实对称矩阵的合同变换

合集下载

矩阵相似与合同

矩阵相似与合同

矩阵相似与合同引言在线性代数中,矩阵是一个重要概念,它在各个领域都有广泛的应用。

在研究矩阵时,我们经常会遇到矩阵相似和矩阵合同这两个概念。

本文将介绍矩阵相似和矩阵合同的定义、性质和应用。

矩阵相似矩阵相似是一种关系,用来描述两个矩阵之间的某种变换关系。

两个矩阵相似,意味着它们可以通过一个相似变换相互转化。

具体来说,对于给定的两个n阶矩阵A和B,如果存在一个可逆矩阵P,使得P-1AP = B,则称矩阵A和B相似。

相似关系具有以下性质:1.相似关系是一种等价关系,即自反性、对称性和传递性成立。

2.相似矩阵具有相同的特征值。

3.相似矩阵具有相同的秩、行列式、迹等性质。

矩阵相似在实际应用中具有重要意义。

例如,在线性代数中,我们经常需要对矩阵进行对角化处理,而矩阵相似关系可以帮助我们找到相似矩阵来简化计算。

矩阵合同矩阵合同是另一种矩阵之间的关系。

与矩阵相似不同,矩阵合同是通过正交变换来定义的。

对于给定的两个n阶矩阵A和B,如果存在一个正交矩阵P,使得PTAP = B,则称矩阵A和B合同。

合同关系具有以下性质:1.合同关系是一种等价关系,即自反性、对称性和传递性成立。

2.合同矩阵具有相同的正惯性指数和负惯性指数。

矩阵合同在实际应用中也具有重要意义。

例如,在数值计算中,我们经常需要将矩阵进行对称化处理,而矩阵合同关系可以帮助我们找到合同矩阵来简化计算。

相似与合同的关系矩阵相似和矩阵合同之间存在着一定的联系。

具体来说,如果两个矩阵相似,则它们一定是合同的。

这是因为如果矩阵A和B相似,即存在可逆矩阵P,使得P-1AP = B,那么我们可以取正交矩阵Q等于P-1,则有QTAQ = B,即A和B是合同的。

然而,矩阵合同并不一定意味着矩阵相似。

换句话说,合同关系是相似关系的一个子集。

这是因为矩阵相似要求相似变换是可逆的,而矩阵合同要求正交变换是可逆的。

正交矩阵是一类特殊的矩阵,其逆矩阵等于其转置矩阵,因此正交变换一定是可逆的。

合同线性代数[工作范文]

合同线性代数[工作范文]

合同线性代数篇一:线性代数中的合同关系、正定矩阵什么是线性代数中的合同?惯性定律?“合同”是矩阵之间的一种关系。

两个n阶方阵A与B 叫做合同的,是说存在一个满秩n阶方阵P,使得P′AP=B.“合同”这种关系,是一种“等价关系”。

按照它可以对n 阶方阵的全体进行分类。

对于n阶实对称矩阵而言,线性代数中有两个结果。

①每个n阶实对称矩阵,都一定与实对角矩阵合同,并且此时P也是实的。

②对于一个n阶实对称矩阵A,与它合同的实对角矩阵当然不只一个,(相应的P也变化)。

但是这些实对角矩阵的对角元中,正数的个数是一定的(叫A的正惯性指数),负数的个数也是一定的(叫A的负惯性指数)。

结果②就是“惯性定理”。

一个矩阵是正定矩阵的充要条件是:矩阵的主对角线元素全大于0.这个命题是否正确不对,反例: 1221只有主对角矩阵才能说对角元素全大与0就正定设M是n阶实系数对称矩阵,如果对任何非零向量X=(x_1,...x_n) 都有 XMX′>0,就称M正定(PositiveDefinite)。

正定矩阵在相合变换下可化为标准型,即单位矩阵。

所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵。

另一种定义:一种实对称矩阵.正定二次型f(x1,x2,…,xn)=X′AX的矩阵A(A′)称为正定矩阵.正定矩阵的一些判别方法由正定矩阵的概念可知,判别正定矩阵有如下方法:阶对称矩阵A正定的充分必要条件是A的 n 个特征值全是正数。

证明:若,则有∴λ>0反之,必存在U使即: A正定由上面的判别正定性的方法,不难得到A为半正定矩阵的充要条件是:A的特征值全部非负。

特征值都在主对角线上运算你知道的吧。

行列式小结一、行列式定义行列式归根结底就是一个数值,只不过它是由一大堆数字经过一种特殊运算规则而得出的数而已。

当然这堆数排列成相当规范的n行n列的数表形式了。

所以我们可以把行列式当成一个数值来进行加减乘除等运算。

举个例子:比如说电视机(看做一个行列式),是由很多个小的元件(行列式中的元素)构成的,经过元件的相互作用、联系最终成为一台电视机(行列式)。

谈矩阵的相似与合同

谈矩阵的相似与合同

1 『 ] 1a 厂 l l 1 1 1
 ̄o2 i J L
‘ ] +2 q+ = 2 『 J 1 _ 2
a2 a 2 1

+ 1 口1 0 l +2;=

a i l + a 1 2 + 2 2a 2 一1 l 2 a 1 2 a a 1 2
Q ) ) G ) ( 4 )
2 )实对称矩 阵的相似 与合同.
3 )实对称矩 阵在 正交变 换下的相似与合 同. 4 )矩阵的相似变换 与合 同变 换的实质. 1 预备 知识 定义 1 对 阶 方阵 A与 ,若存在可逆矩阵 P使得 P~ AP=B ,则称 与 B相似 . 记为 定义 2 对 n阶 方阵 与 ,若存在可逆矩阵 F使得 , F= ,则称 与 合 同. 为 记 2 问题解 答 21 矩阵 与 B相 似 ,但矩 阵 与 B不一定合 同 . . .
所以, .
下 证 与 不 合 同 .
令 L2, a

a2 2
则 r 口 口 I若 阵 B 同 必 r : , F l1 2 , 矩 与 合 , 有FA B 有 =l F
a2 a 2l 1 2
2+ 2 i 112 1 a al + l 口 + 口 + d1 l a2 2 2 2 2 2 a2 L 2 aa +aa O1 aa+ t2 222 Il 2l 2l l
兰 塑
1 l
堑堕 塑塾 全 皇 旦

