 n=1;S2 若n ≤66,则执行S3,否则执行S6;S3 a=15n ;S4 输出a ;S5n=n+1,重复执行S2; S6结束.程序框图如图所示.。

河南省实验中学必修三第二章《算法初步》测试题(包含答案解析)

河南省实验中学必修三第二章《算法初步》测试题(包含答案解析)

一、选择题1.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S 为( )A .84B .56C .35D .282.运行如图所示的程序框图,若输出S 的值为129,则判断框内可填入的条件是()A .4?k <B .5?k <C .6?k <D .7?k < 3.如图是求样本数据方差S 的程序框图,则图中空白框应填入的内容为( )A .()28i S x x S +-=B .()2(1)8i i S x x S -+-=C .()2i S x x S i +-= D .()2(1)i i S x x S i -+-=4.执行如图所示的程序框图,若输出的结果为126,则判断框内的条件可以为()A .5n ≤B .6n ≤C .7n ≤D .8n ≤ 5.某程序框图如图所示,该程序运行后输出S 的值是( )A .910B .1011 C .1112 D .1116.执行如图的程序框图,若输出的6n =,则输入整数p 的最大值是( )A .15B .16C .31D .327.某程序框图如图所示,则该程序运行后输出的值是( )A .3B .3C 3D 3 8.更相减损术是出自中国古代数学专著《九章算术》的一种算法,其内容如下:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之”下图是该算法的程序框图,如果输入102a =,238b =,则输出的a 值是A.17 B.34 C.36 D.689.朱世杰是我国元代伟大的数学家,其传世名著《四元玉鉴》中用诗歌的形式记载了下面这样一个问题:我有一壶酒,携着游春走.遇务①添一倍,逢店饮斛九②.店务经四处,没了这壶酒.借问此壶中,当原多少酒?①“务”:旧指收税的关卡所在地;②“斛九”:1.9斛.下图是解决该问题的算法程序框图,若输入的x值为0,则输出的x值为()A.5740B.13380C.5732D.58932010.执行如图所示的程序框图,则输出的n值是()A .5B .7C .9D .1111.执行如下的程序框图,则输出的S 是( )A .36B .45C .36-D .45- 12.如图给出的是计算1111246102+++⋅⋅⋅+的值的一个程序框图,其中判断框中应填入的是( )A .102i >B .102i ≤C .100i >D .100i ≤二、填空题13.运行如图所示的程序框图,则输出的S 的值为________.14.执行如图所示的程序框图,输入l=2,m=3,n=5,则输出的y 的值____15.下图是某算法的程序框图,则程序运行后输出的结果是 .16.执行如图所示的程序框图,若输入的255a =,68b =,则输出的a 是__________.17.将二进制数110 101(2)转为七进制数,结果为________.18.运行右图所示程序框图,若输入值xÎ[-2,2],则输出值y 的取值范围是_____.19.如图所示的程序框图输出的值是 .20.阅读如图所示的程序框图,该程序输出的结果是__________.三、解答题21.某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答下列问题:(1)写出该城市经过x年后的人口总数关于x的函数关系式;(2)用程序流程图表示计算10年以后该城市人口总数的算法;(3)用程序流程图表示如下算法:计算大约多少年以后该城市人口将达到120万人.22.从某企业生产的某种产品中抽取20件,测量这些产品的一项质量指标值,由测量得到如图1的频率分布直方图,从左到右各组的频数依次记为1A,2A,3A,4A,5A.(1)求图1中a的值;(2)图2是统计图1中各组频数的一个算法流程图,求输出的结果S.23.一队士兵来到一条有鳄鱼的深河的左岸.只有一条小船和两个小孩,这条船只能承载两个小孩或一个士兵.试设计一个算法,将这队士兵渡到对岸.24.已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(x n,y n),…(1)若程序运行中输出的一个数组是(9,t),求t的值.(2)程序结束时,共输出(x,y)的组数为多少?(3)写出程序框图的程序语句.25.相传古代印度国王在奖赏他聪明能干的宰相达依尔(国际象棋发明者)时,问他需要什么,达依尔说:“国王只要在国际象棋棋盘的第一格子上放一粒麦子,第二格子上放二粒,第三格子上放四粒,以后按比例每一格加一倍,一直放到第64格(国际象棋棋盘格数是8×8=64),我就感恩不尽,其他什么也不要了.”国王想:“这才有多少,还不容易!”于是让人扛来一袋小麦,但不到一会儿就用完了,再来一袋很快又没有了,结果全印度的粮食用完还不够,国王很奇怪,怎么也算不清这笔账.请你设计一个程序框图表示其算法,来帮国王计算一下需要多少粒小麦. 26.程序框图如图,运行此程序,试求输出的b的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】按照程序框图运行程序,直到满足7i ≥时输出结果即可.【详解】按照程序框图运行程序,输入0i =,0n =,0S =,则1i =,1n =,1S =,不满足7i ≥,循环;2i =,3n =,4S =,不满足7i ≥,循环;3i =,6n =,10S =,不满足7i ≥,循环;4i =,10n =,20S =,不满足7i ≥,循环;5i =,15n =,35S =,不满足7i ≥,循环;6i =,21n =,56S =,不满足7i ≥,循环;7i =,28n =,84S =,满足7i ≥,输出84S =.故选:A .【点睛】本题考查根据程序框图循环结构计算输出结果的问题,属于基础题.2.C解析:C【分析】最常用的方法是列举法,即依次执行循环体中的每一步,直到循环终止,但在执行循环体时要明确循环终止的条件是什么,什么时候要终止执行循环体.【详解】0S =,1k =;110121S -=+⨯=,2k =;211225S -=+⨯=,3k =;3153217S -=+⨯=,4k =;41174249S -=+⨯=,5k =;514952129S -=+⨯=,6k =,此时输出S ,即判断框内可填入的条件是“6?k <”.故选:C .【点睛】本题考查循环结构程序框图.解决程序框图填充问题的思路(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、执行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.3.D解析:D【分析】由题意知该程序的作用是求样本128,,,x x x 的方差,由方差公式可得. 【详解】由题意知该程序的作用是求样本128,,,x x x 的方差, 所用方法是求得每个数与x 的差的平方,再求这8个数的平均值,则图中空白框应填入的内容为: ()2(1)i i S x x S i-+-= 故选:D【点睛】本题考查了程序框图功能的理解以及样本方差的计算公式,属于一般题. 4.B解析:B【分析】根据框图,模拟程序运行即可求解.【详解】根据框图,执行程序,12,2S n ==;1222,3S n =+=;⋯12222,1i S n i =++⋯+=+,令12222126i S =++⋯+=,解得6i =,即7n =时结束程序,所以6n ≤,故选 :B【点睛】本题主要考查了程序框图,循环结构,条件分支结构,等比数列求和,属于中档题.genju 5.B解析:B【分析】模拟程序运行后,可得到输出结果,利用裂项相消法即可求出答案.【详解】模拟程序运行过程如下:0)1,0k S ,判断为否,进入循环结构, 1)110,2122S k =+==⨯,判断为否,进入循环结构, 2)11,3223S k =+=⨯,判断为否,进入循环结构, 3)111,422334S k =++=⨯⨯,判断为否,进入循环结构, …… 9)111,10223910S k =+++=⨯⨯,判断为否,进入循环结构, 10)1111,112239101011S k =++++=⨯⨯⨯,判断为是, 故输出1112231011S =+++⨯⨯111111101122310111111=-+-++-=-=, 故选:B.【点睛】 本题主要考查程序框图,考查裂项相消法,难度不大.一般遇见程序框图求输出结果时,常模拟程序运行以得到结论.6.C解析:C【分析】根据程序框图的循环结构,依次运行,算出输出值为6n =时S 的值,使得S p <不成立时p 的值即可.【详解】根据程序框图可知,1,0n S ==则11021,2S n -=+==21123,3S n -=+==31327,4S n -=+==417215,5S n -=+==5115231,6S n -=+==此时应输出6n =,需31p <不成立.因而整数p 的最大值为31故选:C【点睛】本题考查了程序框图的简单应用,根据输出结果确定判读框,属于中档题.7.D解析:D【分析】该框图的功能是计算:234562017sin sin sin sin sin sin sin 3333333πππππππ+++++++,再根据正弦函数的周期性以及特殊角的三角函数值计算可得答案.【详解】 该框图的功能是计算:234562017sin sin sin sin sin sin sin 3333333πππππππ+++++++.因为7132017sin sin sin sin3333ππππ=====28142012sin sin sin sin 3333ππππ=====, 39152013sinsin sin sin 03333ππππ=====,410162014sinsin sin sin 3333ππππ=====,511172015sin sin sin sin33332ππππ=====-, 612182016sinsin sin sin 03333ππππ=====, 所以234562017sin sin sin sin sin sin sin 3333333πππππππ+++++++3373363360336(336(3360=+⨯+⨯+⨯+⨯= 故选:D【点睛】 本题考查了程序框图的循环结构,考查了三角函数的周期性以及特殊角的三角函数值,理解程序框图的功能是解题关键,属于基础题.8.B解析:B【分析】根据程序框图进行模拟运算即可得出.【详解】根据程序框图,输入的102a =,238b =,因为a b ,且a b <,所以238102136b =-=;第二次循环,13610234b =-=;第三次循环,1023468a =-=;第四次循环,683434a =-= ,此时34a b ==,输出34a =,故选B .【点睛】本题主要考查更相减损术的理解以及程序框图的理解、识别和应用.9.C解析:C【分析】本题首先可以根据题意以及程序框图明确输入的数据为“0x =,0i =”和运算的算式为“119210x x 、1i i =+”,然后进行运算并结合条件“4i ”得出结果。

(典型题)高中数学必修三第二章《算法初步》测试(有答案解析)(1)

(典型题)高中数学必修三第二章《算法初步》测试(有答案解析)(1)

一、选择题1.阅读下面的框图,运行相应的程序,输出S 的值为________.A .2B .4C .-4D .-82.阅读算法框图,如果输出的函数值在区间[]1,8上,则输入的实数x 的取值范围是( )A .[)0,2B .[]2,7C .[]2,4D .[]0,7 3.若执行下面的程序框图,输出S 的值为5,则判断框中应填入的条件是( )A .15?k ≤B .16?k ≤C .31?k ≤D .32?k ≤ 4.执行如图所示的程序框图,输出的S 值为( )A .511B .512C .1022D .10245.运行如图所示的程序框图,若输出S 的值为129,则判断框内可填入的条件是( )A .4?k <B .5?k <C .6?k <D .7?k < 6.已知函数1()(1)g x x x =+,程序框图如图所示,若输出的结果1011S =,则判断框中可以填入的关于n 的判断条件是( )A . 10?n ≤B .10?n >C . 11?n ≤D . 11?n > 7.执行如图所示的程序框图,如果输入x =5,y =1,则输出的结果是( )A.261 B.425 C.179 D.5448.执行如图所示的程序框图,输出s的值为( )A.1 B20181C20191D202019.如图,“大衍数列”:0,2,4,8,12….来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生过程中曾经经历过的两仪数量总和.下图m=,则输出的S=()是求大衍数列前n项和的程序框图.执行该程序框图,输入10A .100B .140C .190D .25010.若如图所示的程序框图的输出结果为二进制数(2)10101化为十进制数(注:01234(2)101011202120212=⨯+⨯+⨯+⨯+⨯),那么处理框①内可填入( )A .2S S i =+B .S S i =+C .21S S i =+-D .2S S i =+ 11.执行如图的程序框图,则输出x 的值是 ( )A.2018B.2019C.12D.212.执行如图所示的程序框图,输出的S值为()A.1 B.-1 C.0 D.-2二、填空题13.下图所示的算法流程图中,输出的S表达式为__________.14.执行下面的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=_____15.已知某程序框图如图所示,则该程序运行后输出S的值为__________.16.运行如图所示的程序,输出结果为___________.n=,则输出S的值为_____.17.运行如图所示的程序框图,若输入418.某程序流程框图如图所示,现执行该程序,输入下列函数()2sin 3f x x π=, ()2cos 3f x x π=,()4tan 3f x x π=,则可以输出的函数是()f x =__________.19.执行如图所示的程序框图,输出的T =______.20.阅读如图所示的程序框图,该程序输出的结果是__________.三、解答题21.如图所示的程序框图,根据该图和下列各小题的条件回答下面的几个小题.(1)该程序框图解决的是一个什么问题?(2)当输入的x 的值为0和4时,输出的值相等,问当输入的x 的值为3时,输出的值为多大?(3)在(2)的条件下要想使输出的值最大,输入的x 的值应为多大?22.某班共有学生50人,在一次数学测试中,要搜索出测试中及格(60分及以上)的成绩,试设计一个算法,并画出程序框图.23.给出某班45名同学的数学测试成绩,60分及以上为及格,要求统计及格人数,及格同学的平均分,全班同学的平均分,画出程序框图,并写出程序语句.24.画出求方程lg x+x-3=0在区间(2,3)内的近似解(精确到0.01)的程序框图.25.给出30个数:1,2,4,7,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,依此类推.要计算这30个数的和,现已给出了该问题算法的程序框图(如图所示),请在图中判断框内①处和执行框中的②处填上合适的语句,使之能完成该题算法功能.26.试画出求22221299100++++的值的算法的程序框图.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】执行程序一次,8,2s n =-=,执行第二次,4,1s n =-=,满足判断框条件,跳出循环,输出4s =-,故选C.2.D解析:D【详解】解答:根据题意,得 当x ∈(−2,2)时,f (x )=2x , 1⩽2x ⩽8,∴0⩽x ⩽3;故02x ≤< 当x ∉(−2,2)时,f (x )=x +1, ∴1⩽x +1⩽8, ∴0⩽x ⩽7,∴x 的取值范围是[2,7]. 故选:D点睛:本题考查的实质问题是分段函数,当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.3.C解析:C 【分析】根据流程图可知()231log 3log 4log 1k S k =⨯⨯⨯⨯+,根据输出值为5可得判断条件.【详解】设判断条件为k m ≤,则输出值为()231log 3log 4log 1m S m =⨯⨯⨯⨯+,而()()lg 1lg 1lg 3lg 415lg 2lg 3lg lg 2m m S m ++=⨯⨯⨯⨯==, 故31m =, 故选:C. 【点睛】本题考查流程图中判断条件的确定以及对数性质的应用,注意S 的计算应根据判断条件的临界值来计算,本题属于中档题.4.C解析:C 【分析】直接根据程序框图计算得到答案. 【详解】根据程序框图知:92391012222 (2222102212)S -=++++==-=-.故选:C. 【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力,确定程序框图表示的意义是解题的关键.5.C解析:C最常用的方法是列举法,即依次执行循环体中的每一步,直到循环终止,但在执行循环体时要明确循环终止的条件是什么,什么时候要终止执行循环体. 【详解】0S =,1k =;110121S -=+⨯=,2k =;211225S -=+⨯=, 3k =;3153217S -=+⨯=,4k =;41174249S -=+⨯=, 5k =;514952129S -=+⨯=,6k =,此时输出S ,即判断框内可填入的条件是“6?k <”. 故选:C . 【点睛】本题考查循环结构程序框图. 解决程序框图填充问题的思路(1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、执行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证. 6.A解析:A 【分析】按照程序框图执行几次,找出此框图的算法功能,再根据已知条件1011S =进一步判断框内条件即可. 【详解】按照程序框图依次执行:110,1,01122S n S ===+=-⨯ 1111112,11+12232233n S ==-+=--=-⨯以此类推,可得111S n =-+ . 若1011S =,可得10n =,若要输出1011S =,则判断框内应填10n ≤?. 故选:A. 【点睛】本题主要考查根据程序框图的输出结果判断程序框图中的选择条件,考查逻辑推理能力.7.B解析:B根据循环结构的条件,依次运算求解,即得解. 【详解】起始值:5,1,0x y n ===,满足1105<⨯,故:5,0,2x y n ===; 满足0105<⨯,故:7,4,4x y n ===; 满足4107<⨯,故:11,36,6x y n ===; 满足361011<⨯,故:17,144,8x y n ===; 满足1441017<⨯,故:25,400,10x y n ===; 此时:4001025>⨯,满足输出条件:输出425x y += 故选:B 【点睛】本题考查了程序框图的循环结构,考查了学生逻辑推理,数学运算的能力,属于中档题.8.D解析:D 【分析】根据程序框图,模拟程序运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】第一次执行循环体后,2,01)n S ==+,第二次执行循环体后,3,0n S ==+,⋯第n 次执行循环体后, 1,0(1n n S n =+=++++,因为2019n <输出S ,所以01)S =+++++⋯+01)=+++++⋯+1=,故选:D 【点睛】本题主要考查了程序框图,解题时模拟程序运行过程即可,属于中档题.9.C解析:C 【分析】根据程序框图进行运算,直到满足判断框中的条件,就停止运行,输出结果. 【详解】第一次运行,211,0,0002n n a S -====+=,不符合n m ≥,继续运行;第二次运行,22,22n n a ===,022S =+=,不符合n m ≥,继续运行,第三次运行,213,42n n a -===,426S =+=,不符合n m ≥,继续运行,第四次运行,24,82n n a ===,8614S =+=,不符合n m ≥,继续运行,第五次运行,5n =,21122n a -==,121426S =+=, 不符合n m ≥,继续运行,第六次运行,6n =,2182n a ==,182644S =+=, 不符合n m ≥,继续运行,第七次运行,217,242n n a -===,244468S =+=, 不符合n m ≥,继续运行,第八次运行,28,322n n a ===,3268100S =+=, 不符合n m ≥,继续运行,第九次运行,219,40,401001402n n a S -====+=, 不符合n m ≥,继续运行,第十次运行,210,50,501401902n n a S ====+=,符合n m ≥,退出运行,,输出190S =.故选:C 【点睛】本题考查了程序框图中循环结构,正确理解程序框图是解题关键,属于基础题. 10.D解析:D 【解析】 【分析】由二进制数化为十进制数,得出(2)1010121=,得到运行程序框输出的结果,验证答案,即可求解. 【详解】由题意,二进制数()210101化为十进制数43210(2)10101120212021221=⨯+⨯+⨯+⨯+⨯=,即运行程序框输出的结果为21,经验证可得,处理框内可填入2S S i =+,故选D. 【点睛】本题主要考查了二进制与十进制的转化,以及循环结构的程序框图的计算与输出,着重考查了推理与运算能力,属于基础题.11.D解析:D 【分析】模拟执行程序框图,依次写出每次循环得到的x ,y 的值,当2019y = 时,不满足条件退出循环,输出x 的值即可得解. 【详解】解:模拟执行程序框图,可得2,0x y ==.满足条件2019y <,执行循环体,1,1x y =-=;满足条件2019y <,执行循环体,1,22x y == ; 满足条件2019y <,执行循环体,2,3x y ==;满足条件2019y <,执行循环体,1,4x y =-= ; …观察规律可知,x 的取值周期为3,由于20196733⨯=,可得: 满足条件2019y <,执行循环体,当2,2019x y == ,不满足条件2019y <,退出循环,输出x 的值为2. 故选D . 【点睛】本题主要考查了循环结构的程序框图,依次写出每次循环得到的x ,y 的值,根据循环的周期,得到跳出循环时x 的值是解题的关键.12.B解析:B 【分析】由题意结合流程图运行程序,考查5i >是否成立来决定输出的数值即可. 【详解】结合流程图可知程序运行过程如下: 首先初始化数据:1,2i S ==, 此时不满足5i >,执行循环:111,122S i i S =-==+=; 此时不满足5i >,执行循环:111,13S i i S=-=-=+=; 此时不满足5i >,执行循环:112,14S i i S=-==+=; 此时不满足5i >,执行循环:111,152S i i S =-==+=; 此时不满足5i >,执行循环:111,16S i i S=-=-=+=; 此时满足5i >,输出1S =-.本题选择B 选项. 【点睛】本题主要考查循环结构流程图的识别与运行过程,属于中等题.二、填空题13.【分析】根据流程图知当满足条件执行循环体依此类推当不满足条件退出循环体从而得到结论【详解】满足条件执行循环体满足条件执行循环体满足条件执行循环体…依此类推满足条件执行循环体不满足条件退出循环体输出故 解析:112399++++【分析】根据流程图知当1i =,满足条件100i <,执行循环体,1S =,依此类推,当100i =,不满足条件100i <,退出循环体,从而得到结论. 【详解】1i =,满足条件100i <,执行循环体,1S = 2i =,满足条件100i <,执行循环体,12S =+3i =,满足条件100i <,执行循环体,123S =++…依此类推99i =,满足条件100i <,执行循环体,1299S =++⋯+,100i =,不满足条件100i <,退出循环体,输出1112399S S ==+++⋯+,故答案为112399++++.【点睛】本题主要考查了循环结构应用问题,此循环是先判断后循环,属于中档题.14.12【分析】由题意可知从开始判断框条件成立执行第一次循环得到一组新的的值再从开始判断框条件成立执行第一次循环得到一组新的的值当时判断条件框不成立输出此时的值即可得出答案【详解】当时执行程序框图得;当解析:12 【分析】由题意可知,从1n =开始,判断框条件成立,执行第一次循环,得到一组新的,,M a b 的值,再从2n =开始,判断框条件成立,执行第一次循环,得到一组新的,,M a b 的值,当3n =时,判断条件框不成立,输出此时M 的值,即可得出答案. 【详解】当1n =时,执行程序框图得,1225,2,5M a b =+⨯===; 当2n =时,执行程序框图得,22512,5,12M a b =+⨯===; 当3n =时,不满足判断条件框,直接输出 12M =.故答案为12. 【点睛】本题主要考查了根据程序框图写出执行结果的问题,对于这类题目,首先要弄清框图的结构和执行过程,本题为循环结构的程序框图.15.【分析】执行程序框图依次写出每次循环得到的Si 的值当i =2019时不满足条件退出循环输出S 的值为【详解】执行程序框图有S =2i =1满足条件执行循环Si =2满足条件执行循环Si =3满足条件执行循环Si解析:12-【分析】执行程序框图,依次写出每次循环得到的S ,i 的值,当i =2019时,不满足条件2018i ≤退出循环,输出S 的值为12-. 【详解】 执行程序框图,有 S =2,i =1满足条件2018i ≤ ,执行循环,S 3=-,i =2 满足条件2018i ≤ ,执行循环,S 12=-,i =3 满足条件2018i ≤ ,执行循环,S 13=,i =4 满足条件2018i ≤ ,执行循环, S =2,i =5 …观察规律可知,S 的取值以4为周期,由于2018=504*4+2,故有: S 12=-, i =2019, 不满足条件2018i ≤退出循环,输出S 的值为12-, 故答案为12-. 【点睛】本题主要考查了程序框图和算法,其中判断S 的取值规律是解题的关键,属于基本知识的考查.16.【详解】试题分析:第一次运行条件成立;第二次运行条件成立;第三次运行条件成立;第四次运行条件不成立;输出故答案应填:1考点:算法及程序语言 解析:1【详解】试题分析:第一次运行,5,4s n ==条件14s <成立;第二次运行,9,3s n ==条件14s <成立;第三次运行,12,2s n ==条件14s <成立;第四次运行,14,1s n ==条件14s <不成立;输出1n =,故答案应填:1.考点:算法及程序语言.17.11【解析】试题分析:根据程序框图可知该程序执行的是所以输出的值为11考点:本题考查程序框图容易题点评:程序框图的题目离不开循环结构和条件结构要仔细辨别循环条件弄清楚循环次数避免多执行或少执行一次解析:11 【解析】试题分析:根据程序框图可知该程序执行的是1123411S =++++=,所以输出的值为11.考点:本题考查程序框图,容易题.点评:程序框图的题目离不开循环结构和条件结构,要仔细辨别循环条件,弄清楚循环次数,避免多执行或少执行一次.18.【分析】根据得知函数的图象关于点对称由可得知函数的周期为于此可在题中三个函数中找出合乎条件的函数作出输出结果【详解】可知函数的图象关于点对称由得所以函数的周期为由三角函数的周期公式可知函数和的最小正解析:()2cos 3f x x π=. 【分析】根据()302f x f x ⎛⎫+--= ⎪⎝⎭得知函数()y f x =的图象关于点3,04⎛⎫- ⎪⎝⎭对称,由()f x + 302f x ⎛⎫+= ⎪⎝⎭可得知函数()y f x =的周期为3,于此可在题中三个函数中找出合乎条件的函数作出输出结果. 【详解】()302f x f x ⎛⎫+--= ⎪⎝⎭,可知函数()y f x =的图象关于点3,04⎛⎫- ⎪⎝⎭对称,由()302f x f x ⎛⎫++=⎪⎝⎭,得()3322f x f x f x ⎛⎫⎛⎫+=-=- ⎪ ⎪⎝⎭⎝⎭,所以函数()y f x =的周期为3.由三角函数的周期公式可知,函数()2sin3f x x π=和()2cos 3f x x π=的最小正周期为3,函数()4tan3f x x π=的最小正周期为34,不合乎要求; 对于函数()2sin 3f x x π=,323sin sin 04342f ππ⎡⎤⎛⎫⎛⎫-=⨯-=-≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦;对于函数()2cos3f x x π=,323cos cos 04342f ππ⎡⎤⎛⎫⎛⎫⎛⎫-=⨯-=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,合乎题意.所以,函数()2cos3f x x π=的图象关于点3,04⎛⎫- ⎪⎝⎭对称, 故输出的函数为()2cos 3f x x π=,故答案为()2cos 3f x x π=. 【点睛】本题考查程序框图,考查三角函数的周期性和对称性,能根据抽象函数关系式得出函数的基本性质,是解本题的关键,属于中等题.19.16【解析】第一次运行:;第二次运行:;第三次运行:此时程序结束所以输出的解析:16 【解析】第一次运行:1,145,123,134T S S n T ===+==+==+=;第二次运行:45,549,325,459T S S n T =<==+==+==+=;第三次运行:9,9413,527,9716T S S n T ===+==+==+=.此时1613T S =>=,程序结束,所以输出的16T =20.120【分析】由题意首先确定程序的功能然后计算其输出结果即可【详解】由题意可得题中流程图的功能为计算的值据此计算可得输出的结果为故答案为120【点睛】识别运行程序框图和完善程序框图的思路:(1)要明解析:120 【分析】由题意首先确定程序的功能,然后计算其输出结果即可. 【详解】由题意可得,题中流程图的功能为计算12345S =⨯⨯⨯⨯的值, 据此计算可得输出的结果为120S =. 故答案为120. 【点睛】识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.三、解答题21.(1)求二次函数f (x )=-x 2+mx 的函数值(2)输入的x 的值为3时,输出的f (x )的值为3(3)2 【分析】(1)模拟执行程序框图即可确定程序框图的功能是求2()f x x mx =-+的函数值. (2)由已知可得:(0)f f =(4),从而有1640m -+=,即可解得m ,即可求f (3)的值.(3)由已知可得2()(2)4f x x =--+,从而当2x =时,()4max f x =,即可得解. 【详解】解:(1)该程序框图解决的是求二次函教2()f x x mx =-+的函数值的问题; (2)当输入的x 的值为0和4时,输出的值相等,即()()04f f =, 因为(0)0f =, ()4164f m =-+, 所以1640m -+=, 所以4m =,所以2()4f x x x =-+,则()233433f =-+⨯=,所以当输入的x 的值为3时,输出的()f x 值为3; (3)因为22()4(2)4f x x x x =-+=--+, 当2x =时,()4max f x =,所以要想使输出的值最大,输入的x 的值应为2; 【点睛】本题主要考查了二次函数的图象和性质,考查了程序框图和算法,属于基础题. 22.见解析. 【解析】试题分析:由题意,从成绩中搜索出大于等于60的成绩,由此可得选择结构的判断框的条件,再依据搜索数据的个数确定循环的条件,得到算法,即可画出相应框图 试题 算法如下: 第一步:i =1. 第二步,输入x . 第三步,若x ≥60则输出. 第四步,i =i +1.第五步,判断i >50,是,结束;否则执行第二步. 程序框图如图所示:23.程序图见解析.【解析】【分析】因为只统计及格人数,所以设计一个条件语句,对于求和设计一个计数变量,一个累加变量,根据结束条件设置成直到型或当型. 最后对应改成基本语句.【详解】用M表示及格人数,S表示及格同学的总分。

(好题)高中数学必修三第二章《算法初步》测试(含答案解析)(2)

(好题)高中数学必修三第二章《算法初步》测试(含答案解析)(2)

一、选择题1.该程序中k的值是()A.9 B.10 C.11 D.12 2.若执行如图所示的程序框图,则输出S的值是()A.63 B.15 C.31 D.323.执行如图所示的程序框图,若输出S的值为511,则判断框内可填入的条件是()A .4i ≤B .5i ≤C .5i <D .6i ≤4.执行如图所示的程序框图,如果输入4n =,则输出的结果是( )A .32B .116C .2512D .137605.执行如图所示的程序框图,若输入x =9,则循环体执行的次数为( )A .1次B .2次C .3次D .4次6.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的y 的值为2,则输入的x 的值为( )A .74B .5627C .2D .164817.若正整数N 除以正整数m 后的余数为r ,则记为(,)Mod N m r =,例如(10,4)2Mod =.如图所示的程序框图的算法源于我国古代数学名著《孙子算经》中的“中国剩余定理”,则执行该程序框图输出的i =( )A .8B .18C .23D .388.执行如下的程序框图,则输出的S 是( )A .36B .45C .36-D .45-9.对任意非零实数a 、b ,若a b ⊗的运算原理如图所示,则121log 43-⎛⎫⊗ ⎪⎝⎭的值为( )A .13B .1C .43D .210.如图给出的是计算1111246102+++⋅⋅⋅+的值的一个程序框图,其中判断框中应填入的是( )A .102i >B .102i ≤C .100i >D .100i ≤ 11.某程序框图如图所示,若运行该程序后输出S =( )A .53B .74C .95D .11612.执行如下图的程序框图,那么输出S 的值是( )A .2B .1C .12D .-1二、填空题13.已知某程序框图如图所示,则该程序运行后输出S 的值为__________.14.执行如图所示的程序框图,输出的S值为__________.15.执行如图所示的程序框图,输出S的值为___________.16.执行如图所示的程序框图,输出的S 值是__________.17.执行如图所示的算法框图,若输入的x 的值为2,则输出的n 的值为__________.18.某程序流程框图如图所示,现执行该程序,输入下列函数()2sin 3f x x π=, ()2cos 3f x x π=,()4tan 3f x x π=,则可以输出的函数是()f x =__________.19.程序如下:20.如图所示的程序框图,输出的结果是_________.三、解答题21.用二分法设计一个求方程230x -=在[]1,2上的近似根的算法.(近似根与精确解的差的绝对值不超过0.0005)22.如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7 cm ,腰长为22cm ,当一条垂直于底边BC (垂足为F )的直线l 从B 点开始由左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x (0≤x ≤7),左边部分的面积为y ,求y 与x 之间的函数关系式,画出程序框图,并写出程序.23.读下列程序:(1)根据程序,画出对应的程序框图;(2)写出该程序表示的函数,并求出当输出的4y =时,输入的x 的值.24.画出解关于x 的不等式0ax b +<的程序框图,并用语句描述.25.给出30个数:1,2,4,7,,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,以此类推,要计算这30个数的和,现已给出了解决该问题的算法框图(如图所示).(1)请在图中处理框内①处和判断框中的②处填上合适的语句,使之能完成该题算法功能;(2)根据算法框图写出算法语句.26.古希腊杰出的数学家丢番图的墓碑上有这样一首诗:这是一座古墓,里面安葬着丢番图.请你告诉我,丢番图的寿数几何?他的童年占去了一生的六分之一,接着十二分之一是少年时期,又过了七分之一的时光,他找到了自己的终身伴侣.五年之后,婚姻之神赐给他一个儿子,可是儿子不济,只活到父亲寿数的一半,就匆匆离去.这对父亲是一个沉重的打击,整整四年,为失去爱子而悲伤,终于告别了数学,离开了人世.试用循环结构,写出算法分析和算法程序.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】本题只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可(注意避免计算错误). 【详解】3,2,8,814x k y ===<,第一次循环,4,10,1014k y ==<; 第二次循环,6,12,1214k y ==<; 第三次循环,8,14,1414k y ===; 第四次循环,10,16,1614k y ==>, 退出循环,输出10k =, 故选:B. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.2.C解析:C 【分析】根据程序框图模拟程序计算即可求解. 【详解】模拟程序的运行,可得1S =,1i =; 满足条件5i <,执行循环体,3S =,2i =; 满足条件5i <,执行循环体,7=S ,3i =; 满足条件5i <,执行循环体,15S =,4i =; 满足条件5i <,执行循环体,31S =,5i =; 此时,不满足条件5i <,退出循环,输出S 的值为31. 故选:C 【点睛】本题主要考查了程序框图,循环结构,属于中档题.3.B解析:B 【分析】模拟运行程序1i =,满足条件,1013S =+⨯,2i =,满足条件,进入循环体,反复操作,直到输出511S =,核对满足的条件即可. 【详解】1i =,满足条件,1013S =+⨯; 2i =,满足条件,111335S =+⨯⨯; 3i =,满足条件,111133557S =++⨯⨯⨯; 4i =,满足条件,111113355779S =+++⨯⨯⨯⨯; 5i =,满足条件,11111115(1)1335577991121111S =++++=-=⨯⨯⨯⨯⨯; 6i =,不满足条件,输出511S =. 故选:B. 【点睛】本题考查了对程序框图的理解与应用,由程序运行结果,补充条件,数列求和的裂项相消法,属于中档题.4.B解析:B 【分析】根据题意,运行程序可实现111112341S n =++++⋯+-运算求值,从而得答案. 【详解】第一次执行程序,1,2S i ==, 第二次执行程序,11,32S i =+=, 第三次执行程序,111,423S i =++=, 因为44=,满足条件,跳出循环,输出结果116S =. 故选:B . 【点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于容易题.5.C解析:C 【分析】根据程序框图依次计算得到答案. 【详解】9,5x y ==,41y x -=>;115,3x y ==,413y x -=>; 1129,39x y ==,419y x -=<;结束. 故选:C . 【点睛】本题考查了程序框图的循环次数,意在考查学生的理解能力和计算能力.6.C解析:C 【分析】根据程序框图依次计算得到答案. 【详解】34y x =-,1i =;34916y y x =-=-,2i =;342752y y x =-=-,3i =;3481160y y x =-=-,4i =;34243484y y x =-=-,此时不满足3i ≤,跳出循环,输出结果为243484x -,由题意2434842y x =-=,得2x =. 故选:C 【点睛】本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.7.C解析:C 【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量i 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出同时满足条件: ①被3除余2, ②被5除余3, ③被7除余2, 故输出的i 为23, 故选C . 【点睛】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.8.A解析:A 【分析】列出每一步算法循环,可得出输出结果S 的值. 【详解】18i =≤满足,执行第一次循环,()120111S =+-⨯=-,112i =+=; 28i =≤成立,执行第二次循环,()221123S =-+-⨯=,213i =+=;38i =≤成立,执行第三次循环,()323136S =+-⨯=-,314i =+=; 48i =≤成立,执行第四次循环,()4261410S =-+-⨯=,415i =+=; 58i =≤成立,执行第五次循环,()52101515S =+-⨯=-,516i =+=; 68i =≤成立,执行第六次循环,()62151621S =-+-⨯=,617i =+=; 78i =≤成立,执行第七次循环,()72211728S =+-⨯=-,718i =+=; 88i =≤成立,执行第八次循环,()82281836S =-+-⨯=,819i =+=;98i =≤不成立,跳出循环体,输出S 的值为36,故选A. 【点睛】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.9.B解析:B 【解析】模拟执行程序框图可得程序的功能是计算并输出分段函数1,2,b a b aa b a a b b-⎧⎪⎪⊗=⎨+⎪>⎪⎩的值,∵121log 4233-⎛⎫=<= ⎪⎝⎭.∴12131log 4132--⎛⎫⊗== ⎪⎝⎭.本题选择B 选项.10.B解析:B 【解析】 【分析】根据题目所求表达式1111246102+++⋅⋅⋅+中最后一个数字1102,确定填写的语句.【详解】由于题目所求是1111246102+++⋅⋅⋅+,最后一个数字为1102,即当102i =时,判断是,继续循环,2104i i =+=,判断否,退出程序输出S 的值,由此可知应填102i ≤.故选B. 【点睛】本小题主要考查填写程序框图循环条件,属于基础题.11.D解析:D 【分析】通过分析可知程序框图的功能为计算211n S n +=+,根据最终输出时n 的值,可知最终赋值S 时5n =,代入可求得结果. 【详解】根据程序框图可知其功能为计算:()111111111211111112231223111n S n n n n n n +=+++⋅⋅⋅+=+-+-+⋅⋅⋅+-=+-=⨯⨯++++初始值为1n =,当6n =时,输出S 可知最终赋值S 时5n = 25111516S ⨯+∴==+ 本题正确选项:D 【点睛】本题考查根据程序框图的功能计算输出结果,关键是能够明确判断出最终赋值时n 的取值.12.A解析:A 【解析】 【分析】模拟程序的运行,依次写出每次循环得到的k 和S 值,根据题意即可得到结果. 【详解】程序运行如下,k=0, S =112-=﹣1, k =1,S =()111--=12;k =2,S =12112=-;k =3,S =11-2=-1… 变量S 的值以3为周期循环变化,当k=2018时,s=2, K=2019时,结束循环,输出s 的值为2. 故选:A . 【点睛】本题考查程序框图,是当型结构,即先判断后执行,满足条件执行循环,不满足条件,跳出循环,算法结束,解答的关键是算准周期,是基础题.二、填空题13.【分析】执行程序框图依次写出每次循环得到的Si 的值当i =2019时不满足条件退出循环输出S 的值为【详解】执行程序框图有S =2i =1满足条件执行循环Si =2满足条件执行循环Si =3满足条件执行循环Si解析:12-【分析】执行程序框图,依次写出每次循环得到的S ,i 的值,当i =2019时,不满足条件2018i ≤退出循环,输出S 的值为12-. 【详解】 执行程序框图,有 S =2,i =1满足条件2018i ≤ ,执行循环,S 3=-,i =2 满足条件2018i ≤ ,执行循环,S 12=-,i =3 满足条件2018i ≤ ,执行循环,S 13=,i =4 满足条件2018i ≤ ,执行循环, S =2,i =5 …观察规律可知,S 的取值以4为周期,由于2018=504*4+2,故有: S 12=-, i =2019, 不满足条件2018i ≤退出循环,输出S 的值为12-, 故答案为12-. 【点睛】本题主要考查了程序框图和算法,其中判断S 的取值规律是解题的关键,属于基本知识的考查.14.37【解析】根据图得到:n=18S=19n=12S=31n=6S=37n=0判断得到n>0不成立此时退出循环输出结果37故答案为:37解析:37 【解析】根据图得到:n=18,S=19,n=12 S=31,n=6,S=37,n=0,判断得到n>0不成立,此时退出循环,输出结果37. 故答案为:37.15.48【解析】第1次运行成立第2次运行成立第3次运行成立第3次运行不成立故输出的值为48解析:48 【解析】第1次运行,1,2,122,4i S S i ===⨯=<成立 第2次运行,2,2,224,4i S S i ===⨯=<成立 第3次运行,3,4,3412,4i S S i ===⨯=<成立 第3次运行,4,12,41248,4i S S i ===⨯=<不成立, 故输出S 的值为4816.【解析】由框图可知其功能为因为每相邻6个值的为0所以=填解析:2【解析】由框图可知其功能为232017sin sinsin sin3333S ππππ=++++,因为每相邻6个值的为0,所以sin3S π= 17.2【解析】当x=2时x2﹣4x+3=﹣1<0满足继续循环的条件故x=3n=1;当x=3时x2﹣4x+3=0满足继续循环的条件故x=4n=2;当x=4时x2﹣4x+3=3>0不满足继续循环的条件故输出解析:2 【解析】当x=2时,x 2﹣4x+3=﹣1<0,满足继续循环的条件,故x=3,n=1; 当x=3时,x 2﹣4x+3=0,满足继续循环的条件,故x=4,n=2; 当x=4时,x 2﹣4x+3=3>0,不满足继续循环的条件, 故输出的n 值为2; 故答案为2.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.18.【分析】根据得知函数的图象关于点对称由可得知函数的周期为于此可在题中三个函数中找出合乎条件的函数作出输出结果【详解】可知函数的图象关于点对称由得所以函数的周期为由三角函数的周期公式可知函数和的最小正解析:()2cos 3f x x π=. 【分析】根据()302f x f x ⎛⎫+--= ⎪⎝⎭得知函数()y f x =的图象关于点3,04⎛⎫- ⎪⎝⎭对称,由()f x + 302f x ⎛⎫+= ⎪⎝⎭可得知函数()y f x =的周期为3,于此可在题中三个函数中找出合乎条件的函数作出输出结果. 【详解】()302f x f x ⎛⎫+--= ⎪⎝⎭,可知函数()y f x =的图象关于点3,04⎛⎫- ⎪⎝⎭对称,由()302f x f x ⎛⎫++=⎪⎝⎭,得()3322f x f x f x ⎛⎫⎛⎫+=-=- ⎪ ⎪⎝⎭⎝⎭,所以函数()y f x =的周期为3.由三角函数的周期公式可知,函数()2sin3f x x π=和()2cos 3f x x π=的最小正周期为3,函数()4tan3f x x π=的最小正周期为34,不合乎要求; 对于函数()2sin 3f x x π=,323sin sin 04342f ππ⎡⎤⎛⎫⎛⎫-=⨯-=-≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦;对于函数()2cos3f x x π=,323cos cos 04342f ππ⎡⎤⎛⎫⎛⎫⎛⎫-=⨯-=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,合乎题意. 所以,函数()2cos3f x x π=的图象关于点3,04⎛⎫- ⎪⎝⎭对称, 故输出的函数为()2cos 3f x x π=,故答案为()2cos 3f x x π=. 【点睛】本题考查程序框图,考查三角函数的周期性和对称性,能根据抽象函数关系式得出函数的基本性质,是解本题的关键,属于中等题.19.24【解析】考点:程序框图专题:图表型分析:由程序中循环的条件为i≤4我们易得到最后一次循环时i=4又由循环变量i 的初值为2故我们从2开始逐步模拟循环的过程即可得到结论解答:解:模拟程序的运行结果:解析:24 【解析】 考点:程序框图. 专题:图表型.分析:由程序中循环的条件为i≤4,我们易得到最后一次循环时i=4,又由循环变量i 的初值为2,故我们从2开始逐步模拟循环的过程,即可得到结论. 解答:解:模拟程序的运行结果: i=2时,t=2,i=3时,t=6, i=4时,t=24, 故答案为24点评:本题考查的知识点是程序框图及程序代码,在写程序运行结果时,模拟程序的运行过程是解答此类问题最常用的方法,模拟时要分析循环变量的初值,步长和终值20.1【解析】试题分析:根据程序框图可知该程序执行的是所以输出的的值为1考点:本小题主要考查程序框图的执行和对数的运算点评:高考中程序框图的题目一般离不开循环结构要分清是当型循环还是直到型循环要搞清楚退解析:1 【解析】试题分析:根据程序框图可知,该程序执行的是34103410lg 2lg lg lglg(2)lg101239239b =++++=⋅⋅⋅⋅==,所以输出的的值为1. 考点:本小题主要考查程序框图的执行和对数的运算.点评:高考中程序框图的题目一般离不开循环结构,要分清是当型循环还是直到型循环,要搞清楚退出循环的条件,避免多执行或少执行一步.三、解答题21.见解析 【分析】计算(1)0,(2)0f f <>,设121,2x x ==,122x x m +=,判断()f m 的符号,根据零点存在定理得到算法. 【详解】第一步:令2()3f x x =-,(1)20,(2)10f f =-<=>,∴设121,2x x ==;第二步:令122x x m +=,判断()f m 是否为0,若是,则m 为所求;若不是,则继续判断()1()f x f m ⋅大于0还是小于0;第三步:若()1()0f x f m ⋅>,则令1x m =;否则,令2x m =;第四步:判断120.0005x x -≤是否成立?若是,则12,x x 之间的任意值均为满足条件的近似根;若不是,则返回第二步. 【点睛】本题考查了求方程近似根的算法,意在考查学生对于算法的理解和应用.22.221,02222,251(7)10,572x x y x x x x ⎧≤≤⎪⎪=-<≤⎨⎪⎪-+<<⎩,程序框图和程序见解析. 【分析】根据直线l 将梯形分割的左边部分的形状进行分类讨论,求出函数关系式,即可根据条件结构画出程序框图,并写出程序. 【详解】过点A ,D 分别作AG ⊥BC ,DH ⊥BC ,垂足分别是G ,H .∵四边形ABCD 是等腰梯形,底角是45°,AB =2cm , ∴BG =AG =DH =HC =2 cm . 又BC =7cm ,∴AD =GH =3cm ,当02x ≤≤时,212y x =; 当25x <≤时,22y x =-;当57x <<时,21(7)102y x =-+, 所以221,02222,251(7)10,572x x y x x x x ⎧≤≤⎪⎪=-<≤⎨⎪⎪-+<<⎩ . 程序框图如下:程序:INPUT “x =”;xIF x >=0 AND x <=2 THENy =0.5 *x ^2ELSEIF x <=5 THENy =2*x -2ELSEy =-0.5*(x -7) ^2+10END IFEND IFPRINT yEND【点睛】本题主要考查分段函数解析式的求法、程序框图的画法以及程序语句的书写,意在考查学生分类讨论思想和算法语句的理解和书写.23.(1)程序框图见解析;(2)2,02,0x x y x x ⎧<=⎨≥⎩,2x =±. 【分析】(1)根据程序语句可知该程序是条件结构框图,并根据程序语句作出相应的程序框图; (2)根据程序语句得出当x 取不同范围内的值时,函数的解析式也不同,然后可根据程序框图结合x 的不同取值范围,得出函数的解析式,然后分0x <和0x ≥解方程4y =,从而可解出输入的x 的值.【详解】(1)对应的程序框图如图所示:(2)该程序表示的函数是2,02,0x x y x x ⎧<=⎨≥⎩. 当0x <时,由24y x ==得2x =-;当0x ≥时,由24y x ==得2x =.出当输出的4y =时,输入的x 的值是2x =±.【点睛】本题考查条件程序框图的应用,同时考查了根据程序框图计算输入值,解题时要对x的取值范围分段来讨论,考查分析问题和解决问题的能力,属于中等题.24.见解析【详解】解:流程图如下:程序如下:INPUT a,bIF a=0 THENIF b<0 THENPRINT“任意实数”ELSEPRINT“无解”ELSEIF a>0 THENPRINT“x<“;﹣b/aELSEPRINT“x>“;﹣b/aENDIFENDIFENDIFEND点睛:解决算法问题的关键是读懂程序框图,明晰顺序结构、条件结构、循环结构的真正含义,本题巧妙而自然地将算法、不等式、交汇在一起,用条件结构来进行考查.这类问题可能出现的错误:①读不懂程序框图;②条件出错;③计算出错.25.(1) ①处应填;②处应填 (2)见解析【解析】分析:(1)由已知中程序的功能是给出个数,其规律是:第个数是;第个数是;第个数比第个数大,第个数比第大,,依次类推,要计算区间个数的和,可以根据循环此时,循环变量的初值、步长计算出循环变量的终值,得到①中的条件;再根据累加的变化规律,得到②中累加通项的表达式;(2)利用直到型循环结构,写出程序.详解:(1)因为是求30个数的和,故循环体应执行30次,其中是计数变量,因此判断框内的条件就是限制计数变量的,故应为,算法中的变量实质是表示参与求和的各个数,由于它也是变化的,且满足第个数比其前一个数大,第个数比其前一个数大,故应有,故①处应填;②处应填.(2)根据框图,写出算法如下:点睛:本题主要考查了直到型的循环结构的算法框图,解答中循环体的循环次数=(循环终值-初值)+步长+1,确定循环的次数,其中循环次数、终值、初值、步长中,能知道其中的三个可求解另一个,对于循环结构的程序框图,判断框内的内容容易出错,做题时要注意,同时注意循环点所在的位置.26.答案见解析【解析】试题分析:先设丢番图的寿数为x, x为正整数,列出方程,再用验证的方法找到方程的解,即得到丢番图的寿数.再根据算法写出算法程序.试题设丢番图的寿数为x,则x为正整数,根据题意可知16x+112x+17x+5+12x+4=x,我们可以从x=1,依次验证是不是方程的解.算法如下: S1x=1;S2判断16x+112x+17x+5+12x+4=x是否成立,如果成立,则输出x;否则,转至S3;S3x=x+1,转至S2.算法程序如下:x=1;while 16x+112x+17x+5+12x+4< >xx=x+1; wendx=x-1print xend点睛:本题的难点在于写出找丢番图的寿数的算法,这里只能采取验证的方法.。

(好题)高中数学必修三第二章《算法初步》测试卷(答案解析)

(好题)高中数学必修三第二章《算法初步》测试卷(答案解析)

一、选择题1.执行如图所示的程序框图,结果是()A.11 B.12 C.13 D.142.计算11111212312310++++⨯⨯⨯⨯⨯⨯⨯,执行如图所示的程序根图,若输入的10N=,则图中①②应分别填入()A.1Tk=,k N>B.1Tk=,k N≥C.TTk=,k N>D.TTk=,k N≥3.若执行如图所示的程序框图,则输出S的值是()A.63 B.15 C.31 D.32 4.执行如下图的程序框图,输出S的值是()A.2 B.1C.12D.-15.执行如图所示的程序框图,输出的S值为()A.511 B.512 C.1022 D.1024 6.如图是求样本数据方差S的程序框图,则图中空白框应填入的内容为()A .()28i S x x S +-=B .()2(1)8i i S x x S -+-= C .()2i S x x S i+-= D .()2(1)i i S x x S i -+-= 7.二分法是求方程近似解的一种方法,其原理是“一分为二,无限逼近”.执行如图所示的程序框图,若输入11x =,22x =,0.1d =,则输出n 的值为( )A .2B .3C .4D .58.执行如图所示的程序框图,输出s 的值为( )A.1 B.20181-C.20191-D.20201-9.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的y的值为2,则输入的x的值为()A.74B.5627C.2D.1648110.执行如图的程序框图,若输出的4n=,则输入的整数p的最小值是()A.4B.5C.6D.15 11.执行如图所示的程序框图,若输人的n值为2019,则S=A.B.C.D.12.执行如下图的程序框图,那么输出S的值是( )A.2 B.1 C.12D.-1二、填空题13.执行下面的程序框图,若输入的a,b,k分别为1,2,3,则输出的M _____14.执行如图所示的程序框图,则输出的i的值为.15.如图是一个算法流程图,若输入x的值为2,则输出y的值为_______. .t=,则输出的n=_______________.16.执行下面的程序框图,如果输入的0.0217.如图所示的程序框图的算法思路源于宋元时期数学名著《算法启蒙》中的“松竹并生”问题.若输入的a,b的值分别为7,3,则输出的n的值为____________.18.执行如图所示的程序框图,输出S的值为___________.19.某程序框图如图所示,该程序运行后输出的S为____________.20.阅读如图所示的程序框图,该程序输出的结果是__________.三、解答题21.设计一个求有限数列1a ,2a ,3a ,⋅⋅⋅,10a 中的最大数的算法.22.写出一个求解任意二次函数()20y ax bx c a =++≠的最值的算法.23.图是求239111112222S =+++++的一个程序框图. (1)在程序框图的①处填上适当的语句;(2)写出相应的程序.24.设计算法求111112233499100++++⨯⨯⨯⨯的值,要求画出程序框图,并用基本的算法语句编写程序. 25.已知函数f(x)=221(0)25(0)x x x x ⎧-≥⎨-<⎩每输入一个x 值,都得到相应的函数值,画出程序框图并写出程序.26.设计程序求π的近似值可以用公式:2222π1116123=+++…+21n ,用此公式求2π6,即逐项进行累加,直到21n <0.000 01为止(该项不累加),然后求出π的近似值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据已知的程序语句可得,该程序的功能是利用循环结构计算并输出k 的值,模拟程序的运行过程,可得答案.【详解】根据题意,模拟程序框图的运行过程,如下:17,0n k ==17不是偶数,3171=52n =⨯+,011k =+=,521≠;52是偶数,52262n ==,112k =+=,261≠; 26是偶数,26132n ==,213k =+=,131≠; 13不是偶数,3131=40n =⨯+,314k =+=,401≠; 40是偶数,40202n ==,415k =+=,201≠; 20是偶数,20102n ==,516k =+=,101≠; 10是偶数,1052n ==,617k =+=,51≠; 5不是偶数,351=16n =⨯+,718k =+=,161≠;16是偶数,1682n ==,819k =+=,81≠; 8是偶数,842n ==,9110k =+=,41≠; 4是偶数,422n ==,10111k =+=,21≠; 2是偶数,212n ==,11112k =+=,11=; 故选:B【点睛】关键点睛:解题的关键是要读懂程序框图,模拟程序框图的运行过程,即突破难点. 2.C解析:C【分析】根据题意计算结果直接判断即可解题.【详解】当①②分别是T T k=,k N >时, 首先初始化数据;10N =,1k =,0S =,1T =. 第一次循环,1T T k ==,1S S T =+=,12k k =+=,此时不满足k N >; 第二次循环,112T T k ==⨯,1112S S T =+=+⨯,13k k =+=,此时不满足k N >; 第三次循环,1123T T k ==⨯⨯,11112123S S T =+=++⨯⨯⨯,14k k =+=,此时不满足k N >;一直循环下去,第十次循环,112310T T k ==⨯⨯⨯⨯,11111212312310S S T =+=++++⨯⨯⨯⨯⨯⨯⨯,111k k =+=,此时满足k N >,跳出循环. 故输出的11111212312310S =++++⨯⨯⨯⨯⨯⨯⨯.故选:C. 【点睛】本题考查根据计算补全程序框图,是基础题.3.C解析:C 【分析】根据程序框图模拟程序计算即可求解. 【详解】模拟程序的运行,可得1S =,1i =; 满足条件5i <,执行循环体,3S =,2i =; 满足条件5i <,执行循环体,7=S ,3i =; 满足条件5i <,执行循环体,15S =,4i =; 满足条件5i <,执行循环体,31S =,5i =; 此时,不满足条件5i <,退出循环,输出S 的值为31. 故选:C 【点睛】本题主要考查了程序框图,循环结构,属于中档题.4.C解析:C 【分析】模拟程序的运行,依次写出每次循环得到的k 和S 值,根据题意即可得到结果. 【详解】程序运行如下,k =1,S =112-=﹣1, k =2,S =()111--=12;k =3,S =12112=-;k =4,S =11-2=﹣1…变量S 的值以3为周期循环变化,当k =2015时,12S =, k =2016时,结束循环,输出S 的值为12. 故选:C . 【点睛】本题考查程序框图,是当型结构,即先判断后执行,满足条件执行循环,不满足条件,跳出循环,算法结束,解答的关键是算准周期,属于中档题.5.C解析:C 【分析】直接根据程序框图计算得到答案. 【详解】根据程序框图知:92391012222 (2222102212)S -=++++==-=-.故选:C. 【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力,确定程序框图表示的意义是解题的关键.6.D解析:D 【分析】由题意知该程序的作用是求样本128,,,x x x 的方差,由方差公式可得. 【详解】由题意知该程序的作用是求样本128,,,x x x 的方差,所用方法是求得每个数与x 的差的平方,再求这8个数的平均值,则图中空白框应填入的内容为:()2(1)i i S x x S i-+-=故选:D 【点睛】本题考查了程序框图功能的理解以及样本方差的计算公式,属于一般题.7.C解析:C 【分析】按照用二分法求函数零点近似值的步骤求解即可,注意验证精确度的要求. 【详解】解:模拟程序的运行,可得121,1,2,0.1n x x d ====,令22f xx ,则()()110,220f f =-<=>,()1.5, 1.50.250m f ==>,满足条件()()120, 1.5f m f x x <=,此时1.510.50.1-=>,不符合精确度要求;()2, 1.25, 1.250.43750n m f ===-<,不满足条件()()110, 1.25f m f x x <=,此时1.5 1.250.250.1-=>,不符合精确度要求;()3, 1.375, 1.3750.1090n m f ===-<,不满足条件()()110, 1.375f m f x x <=,此时1.5 1.3750.1250.1-=>,不符合精确度要求;()4, 1.4375, 1.43750.0660n m f ===>,满足条件()()120, 1.4375f m f x x <=,此时1.4375 1.3750.06250.1-=<,符合精确度要求. 退出循环,输出n 的值为4. 故选:C. 【点睛】本题主要考查循环结构程序框图以及用二分法求区间根的问题,属于基础题型,二分法是把函数的零点所在区间一分为二,使区间的两个端点逐步逼近零点,进而求零点近似值的方法.8.D解析:D 【分析】根据程序框图,模拟程序运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】第一次执行循环体后,2,01)n S ==+,第二次执行循环体后,3,0n S ==+,⋯第n 次执行循环体后, 1,0(1n n S n =+=++++,因为2019n <输出S ,所以01)S =+++++⋯+01)=+++++⋯+1=,故选:D 【点睛】本题主要考查了程序框图,解题时模拟程序运行过程即可,属于中档题.9.C解析:C 【分析】根据程序框图依次计算得到答案. 【详解】34y x =-,1i =;34916y y x =-=-,2i =;342752y y x =-=-,3i =;3481160y y x =-=-,4i =;34243484y y x =-=-,此时不满足3i ≤,跳出循环,输出结果为243484x -,由题意2434842y x =-=,得2x =. 故选:C 【点睛】本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.10.A解析:A 【分析】列举出算法的每一步循环,根据算法输出结果计算出实数p 的取值范围,于此可得出整数p 的最小值. 【详解】0S p =<满足条件,执行第一次循环,0021S =+=,112n =+=; 1S p =<满足条件,执行第二次循环,1123S =+=,213n =+=; 3S p =<满足条件,执行第二次循环,2327S =+=,314n =+=. 7S p =<满足条件,调出循环体,输出n 的值为4.由上可知,37p <≤,因此,输入的整数p 的最小值是4,故选A. 【点睛】本题考查算法框图的应用,解这类问题,通常列出每一次循环,找出其规律,进而对问题进行解答,考查分析问题和解决问题的能力,属于中等题.11.B解析:B 【分析】根据程序框图可知,当时结束计算,此时.【详解】计算过程如下表所示:周期为6 n 2019k 1 2 (2018)2019S…【点睛】本题考查程序框图,选用表格计算更加直观,此题关键在于判断何时循环结束.12.A解析:A 【解析】 【分析】模拟程序的运行,依次写出每次循环得到的k 和S 值,根据题意即可得到结果. 【详解】程序运行如下,k=0, S =112-=﹣1, k =1,S =()111--=12;k =2,S =12112=-;k =3,S =11-2=-1… 变量S 的值以3为周期循环变化,当k=2018时,s=2, K=2019时,结束循环,输出s 的值为2. 故选:A . 【点睛】本题考查程序框图,是当型结构,即先判断后执行,满足条件执行循环,不满足条件,跳出循环,算法结束,解答的关键是算准周期,是基础题.二、填空题13.12【分析】由题意可知从开始判断框条件成立执行第一次循环得到一组新的的值再从开始判断框条件成立执行第一次循环得到一组新的的值当时判断条件框不成立输出此时的值即可得出答案【详解】当时执行程序框图得;当解析:12 【分析】由题意可知,从1n =开始,判断框条件成立,执行第一次循环,得到一组新的,,M a b 的值,再从2n =开始,判断框条件成立,执行第一次循环,得到一组新的,,M a b 的值,当3n =时,判断条件框不成立,输出此时M 的值,即可得出答案. 【详解】当1n =时,执行程序框图得,1225,2,5M a b =+⨯===;当2n =时,执行程序框图得,22512,5,12M a b =+⨯===; 当3n =时,不满足判断条件框,直接输出 12M =.故答案为12. 【点睛】本题主要考查了根据程序框图写出执行结果的问题,对于这类题目,首先要弄清框图的结构和执行过程,本题为循环结构的程序框图.14.4【解析】【分析】由程序框图知该程序的功能是利用循环结构计算并输出变量的值模拟程序的运行过程分析循环中各变量值的变化情况可得答案【详解】模拟执行如图所示的程序框图如下判断第1次执行循环体后;判断第2解析:4 【解析】 【分析】由程序框图知该程序的功能是利用循环结构计算并输出变量i 的值, 模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】模拟执行如图所示的程序框图如下,判断S T ,第1次执行循环体后,3S =,6T =,2i =; 判断S T ,第2次执行循环体后,S 9=,11T =,3i =; 判断S T ,第3次执行循环体后,27S =,16T =,4i =; 判断S T >,退出循环,输出i 的值为4. 【点睛】本题主要考查对含有循环结构的程序框图的理解,模拟程序运算可以较好地帮助理解程序的算法功能.15.5【分析】直接模拟程序即可得结论【详解】输入的值为2不满足所以故答案是:5【点睛】该题考查的是有关程序框图的问题涉及到的知识点有程序框图的输出结果的求解属于简单题目解析:5 【分析】直接模拟程序即可得结论. 【详解】输入x 的值为2,不满足1x ≤,所以3325y x =+=+=, 故答案是:5. 【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有程序框图的输出结果的求解,属于简单题目.16.【解析】分析:由已知中的程序框图可知该程序的功能是利用循环结构计算并输出变量的值模拟程序运行过程分析循环变量值的变化规律即可求解答案详解:执行如图所示的程序框图:第一次循环:满足条件;第二次循环:满解析:【解析】分析:由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量n 的值,模拟程序运行过程,分析循环变量值的变化规律,即可求解答案. 详解:执行如图所示的程序框图: 第一次循环:11,,124S m n ===,满足条件; 第二次循环:11,,248S m n ===,满足条件; 第三次循环:11,,3816S m n ===,满足条件; 第四次循环:11,,41632S m n ===,满足条件; 第五次循环:11,,53264S m n ===,满足条件; 第六次循环:11,,664128S m n ===,不满足条件,推出循环,此时输出6n =; 点睛:本题主要考查了循环结构的程序框图的运行与结果出的输出问题,解题是应模拟程序框图的运行过程,以便得出正确的计算结果,同时注意判断框的条件是解答的关键,着重考查了推理与运算能力.17.3【解析】输入进入循环不满足执行循环不满足执行循环满足输出故答案为3解析:3 【解析】输入7,3,1a b n === 进入循环,21,2622a a ab b =+===,不满足a b ≤ 执行循环,6312,,21224a n n a ab b =+==+===,不满足a b ≤ 执行循环,18913,,22428a n n a ab b =+==+===,满足a b ≤,输出3n = 故答案为318.48【解析】第1次运行成立第2次运行成立第3次运行成立第3次运行不成立故输出的值为48解析:48 【解析】第1次运行,1,2,122,4i S S i ===⨯=<成立第2次运行,2,2,224,4i S S i ===⨯=<成立 第3次运行,3,4,3412,4i S S i ===⨯=<成立 第3次运行,4,12,41248,4i S S i ===⨯=<不成立, 故输出S 的值为4819.【分析】列出前几次循环找出该算法循环的周期性然后利用周期性求出输出结果的值【详解】成立执行第一次循环;成立执行第二次循环;成立执行第三次循环;成立执行第四次循环;成立执行第五次循环由上可知该算法循环解析:13. 【分析】列出前几次循环,找出该算法循环的周期性,然后利用周期性求出输出结果S 的值. 【详解】12011i =≤成立,执行第一次循环,12312S +==--,112i =+=; 22011i =≤成立,执行第二次循环,()()131132S +-==---,213i =+=;32011i =≤成立,执行第三次循环,11121312S ⎛⎫+- ⎪⎝⎭==⎛⎫-- ⎪⎝⎭,314i =+=; 42011i =≤成立,执行第四次循环,1132113S +==-,415i =+=;52011i =≤成立,执行第五次循环,12312S +==--,516i =+=. 由上可知,该算法循环是以4次为一个循环周期,执行完最后一次循环,2012i =,201255024=⨯+,因此,输出的结果S 的值为13,故答案为13.【点睛】本题考查算法的周期性,解题时要结合算法程序框图得出算法循环的周期性,考查推理能力与计算能力,属于中等题.20.120【分析】由题意首先确定程序的功能然后计算其输出结果即可【详解】由题意可得题中流程图的功能为计算的值据此计算可得输出的结果为故答案为120【点睛】识别运行程序框图和完善程序框图的思路:(1)要明解析:120 【分析】由题意首先确定程序的功能,然后计算其输出结果即可.【详解】由题意可得,题中流程图的功能为计算12345S =⨯⨯⨯⨯的值, 据此计算可得输出的结果为120S =. 故答案为120. 【点睛】识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.三、解答题21.见解析 【分析】采用逐一比较法:先选两个数12,a a 进行比较,选出较大的数记作M ;然后M 与第三个数3a 进行比较,较大的数仍记作M ;M 可以取不同的数值,如此一直继续下去,直到M 与第十个数10a 进行比较,较大的数仍记作M ;则M 即为所求的最大数. 【详解】第一步:将1a 与2a 进行比较,将其中较大的数暂时先记作M ; 第二步:将M 与3a 进行比较,将其中较大的数暂时先记作M ; 第三步:将M 与4a 进行比较,将其中较大的数暂时先记作M ; ……第1n -步:将M 与n a 进行比较,将其中较大的书暂时先记作M ; 第n 步:输出M .M 的值就是所求的最大数. 【点睛】本题考查算法的设计步骤和解决数学中求最大数的问题;其中每一步都要与上一步的最大数M 进行比较,得出新的最大数仍记作M 是写出本算法的关键;属于中档题. 22.见解析 【分析】由二次函数的性质知,当0a >时,二次函数()20y ax bx c a =++≠开口方向向上,函数有最小值为244ac b a -;当0a <时, 二次函数()20y ax bx c a =++≠开口方向向下,函数有最大值为244ac b a-. 【详解】第一步,输入a ,b ,c第二步,计算244ac b m a-=;第三步,若0a >,min y m =,否则, max y m =. 【点睛】本题考查算法步骤的书写和一元二次函数的最值问题;同时让学生体会算法在解决数学问题中的作用;求解本题的关键是对一元二次函数最值情况必须熟悉;属于中档题. 23.(1)2TT =;(2)见解析 【解析】 【分析】 ⑴要计算239111112222S =+++++的一个程序框图的值需要用直到型循环结构,利用被累加数列的通项公式求解即可⑵根据框图写出对应得程序语句,即可得解 【详解】(1)的意图为表示各累加项,即数列的通项公式,故为2T T = (2)程序如下:【点睛】本题主要考查了程序框图的补全,结合题意运用数列的通项公式求出结果,然后再给出程序,需要熟练掌握各知识点。

(好题)高中数学必修三第二章《算法初步》测试(答案解析)(2)

一、选择题1.我国南宋时期数学家秦九韶在其著作(数术九章》中提出了解决多项式求值的秦九韶算法,其程序框图如图所示,若输入3x =,则输出v 的值为( )A .1131-B .11312-C .12312-D .10312-2.如图是求样本数据方差S 的程序框图,则图中空白框应填入的内容为( )A .()28i S x x S +-=B .()2(1)8i i S x x S -+-=C .()2i S x x S i+-=D .()2(1)i i S x x S i-+-=3.如图所示的程序框图输出的结果是( )A .34B .55C .78D .894.执行如图的程序框图,若输入1t =-,则输出t 的值等于( )A .3B .5C .7D .155.二分法是求方程近似解的一种方法,其原理是“一分为二,无限逼近”.执行如图所示的程序框图,若输入11x =,22x =,0.1d =,则输出n 的值为( )A.2 B.3 C.4 D.5⨯⨯⨯⨯的值的一个程序框图,则其中判断框内应填入的6.如图给出的是计算1232018是()A .2018i <B .2018i =C .2018i ≤D .2018i >7.正整数N 除以正整数m 后的余数为n ,记为()N n MODm ≡,例如()2516MOD ≡.如图所示程序框图的算法源于“中国剩余定理”,若执行该程序框图,当输入49N =时,则输出结果是( )A .58B .61C .66D .768.执行如图所示的程序框图,输出s 的值为( )A .1B 20181C 20191D 202019.朱世杰是我国元代伟大的数学家,其传世名著《四元玉鉴》中用诗歌的形式记载了下面这样一个问题:我有一壶酒,携着游春走.遇务①添一倍,逢店饮斛九②.店务经四处,没了这壶酒.借问此壶中,当原多少酒?①“务”:旧指收税的关卡所在地;②“斛九”:1.9斛.下图是解决该问题的算法程序框图,若输入的x 值为0,则输出的x 值为( )A .5740B .13380C .5732D .58932010.对任意非零实数a 、b ,若a b ⊗的运算原理如图所示,则121log 43-⎛⎫⊗ ⎪⎝⎭的值为( )A .13B .1C .43D .211.某程序框图如图所示,若运行该程序后输出S =( )A.53B.74C.95D.11612.执行如下图的程序框图,那么输出S的值是( )A.2 B.1 C.12D.-1二、填空题13.如图所示的流程图中,输出n的值为______.14.某程序框图如图所示,则执行该程序后输出的结果是_______.15.某程序框图如图所示,若输入的4t =,则输出的k =______.16.已知一个算法的程序框图如图所示,当输入的1x =-与1x =时,则输出的两个y 值的和为__________.17.如图,程序框图中,语句1被执行的次数为__________.18.根据如图所示的程序框图,若输出的值为4,则输入的值为______________.19.程序框图如下图所示,其输出的结果是__________________________.20.执行如图所示的程序框图,若输入,则输出的值为__________________.三、解答题21.某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答下列问题:(1)写出该城市经过x年后的人口总数关于x的函数关系式;(2)用程序流程图表示计算10年以后该城市人口总数的算法;(3)用程序流程图表示如下算法:计算大约多少年以后该城市人口将达到120万人. 22.指出下列程序框图表示的算法,并将最后输出的结果表示出来,指出相应的循环结构,并用另一种循环结构画出这个算法的程序框图.23.图是求239111112222S =+++++的一个程序框图. (1)在程序框图的①处填上适当的语句; (2)写出相应的程序.24.有关专家建议预测,在未来几年内,中国的通货膨胀率保持在3%左右,这将对我国经济的稳定有利无害.所谓通货膨胀率为3%,指的是每年消费品的价格增长率为3%.在这种情况下,某种品牌的钢琴2015年的价格是10 000元,试分析其算法并用流程图描述这种钢琴今后四年的价格变化情况,并输出四年后的价格.25.公司出售软磁盘,购买500片和500片以上时,按4.5元计价,否则以每片5元计价,请用流程图表示按输入磁盘片数计算不同的收费金额. 26.下面给出一个用循环语句编写的程序: k =1sum =0WHILE k <10sum =sum +k ∧2k =k +1WENDPRINT sumEND(1)指出程序所用的是何种循环语句,并指出该程序的算法功能;(2)请用另一种循环语句的形式把该程序写出来.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据给定的程序框图可得,该程序的功能是计算并输出变量v 的值,模拟程序的运行过程,即可求解.【详解】由题意,输入3,1,1x v k ===,第1次循环,满足判断条件,31,2v k =+=;第2次循环,满足判断条件,2(31)31331,3v k =+⨯+=++=;第10次循环,11109313331,112v k -=++++==, 不满足判断条件,输出运算结果11312v -=. 故选:B.【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中当程序的运行次数不多或有规律时,可采用模拟运行的办法进行求解,着重考查推理与运算能力,属于基础题. 2.D解析:D【分析】由题意知该程序的作用是求样本128,,,x x x 的方差,由方差公式可得.【详解】由题意知该程序的作用是求样本128,,,x x x 的方差, 所用方法是求得每个数与x 的差的平方,再求这8个数的平均值,则图中空白框应填入的内容为: ()2(1)i i S x x S i-+-= 故选:D【点睛】本题考查了程序框图功能的理解以及样本方差的计算公式,属于一般题. 3.B解析:B【分析】通过不断的循环赋值,得到临界值,即可得解.【详解】1,1,21,2,32,3,53,5,85,8,138,13,2113,21,3421,34,55x y z x y z x y z x y z x y z x y z x y z x y z ======================== 不满足50z ≤,输出即可,故选:B.【点睛】本题考查了程序框图循环结构求输出结果,考查了计算能力,属于中当题.4.C解析:C【分析】直接根据程序框图依次计算得到答案.【详解】模拟执行程序,可得1t =-,不满足条件0t >,0t =,满足条件()()250t t +-<,不满足条件0t >,1t =,满足条件()()250t t +-<,满足条件0t >,3t =,满足条件()()250t t +-<,满足条件0t >,7t =,不满足条件()()250t t +-<,退出循环,输出t 的值为7. 故选:C.【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力.5.C解析:C【分析】按照用二分法求函数零点近似值的步骤求解即可,注意验证精确度的要求.【详解】解:模拟程序的运行,可得121,1,2,0.1n x x d ====,令22f x x ,则()()110,220f f =-<=>,()1.5, 1.50.250m f ==>,满足条件()()120, 1.5f m f x x <=, 此时1.510.50.1-=>,不符合精确度要求;()2, 1.25, 1.250.43750n m f ===-<,不满足条件()()110, 1.25f m f x x <=, 此时1.5 1.250.250.1-=>,不符合精确度要求;()3, 1.375, 1.3750.1090n m f ===-<,不满足条件()()110, 1.375f m f x x <=, 此时1.5 1.3750.1250.1-=>,不符合精确度要求;()4, 1.4375, 1.43750.0660n m f ===>,满足条件()()120, 1.4375f m f x x <=, 此时1.4375 1.3750.06250.1-=<,符合精确度要求.退出循环,输出n 的值为4.故选:C.【点睛】本题主要考查循环结构程序框图以及用二分法求区间根的问题,属于基础题型,二分法是把函数的零点所在区间一分为二,使区间的两个端点逐步逼近零点,进而求零点近似值的方法.6.D解析:D【分析】可先结合输出结果预判,满足某一条件时,输出结果s ,综合判断D 正确【详解】由输出结果判断,显然是经过多次运算的结果,运算中i 是不断递加的,满足某一条件时,输出结果,排除A ,C ;接下来计算:设001,1s i ==,不满足判断条件,100101,12s s i i i =⋅==+=;不满足判断条件,2112112,13s s i i i =⋅=⨯=+=;不满足判断条件,32232123,14s s i i i =⋅=⨯⨯=+=;直到201820172017201820171232018,12019s s i i i =⋅=⨯⨯⨯=+=,此时满足判断条件,说明20192018>,故判断语句为:2018i >故选:D【点睛】本题考查由输出值辨别判断语句,属于中档题 7.B解析:B【分析】该程序框图的作用是求被3和5除后的余数为1的数,根据所给的选项,得出结论.【详解】模拟程序的运行,可得49N =,50N =,不满足条件()13N MOD ≡,51N =;不满足条件()13N MOD ≡,52N =;满足条件()13N MOD ≡,不满足条件()15N MOD ≡,53N =;不满足条件()13N MOD ≡,54N =;不满足条件()13N MOD ≡,55N =; 满足条件()13N MOD ≡,不满足条件()15N MOD ≡,56N =;不满足条件()13N MOD ≡,57N =;不满足条件()13N MOD ≡,58N =; 满足条件()13N MOD ≡,不满足条件()15N MOD ≡,59N =;不满足条件()13N MOD ≡,60N =;不满足条件()13N MOD ≡,61N =; 满足条件()13N MOD ≡,满足条件()15N MOD ≡,输出61N =.故选:B.【点睛】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.8.D解析:D【分析】根据程序框图,模拟程序运行过程,分析循环中各变量值的变化情况,可得答案.【详解】第一次执行循环体后,2,01)n S ==+,第二次执行循环体后,3,0n S ==+,⋯第n 次执行循环体后, 1,0(1n n S n =+=++++,因为2019n <输出S ,所以01)S =+++++⋯+01)=+++++⋯+1=,故选:D【点睛】本题主要考查了程序框图,解题时模拟程序运行过程即可,属于中档题.9.C解析:C【分析】本题首先可以根据题意以及程序框图明确输入的数据为“0x =,0i =”和运算的算式为“119210x x 、1i i =+”,然后进行运算并结合条件“4i ”得出结果。

高中数学必修3(人教A版)第一章算法初步1.1知识点总结含同步练习及答案

描述:例题:高中数学必修3(人教A版)知识点总结含同步练习题及答案第一章 算法初步 1.1 算法与程序框图一、学习任务1. 了解算法的含义,了解算法的基本思想,能用自然语言描述解决具体问题的算法.2. 了解设计程序框图表达解决问题的过程,了解算法和程序语言的区别;了解程序框图的三种基本逻辑结构,会用程序框图表示简单的常见问题的算法.二、知识清单算法 程序框图三、知识讲解1.算法算法(algorithm)是指按照一定规则解决某一类问题的明确和有限的步骤 .可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.描述算法可以有不同的方式.例如,可以用自然语言和数学语言加以描述,也可以借助形式语言(算法语言)给出精确的说明,也可以用框图直观地显示算法的全貌.算法的要求:(1)写出的算法,必须能解决一类问题,并且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步后能得到结果.下列对算法的理解不正确的是( )A.一个算法应包含有限的步骤,而不能是无限的B.算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的C.算法中的每一个步骤都应当是有效地执行,并得到确定的结果D.一个问题只能设计出一种算法解:D算法的有限性是指包含的步骤是有限的,故 A 正确;算法的确定性是指每一步都是确定的,故 B正确;算法的每一步都是确定的,且每一步都应有确定的结果,故 C 正确;对于同一个问题可以有不同的算法,故 D 错误.下列叙述能称为算法的的个数为( )描述:2.程序框图程序框图简称框图,是一种用程序框、流程线及文字说明来表示算法的图形.其中,起、止框是任何流程不可少的,表明程序的开始和结束.输入和输出框可用在算法中任何需要输入、输出的位置.算法中间要处理数据或计算,可分别写在不同的处理框内.一个算法步骤到另一个算法步骤用流程线连接.如果一个框图需要分开来画,要在断开处画上连接点,并标出连接的号码.①植树需要运苗、挖坑、栽苗、浇水这些步骤;②依次进行下列运算:,,,,;③从枣庄乘火车到徐州,从徐州乘飞机到广州;④ ;⑤求所有能被 整除的正整数,即 .A. B. C. D.解:B①、②、③为算法.1+1=22+1=33+1=4⋯99+1=1003x >x +133,6,9,12,⋯2345写出解方程组的一个算法.解:方法一:代入消元法. 第一步,由 得 ;第二步,将 代入 ,得 ,解得 ;第三步,将 代入方程 ,得 ;第四步,得到方程组的解为 .方法二:加减消元法.第一步,方程 两边同乘以 ,得 ;第二步,将第一步所得的方程与方程 作差,消去 ,得 ,解得 ;第三步,将 代入方程 ,得 ,解得 ;第四步,得到方程组的解为 .{2x +y =74x +5y =112x +y =7y =7−2x y =7−2x 4x +5y =114x +5(7−2x )=11x =4x =4y =7−2x y =−1{x =4y =−12x +y =7510x +5y =354x +5y =11y 6x =24x =4x =42x +y =72×4+y =7y =−1{x =4y =−1例题:画程序框图的规则(1)使用标准的图形符号.(2)框图一般按从上到下、从左到右的方向画.(3)除判断框外,大多数流程图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的惟一符号.(4)判断框分两大类,一类判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.算法的三种基本逻辑结构顺序结构:语句与语句之间,框与框之间按从上到下的顺序进行.条件分支结构:在一个算法中,经常会遇到一些条件的判断,算法的流程条件是否成立有不同的流向,条件结构就是处理这种过程的结构.循环结构:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.下列程序框图分别是解决什么问题的算法.解:(1)已知圆的半径,求圆的面积的算法.(2)求两个实数加法的算法.执行如图的程序框图,输出的 ______ .解:T =30四、课后作业 (查看更多本章节同步练习题,请到快乐学)某程序框图如图所示,若输出的 ,则判断框内为( )A. B. C. D.解:AS =57k >4?k >5?k >6?k >7?已知函数 ,对每次输入的一个值,都得到相应的函数值,画出程序框图.解:f (x )={2x +3,3−x ,x 2x ⩾0x <0x答案:1. 关于算法的说法中,正确的是 A .算法就是某个问题的解题过程B .算法执行后可以产生不确定的结果C .解决某类问题的算法不是唯一的D .算法可以无限地操作下去不停止C()答案:解析:2. 下列运算不属于我们所讨论算法范畴的是 A .已知圆的半径求圆的面积B .随意抽 张扑克牌算到二十四点的可能性C .已知坐标平面内两点求直线方程D .加减乘除法运算法则B注意算法需按照一定的顺序进行.()4答案:解析:3. 执行如图所示的程序框图,如果输入的 ,则输出的 属于 .A .B .C .D .D取 ,得输出的 ,即可判断.t ∈[−2,2]S ()[−6,−2][−5,−1][−4,5][−3,6]t =−2S =64. 某批发商按客户订单数额的大小分别给予不同的优惠折扣.计算客户应付货款的算法步骤如下: :输入订单数额 (单位:件);输入单价 (单位:元);:若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;:计算应付货款 (单位:元);:输出应付货款 .S 1x A S 2x <250d =0250⩽x <500d =0.05500⩽x <1000d =0.10x ⩾1000d =0.15S 3T =Ax (1−d )S 4T。

(好题)高中数学必修三第二章《算法初步》测试卷(有答案解析)(3)

一、选择题1.阅读下面的框图,运行相应的程序,输出S 的值为________.A .2B .4C .-4D .-82.若执行下面的程序框图,输出S 的值为5,则判断框中应填入的条件是( )A .15?k ≤B .16?k ≤C .31?k ≤D .32?k ≤ 3.某程序框图如图所示,该程序运行后输出S 的值是( )A .910B .1011C .1112D .1114.正整数N 除以正整数m 后的余数为n ,记为()N n MODm ≡,例如()2516MOD ≡.如图所示程序框图的算法源于“中国剩余定理”,若执行该程序框图,当输入49N =时,则输出结果是( )A .58B .61C .66D .765.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的y 的值为2,则输入的x 的值为( )A .74B .5627C .2D .164816.某程序框图如图所示,其中21()g n n n =+,若输出的20192020S =,则判断框内可以填入的条件为( )A .2020?n <B .2020?nC .2020?n >D .2020?n 7.如图,“大衍数列”:0,2,4,8,12….来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生过程中曾经经历过的两仪数量总和.下图是求大衍数列前n 项和的程序框图.执行该程序框图,输入10m =,则输出的S =( )A.100 B.140 C.190 D.2508.执行如图所示的程序框图,若输出的值为﹣1,则判断框①中可以填入的条件是()A.n≥999B.n≤999C.n<999 D.n>999 9.若执行如图所示的程序框图,则输出S的值为()A .9-B .16-C .25-D .36- 10.下列赋值语句正确的是 ( )A .S =S +i 2B .A =-AC .x =2x +1D .P =11.执行如图的程序框图,如果输出a 的值大于100,那么判断框内的条件为()A .5k <?B .5k ≥?C .6k <?D .6k ≥?12.执行如图所示程序框图,当输入的x 为2019时,输出的y (= )A.28B.10C.4D.2二、填空题13.执行如图所示的程序框图,输出的值为__________.14.如图所示的程序框图,输出的S的值为()A.12B.2 C.1-D.12-15.运行下边的流程图,输出的结果是__________.16.执行如图所示的程序框图,输出S的值为___________.17.执行右边的程序框图,若,则输出的________.18.执行如图所示的程序框图,若输入4x ,则输出y 的值为__________.x ,则输出i的值是 . 19.如图所示的程序框图中,若520.如图,如图所示程序框图输出的结果是________.三、解答题21.用二分法设计一个求方程230x -=在[]1,2上的近似根的算法.(近似根与精确解的差的绝对值不超过0.0005)22.已知直线1:240l x y +-=,阅读如图所示的程序框图,若输入的x 的值为612+,输出的()f x 的值恰为直线2l 在x 轴上的截距,且12l l ⊥.(1)求直线1l 与2l 的交点坐标;(2)若直线3l 过直线1l 与2l 的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求3l 的方程.23.函数y=x 1,x 0,0,x 0,x 1,x 0,-+>⎧⎪=⎨⎪+<⎩ 试写出给定自变量x,求函数值y 的算法.24.下面给出了一个问题的算法:第一步,输入x .第二步,若x ≥4,则执行第三步,否则执行第四步.第三步,y =2x -1,输出y .第四步,y =x 2-2x +3,输出y .问题:(1)这个算法解决的问题是什么?(2)当输入的x 值为多大时,输出的数值最小?25.设计算法输出1 000以内既能被3整除又能被5整除的所有正整数,画出程序框图. 26.古希腊杰出的数学家丢番图的墓碑上有这样一首诗:这是一座古墓,里面安葬着丢番图.请你告诉我,丢番图的寿数几何?他的童年占去了一生的六分之一,接着十二分之一是少年时期,又过了七分之一的时光,他找到了自己的终身伴侣.五年之后,婚姻之神赐给他一个儿子,可是儿子不济,只活到父亲寿数的一半,就匆匆离去.这对父亲是一个沉重的打击,整整四年,为失去爱子而悲伤,终于告别了数学,离开了人世.试用循环结构,写出算法分析和算法程序.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】执行程序一次,8,2s n =-=,执行第二次,4,1s n =-=,满足判断框条件,跳出循环,输出4s =-,故选C.2.C解析:C【分析】根据流程图可知()231log 3log 4log 1k S k =⨯⨯⨯⨯+,根据输出值为5可得判断条件.【详解】设判断条件为k m ≤,则输出值为()231log 3log 4log 1m S m =⨯⨯⨯⨯+, 而()()lg 1lg 1lg 3lg 415lg 2lg 3lg lg 2m m S m ++=⨯⨯⨯⨯==, 故31m =, 故选:C.【点睛】本题考查流程图中判断条件的确定以及对数性质的应用,注意S 的计算应根据判断条件的临界值来计算,本题属于中档题.3.B解析:B【分析】模拟程序运行后,可得到输出结果,利用裂项相消法即可求出答案.【详解】模拟程序运行过程如下:0)1,0k S ,判断为否,进入循环结构,1)110,2122S k =+==⨯,判断为否,进入循环结构, 2)11,3223S k =+=⨯,判断为否,进入循环结构, 3)111,422334S k =++=⨯⨯,判断为否,进入循环结构, ……9)111,10223910S k =+++=⨯⨯,判断为否,进入循环结构, 10)1111,112239101011S k =++++=⨯⨯⨯,判断为是, 故输出1112231011S =+++⨯⨯111111101122310111111=-+-++-=-=, 故选:B.【点睛】 本题主要考查程序框图,考查裂项相消法,难度不大.一般遇见程序框图求输出结果时,常模拟程序运行以得到结论.4.B解析:B【分析】该程序框图的作用是求被3和5除后的余数为1的数,根据所给的选项,得出结论.【详解】模拟程序的运行,可得49N =,50N =,不满足条件()13N MOD ≡,51N =;不满足条件()13N MOD ≡,52N =;满足条件()13N MOD ≡,不满足条件()15N MOD ≡,53N =;不满足条件()13N MOD ≡,54N =;不满足条件()13N MOD ≡,55N =; 满足条件()13N MOD ≡,不满足条件()15N MOD ≡,56N =;不满足条件()13N MOD ≡,57N =;不满足条件()13N MOD ≡,58N =; 满足条件()13N MOD ≡,不满足条件()15N MOD ≡,59N =;不满足条件()13N MOD ≡,60N =;不满足条件()13N MOD ≡,61N =; 满足条件()13N MOD ≡,满足条件()15N MOD ≡,输出61N =.故选:B.【点睛】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.5.C解析:C【分析】根据程序框图依次计算得到答案.【详解】34y x =-,1i =;34916y y x =-=-,2i =;342752y y x =-=-,3i =; 3481160y y x =-=-,4i =;34243484y y x =-=-,此时不满足3i ≤,跳出循环,输出结果为243484x -,由题意2434842y x =-=,得2x =.故选:C【点睛】本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.6.A解析:A【分析】因为()()2111111g n n n n n n n ===-+++,此程序框图是对函数()g n 求和,利用裂项相消法求和,可知201912020n S n ==+,可知2019满足条件进入循环,2020不满足条件没有进入循环,根据选项得到正确结果.【详解】由2221111111112019(1111222231112020n S n n n n n n ⎫⎛⎫⎛⎫=++⋯+=-+-+⋯+-=-==⎪ ⎪ ⎪++++++⎭⎝⎭⎝⎭,解得2019n =,可得n 的值为2019时.满足判断框内的条件,当n 的值为2020时,不满足判断框内的条件,退出循环,输出S 的值,故判断框内可以填人的条件为“2020n <?”.故选A.【点睛】本题考查根据循环框图的输出结果填写判断框的内容,关键是分析出满足输出结果时的n 值,再根据选项判断结果.7.C解析:C【分析】根据程序框图进行运算,直到满足判断框中的条件,就停止运行,输出结果.【详解】第一次运行,211,0,0002n n a S -====+=,不符合n m ≥,继续运行; 第二次运行,22,22n n a ===,022S =+=,不符合n m ≥,继续运行, 第三次运行,213,42n n a -===,426S =+=,不符合n m ≥,继续运行, 第四次运行,24,82n n a ===,8614S =+=,不符合n m ≥,继续运行, 第五次运行,5n =,21122n a -==,121426S =+=, 不符合n m ≥,继续运行, 第六次运行,6n =,2182n a ==,182644S =+=, 不符合n m ≥,继续运行, 第七次运行,217,242n n a -===,244468S =+=, 不符合n m ≥,继续运行, 第八次运行,28,322n n a ===,3268100S =+=, 不符合n m ≥,继续运行, 第九次运行,219,40,401001402n n a S -====+=, 不符合n m ≥,继续运行, 第十次运行,210,50,501401902n n a S ====+=,符合n m ≥,退出运行,,输出190S =. 故选:C【点睛】本题考查了程序框图中循环结构,正确理解程序框图是解题关键,属于基础题.8.C【分析】分析循环结构中求和式子的特点,可到最终结果:2lg(1)S n =-+,当1S =-时计算n 的值,此时再确定判断框的内容.【详解】由图可得:2lg1lg 2lg 2lg3...lg lg(1)S n n =+-+-++-+,则2lg(1)1S n =-+=-,所以999n =,因为此时需退出循环,所以填写:999n <. 故选C.【点睛】lg lg lg(1)1n n n n =-++,通过将除法变为减法,达到简便运算的目的. 9.D解析:D【分析】执行循环结构的程序框图,逐次运算,根据判断条件终止循环,即可得到运算结果,得到答案.【详解】由题意,执行循环结构的程序框图,可知:第一次运行时,1(1)11,0(1)1,3T S n =-=-=+-=-=•;第二次运行时,3(1)33,1(3)4,5T S n =-=-=-+-=-=•;第三次运行时,5(1)55,4(5)9,7T S n =-=-=-+-=-=•;第四次运行时,7(1)77,9(7)16,9T S n =-=-=-+-=-=•;第五次运行时,9(1)99,16(9)25,11T S n =-=-=-+-=-=•;第六次运行时,11(1)1111,25(11)36T S =-=-=-+-=-•,此时刚好满足9n >,所以输出S 的值为36-.故选D.【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中熟练应用给定的程序框图,逐次运算,根据判断条件,终止循环得到结果是解答的关键,着重考查了推理与运算能力,属于基础题. 10.B解析:B【解析】在程序语句中乘方要用“^”表示,所以A 项不正确;乘号“*”不能省略,所以C 项不正确;DSQR(x)表示,所以D 项不正确;B 选项是将变量A 的相反数赋给变量A ,则B 项正确.选B.11.C解析:C【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量a 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】由题意,模拟程序的运算,可得k 1=,a 1=满足判断框内的条件,执行循环体,a 6=,k 3=满足判断框内的条件,执行循环体,a 33=,k 5=满足判断框内的条件,执行循环体,a 170=,k 7=此时,不满足判断框内的条件,退出循环,输出a 的值为170.则分析各个选项可得程序中判断框内的“条件”应为k 6<?故选:C .【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.12.C解析:C【分析】x 的变化遵循以2-为公差递减的等差数列的变化规律,到0x <时结束,得到1x =-,然后代入解析式,输出结果.【详解】0x ≥时,每次赋值均为2x - x 可看作是以2019为首项,2-为公差的等差数列{}n x()()20191220212n x n n ⇒=+-⨯-=-当0x <时输出,所以0n x <,即202120n -< 20212n ⇒> 即:10100x >,10110x < 10112021210111x ⇒=-⨯=-1314y ∴=+=本题正确选项:C【点睛】本题结合等差数列考查程序框图问题,关键是找到程序框图所遵循的规律.二、填空题13.【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件即可得到输出的的值【详解】输入第一次循环;第二次循环;第三次循环;第四次循环;第五次循环;第六次循环退出循环输出故答案为【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的S 的值.【详解】输入0,2,1S a i ===,第一次循环,2,4,2S a i ===;第二次循环,6,6,3S a i ===;第三次循环,12,8,4S a i ===;第四次循环,20,10,5S a i ===;第五次循环,30,12,6S a i ===;第六次循环,42,14,7S a i ===,退出循环,输出42S =,故答案为42.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.14.A 【解析】【分析】模拟执行程序框图依次写出每次循环得到的k 的值当k=2012时不满足条件退出循环输出的值为【详解】模拟执行程序框图可得满足条件满足条件满足条件满足条件由此可见S 的周期为3故当k=20解析:A【解析】【分析】模拟执行程序框图,依次写出每次循环得到的k ,S 的值,当k=2012时不满足条件2011k ≤ ,退出循环,输出S 的值为12. 【详解】模拟执行程序框图,可得2,1S k ==满足条件2011k ≤,1,22S k ==, 满足条件2011k ≤,1,3S k =-=, 满足条件2011k ≤,2,4S k ==,满足条件2011k ≤,1,52S k ,==由此可见S 的周期为3,20113670...1,÷= 故当k=2012时不满足条件2011k ≤ ,退出循环,输出S 的值为12. 故选A.【点睛】本题主要考查了循环结构的程序框图,属于基础题. 15.94【解析】不成立执行不成立执行成立所以输出解析:94【解析】3,3311050a a =∴=⨯+=>不成立,执行31013150a =⨯+=>,不成立,执行33119450a =⨯+=>,成立,所以输出94.a =16.48【解析】第1次运行成立第2次运行成立第3次运行成立第3次运行不成立故输出的值为48 解析:48【解析】第1次运行,1,2,122,4i S S i ===⨯=<成立第2次运行,2,2,224,4i S S i ===⨯=<成立第3次运行,3,4,3412,4i S S i ===⨯=<成立第3次运行,4,12,41248,4i S S i ===⨯=<不成立,故输出S 的值为4817.【解析】试题分析:程序执行中的数据变化为:不成立输出考点:程序框图解析:【解析】试题分析:程序执行中的数据变化为:17,1,0,17,2,,27,3,23p n s n s n ===<==<=⨯ 1111167,7,,772334233478s n s =+<==+++<⨯⨯⨯⨯⨯不成立,输出111113233478288s =+++=-=⨯⨯⨯ 考点:程序框图18.【解析】当x=4时y=此时|y-x|=3;当x=1时y=此时|y-x|=;当x=时y=此时|y-x|=故输出y 的值为ZXXK解析:54- 【解析】当x=4时,y=14-1=12⨯,此时|y-x|=3;当x=1时,y=111-1=-22⨯,此时|y-x|=32; 当x=12-时,y=115-1=-224⨯-(),此时|y-x|=3<14,故输出y 的值为54-.ZXXK] 19.4【分析】模拟执行程序框图依次写出每次循环得到的的值当时满足条件退出循环从而可得结果【详解】模拟执行程序框图可得不满足条件;不满足条件;不满足条件满足条件退出循环输出i 的值为4故答案为4【点睛】本题 解析:4【分析】模拟执行程序框图,依次写出每次循环得到的,x i 的值,当325x =时满足条件109x >,退出循环,从而可得结果.【详解】模拟执行程序框图,可得5,0x i ==,13,1x i ==,不满足条件109,37,2x x i >==;不满足条件109,109,3x x i >==;不满足条件109,325,4x x i >==,满足条件109x >,退出循环,输出i 的值为4.故答案为4.【点睛】本题主要考查了循环结构的程序框图,正确写出每次循环得到的,x i 的值是解题的关键,属于基础题.20.105【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件即可得到输出的的值【详解】输入第一次循环不满足条件;第二次循环不满足条件;第三次循环不满足条件;第三次循环满足条件 解析:105【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的T 的值.【详解】输入T 1,I 1,==第一次循环T 1,I 3==,不满足条件;第二次循环T 3,I 5==,不满足条件;第三次循环T 15,I 7==,不满足条件;第三次循环T 105,I 9==,满足条件,输出105T =.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.三、解答题21.见解析【分析】计算(1)0,(2)0f f <>,设121,2x x ==,122x x m +=,判断()f m 的符号,根据零点存在定理得到算法.【详解】第一步:令2()3f x x =-,(1)20,(2)10f f =-<=>,∴设121,2x x ==; 第二步:令122x x m +=,判断()f m 是否为0,若是,则m 为所求;若不是,则继续判断()1()f x f m ⋅大于0还是小于0;第三步:若()1()0f x f m ⋅>,则令1x m =;否则,令2x m =; 第四步:判断120.0005x x -≤是否成立?若是,则12,x x 之间的任意值均为满足条件的近似根;若不是,则返回第二步.【点睛】本题考查了求方程近似根的算法,意在考查学生对于算法的理解和应用.22.(1)(2,1);(2)20x y -=或250x y +-=【分析】(1)根据程序框图,可得输出的函数()f x ,由输入x 的值为12+可得直线2l 在x 轴上的截距.由12l l ⊥,可得直线2l 的斜率.根据点斜式可得直线2l 的方程,联立两直线方程,即可求得交点坐标.(2)讨论截距是否为0:当截距为0时,易得直线方程;当截距不为0时,根据在y 轴上的截距是在x 轴上的截距的2倍,设出直线方程,代入所过的点,即可求解.【详解】(1)由程序框图,若输入x 的值为1+,由102+> 所以输出()221f x x x =-+代入可得21112232122f ⎛⎫⎛⎛⎫=-⨯+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+++ 所以2l 在x 轴上的截距为32, ∵12l l ⊥,∴121l l k k =-⋅所以22l k =∴直线2l 的方程为3022y x ⎛⎫-=- ⎪⎝⎭,即23y x =-. 联立240230x y x y +-=⎧⎨--=⎩,解得21x y =⎧⎨=⎩. ∴直线1l 和2l 的交点坐标为(2,1).(2)当直线3l 经过原点时,可得方程为12y x =. 当直线3l 不经过原点时,设在x 轴上截距为0a ≠,则在y 轴上的截距为2a , 其方程为12x y a a +=,将交点坐标(2,1)代入可得2112a a +=,解得52a =, ∴方程为25x y +=. 综上可得直线3l 方程为20x y -=或250x y +-=.【点睛】本题考查了程序框图的简单应用,垂直直线的斜率关系,直线交点的求法,截距式方程的用法,注意讨论截距是否为0,属于中档题.23.见解析【解析】试题分析:本题考查的知识点是设计程序框图解决实际问题,我们根据题目已知中分段函数的解析式y=1,0,0,0,1,0,x x x x x -+>⎧⎪=⎨⎪+<⎩ ,然后根据分类标准,设置两个判断框的并设置出判断框中的条件,再由函数各段的解析式,确定判断框的“是”与“否”分支对应的操作,由此即可写出算法.试题因为函数是分段函数,故要先输入变量值,再进行判断,分别进行不同的计算.算法如下:第一步,输入x.第二步,若x>0,则令y=-x+1后执行第五步;否则执行第三步.第三步,若x=0,则令y=0后执行第五步;否则执行第四步.第四步,令y=x+1.第五步,输出y 的值.点睛:分析题意,解答此类问题,可以依据已知的分段函数,将x 的取值范围作为条件设计算法;联系题设,依据不同x 的取值范围下对应不同的函数式结合算法的概念写出算法过程.24.(1)见解析(2)当输入的x 的值为1时,输出的数值最小.【解析】试题分析:本题考查了一个条件分支结构的算法,可分为4x ≥和4x <,执行不同的计算,即可得到结论.试题(1)这个算法解决的问题是求分段函数()()221x 4y x 23x 4x x ⎧-≥⎪=⎨-+<⎪⎩的函数值的问题. (2)本问的实质是求分段函数最小值的问题.当x≥4时,y =2x -1≥7;当x<4时,y =x 2-2x +3=(x -1)2+2≥2.∴函数最小值为2,当x =1时取到最小值.∴当输入x 的值为1时,输出的数值最小.点睛:本题主要考查了一个条件分支结构的算法的应用问题,解答中涉及到分段函数的性质,其中程序填空是重点考查的题型,这种试题考试的重点:①分支条件;②循环的条件;③变量的赋值;④变量的输出,其中前两个是考试的重点,正确理解算法的流程,读懂题意是解答的关键.25.见解析【解析】试题分析:分析程序中各变量、各语句的作用,再根据循环语句找到能被15整除的正整数,在1000n > 时结束循环体,由此设计算法及画出框图.试题算法如下:S1 n=1;S2 若n ≤66,则执行S3,否则执行S6;S3 a=15n ;S4 输出a ;S5 n=n+1,重复执行S2;S6 结束.程序框图如图所示.26.答案见解析【解析】试题分析:先设丢番图的寿数为x, x为正整数,列出方程,再用验证的方法找到方程的解,即得到丢番图的寿数.再根据算法写出算法程序.试题设丢番图的寿数为x,则x为正整数,根据题意可知16x+112x+17x+5+12x+4=x,我们可以从x=1,依次验证是不是方程的解.算法如下: S1x=1;S2判断16x+112x+17x+5+12x+4=x是否成立,如果成立,则输出x;否则,转至S3;S3x=x+1,转至S2.算法程序如下:x=1;while 16x+112x+17x+5+12x+4< >xx=x+1;wendx=x-1print xend点睛:本题的难点在于写出找丢番图的寿数的算法,这里只能采取验证的方法.。

(好题)高中数学必修三第二章《算法初步》测试题(包含答案解析)(2)

一、选择题1.在如图所示的程序框图中,若函数12log(),?0 ()2,?0xx xf xx-<⎧⎪=⎨⎪≥⎩,则输出的结果是()A.16B.8C.162D.822.执行如图所示的程序框图,若输出的结果为126,则判断框内的条件可以为()A.5n≤B.6n≤C.7n≤D.8n≤3.如图给出的是计算1232018⨯⨯⨯⨯的值的一个程序框图,则其中判断框内应填入的是()A .2018i <B .2018i =C .2018i ≤D .2018i >4.阅读如图所示的程序框图,当输入5n =时,输出的S =( )A .6B .4615C .7D .47155.正整数N 除以正整数m 后的余数为n ,记为()N n MODm ≡,例如()2516MOD ≡.如图所示程序框图的算法源于“中国剩余定理”,若执行该程序框图,当输入49N =时,则输出结果是( )A .58B .61C .66D .766.朱世杰是我国元代伟大的数学家,其传世名著《四元玉鉴》中用诗歌的形式记载了下面这样一个问题:我有一壶酒,携着游春走.遇务①添一倍,逢店饮斛九②.店务经四处,没了这壶酒.借问此壶中,当原多少酒?①“务”:旧指收税的关卡所在地;②“斛九”:1.9斛.下图是解决该问题的算法程序框图,若输入的x 值为0,则输出的x 值为( )A .5740B .13380C .5732D .5893207.执行如下图的程序框图,如果输入的N 的值是7,那么输出的p 的值是( )A .3B .15C .105D .9458.执行如图的程序框图,若输出的4n ,则输入的整数p 的最小值是( )A .4B .5C .6D .159.执行如图所示的程序框图,若输出的值为7,则框图中①处可以填入( )A .7SB .21SC .28SD .36S10.下列赋值语句正确的是 ( )A .S =S +i 2B .A =-AC .x =2x +1D .P =11.执行如图所示的程序框图,输出的S 值为( )A.1 B.-1 C.0 D.-2 12.若执行如图所示的程序框图,则输出S的值为( )A.10072015B.10082017C.10092019D.10102021二、填空题13.执行如图所示的程序框图,则输出的结果为__________.a ,则以下程序运行后的结果是_____.14.若4515.已知某程序框图如图所示,则执行该程序后输出的结果是_____16.如图是某算法流程图,则程序运行后输出S的值为____.17.如图所示的程序框图,输出的S 的值为( )A .12B .2C .1-D .12-18.已知多项式函数5432()254367f x x x x x x =--+-+,当5x =时由秦九韶算法知012,2555,v v ==⨯-=则3v =_________.19.101110(2)转化为十进制数是__________.20.某程序流程框图如图所示,现执行该程序,输入下列函数()2sin3f x x π=, ()2cos3f x x π=,()4tan 3f x x π=,则可以输出的函数是()f x =__________.三、解答题21.如图,在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由点B(起点)向点A(终点)运动.设点P运动的路程为x,APB△的面积为y,求y与x之间的函数关系式,并画出程序框图.x-=在[]的绝对值不超过0.0005)23.已知程序框图如图所示,用“直到型循环”写出程序框图所对应的算法语句24.读下列程序:(1)根据程序,画出对应的程序框图;y 时,输入的x的值.(2)写出该程序表示的函数,并求出当输出的425.编写一个程序,要求输入两个正数a和b的值,输出a b和b a的值,并画出程序框图. 26.电脑游戏中,“主角”的生存机会往往被预先设定,如某枪战游戏中,“主角”被设定生存机会5次,每次生存承受射击8枪(被击中8枪则失去一次生命机会).假设射击过程均为单子弹发射,试为“主角”耗用生存机会的过程设计一个算法,并画出程序框图.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】模拟执行程序框图,可得160a =-≤,执行循环体,12log 1640b ==-<,12log 420a ==-<,不满足条件4a >,执行循环体,12log 210b ==-<,12log 10a ==,不满足条件4a >,执行循环体,0210b ==>,1220a ==>,不满足条件4a >,执行循环体,2240b ==>,4216a ==,满足条件4a >,退出循环,输出a 的值为16.选A.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.2.B解析:B 【分析】根据框图,模拟程序运行即可求解. 【详解】根据框图,执行程序,12,2S n ==;1222,3S n =+=;⋯12222,1i S n i =++⋯+=+,令12222126i S =++⋯+=, 解得6i =,即7n =时结束程序, 所以6n ≤, 故选 :B 【点睛】本题主要考查了程序框图,循环结构,条件分支结构,等比数列求和,属于中档题.genju3.D解析:D 【分析】可先结合输出结果预判,满足某一条件时,输出结果s ,综合判断D 正确 【详解】由输出结果判断,显然是经过多次运算的结果,运算中i 是不断递加的,满足某一条件时,输出结果,排除A ,C ;接下来计算:设001,1s i ==,不满足判断条件,100101,12s s i i i =⋅==+=; 不满足判断条件,2112112,13s s i i i =⋅=⨯=+=; 不满足判断条件,32232123,14s s i i i =⋅=⨯⨯=+=;直到201820172017201820171232018,12019s s i i i =⋅=⨯⨯⨯=+=,此时满足判断条件,说明20192018>,故判断语句为:2018i >故选:D【点睛】 本题考查由输出值辨别判断语句,属于中档题4.D解析:D【分析】根据程序框图,依次运行程序即可得出输出值.【详解】输入5n =时,1,1,1,5S i a i ===≤,2,3,2a S i ===,5i ≤222,5,32a S i =⨯===,5i ≤ 2442,5,4333a S i =⨯==+=,5i ≤ 42242,5,534333a S i =⨯==++=,5i ≤ 224424,5,635153315a S i =⨯==+++=, 输出424457331515S =+++= 故选:D【点睛】此题考查程序框图,关键在于读懂框图,根据结构依次运算,求出输出值,尤其注意判断框中的条件. 5.B解析:B【分析】该程序框图的作用是求被3和5除后的余数为1的数,根据所给的选项,得出结论.【详解】模拟程序的运行,可得49N =,50N =,不满足条件()13N MOD ≡,51N =;不满足条件()13N MOD ≡,52N =;满足条件()13N MOD ≡,不满足条件()15N MOD ≡,53N =;不满足条件()13N MOD ≡,54N =;不满足条件()13N MOD ≡,55N =; 满足条件()13N MOD ≡,不满足条件()15N MOD ≡,56N =;不满足条件()13N MOD ≡,57N =;不满足条件()13N MOD ≡,58N =; 满足条件()13N MOD ≡,不满足条件()15N MOD ≡,59N =;不满足条件()13N MOD ≡,60N =;不满足条件()13N MOD ≡,61N =; 满足条件()13N MOD ≡,满足条件()15N MOD ≡,输出61N =.故选:B.【点睛】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.6.C解析:C【分析】本题首先可以根据题意以及程序框图明确输入的数据为“0x =,0i =”和运算的算式为“119210x x 、1i i =+”,然后进行运算并结合条件“4i ”得出结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学3(必修)第一章 算法初步 [基础训练A组]
答案
一、选择题
1.C 算法的特点:有穷性,确定性,顺序性与正确性,不唯一性,普遍性
2.D 任何一个算法都有顺序结构,循环结构一定包含条件结构,二分法用到循环结构
3.B 先把b的值赋给中间变量c,这样17c,再把a的值赋给变量b,这样8b,
把c的值赋给变量a,这样17a

4.B 把1赋给变量a,把3赋给变量b,把4赋给变量a,把1赋给变量b,输出,ab

5.D 该程序揭示的是分段函数22,10,10aayaa的对应法则
二、填空题
1. INPUT,WHILE,WEND

2. 5,3,2,7,9,1 注意是从大到小

3. 5,5 来自课本上的思考题:一元n次多项式问题
4. ①,②,③,④,⑥ 基本算法语句的种类

5. 1, 438949742446410 余11021,末位是第一个余数,38912011(4)注意:余数自下而上排列
三、解答题
1. 解:3210123415253545194(5)


8194
824
83
0


2
0
3

194302
(8)

2. 解:()((((((76)5)4)3)2)1)fxxxxxxx
0123
45
67

7,73627,273586,8634262,26236789,789322369,2369317108,71083021324,VVVVVVVV



(3)21324f
3. 解:INPUT "";aa
(2)lSQRa
saa
PRINT
"";,"";llss
END
4. 解:TNPUT "";t通话时间
IF
3t and 0t THEN

0.30c

ELSE
0.300.10(3)ct
END
IF

PRINT
"";c通话费用

END

相关文档
最新文档