II 9 Il2 1 : , F。 : . 引理1 与 F。 , : . l2 而II : ≠ 1由 知 不合同.
2 . 矩阵 与 合 同,但 矩阵 与 B不一定相似 2
引理 2 矩 阵 与 相似 ,则 A与 有相同的特征行列式和特征根. 证明 因为 A 与 相似 ,则存 在可逆 矩阵 P使得 P A B 。 P=

对称矩阵的性质及应用

对称矩阵的性质及应用

对称矩阵的性质及应用班级:数学1403班学号:20142681 姓名:张庭奥内容摘要:本文主要描述对称矩阵的定义,研究对称矩阵的性质及应用.包括对称矩阵的基本性质,对称矩阵的对角化,对称矩阵的正定性以及对称矩阵在二次型,线性变换和欧式空间问题中的应用等。

关键词:对称矩阵;对角化;正定性;应用1.导言矩阵是高等数学中一个极其重要的应用广泛的概念,如线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为变换这些矩阵的过程,二次型的正定性与它的矩阵的正定性相对应,甚至有些性质完全不同的表面上完全没有联系的问题,归结成矩阵问题后却是相同的。

这就使矩阵成为代数特别是线性代数的一个主要研究对象。

作为矩阵的一种特殊类型,对称矩阵有很多特殊性质,是研究二次型,线性空间和线性变换问题的有利工具,对称矩阵的对角化,正定性的判别等是高等数学中的重难点。

本文就此浅谈一下对称矩阵的各种性质和应用。

2.具体内容部分2.1对称矩阵的基本性质在学习中我们发现,对称矩阵中的特殊类型如:对角阵,实对称矩阵以及反对称矩阵经常出现,以下首先介绍一些基本概念。

2.1.1 对称矩阵的定义定义1 设矩阵()ij s n A a ⨯=,记()T ji n s A a ⨯=为矩阵的转置.若矩阵A 满足条件T A A =,则称A 为对称矩阵.由定义知:(1)对称矩阵一定是方阵(2)位于主对角线对称位置上的元素必对应相等。

即ij ji a a =,对任意i 、j 都成立。

对称矩阵一定形如111211222212n n nnnn a a a aa a a a a ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭定义2 形式为12000000l a a a ⎛⎫⎪ ⎪⎪⎪⎝⎭的矩阵,其中i a 是数(1,2,,)i l =,通常称为对角矩阵定义3 若对称矩阵A 的每一个元素都是实数,则称A 为实对称矩阵。

定义4 若矩阵A 满足T A A =-,则称A 为反对称矩阵。

东北大学线性代数_第六章课后习题详解二次型

东北大学线性代数_第六章课后习题详解二次型

教学基本要求:1.掌握二次型及其矩阵表示,了解二次型的秩的概念.2.了解合同变换和合同矩阵的概念.3.了解实二次型的标准形和规范形,掌握化二次型为标准形的方法.4.了解惯性定理.5.了解正定二次型、正定矩阵的概念及其判别方法.第六章二次型本章所研究的二次型是一类函数,因为它可以用矩阵表示,且与对称矩阵一一对应,所以就通过研究对称矩阵来研究二次型.“研究”包括:二次型是“什么形状”的函数?如何通过研究对称矩阵来研究二次型?二次型是“什么形状”的函数涉及二次型的分类.通过对称矩阵研究二次型将涉及矩阵的“合同变换”、二次型的“标准形”、通过正交变换化二次型为标准形、惯性定理、正定二次型等.一、二次型与合同变换1. 二次型n个变量x1,x2,…,x n的二次齐次函数f(x1,x2,…,x n)=a11x12+a22x22+…+a nn x n2+2a12x1x2+…+2a1n x1x n+…+…+2a n-1 n x n-1x n (6.1) 称为一个n元二次型.当系数a ij均为实数时,称为n元实二次型. (P131定义6.1)以下仅考虑n元实二次型.设11121n112222n21n2n nn na a a xa a a xA,xa a a x⎛⎫⎛⎫⎪ ⎪⎪ ⎪==⎪ ⎪⎪ ⎪⎝⎭⎝⎭,那么f(x1,x2,…,x n)=x T A x. (6.2)式(6.2)称为n元二次型的矩阵表示.例6.1(例6.1 P 132)二次型f 与对称矩阵A 一一对应,故称A 是二次型f 的矩阵,f 是对称矩阵A 的二次型,且称A 的秩R(A)为二次型f 的秩. (定义6.2 P 132)由于二次型与对称矩阵是一一对应的,所以从某种意义上讲,研究二次型就是研究对称矩阵.定义6.2 仅含平方项的二次型f(x 1,x 2,…,x n )=a 11x 12+a 22x 22+…+a nn x n 2 (6.3)称为标准形.系数a 11,a 22,…,a nn 仅取-1,0,1的标准形称为规范形. (定义6.3 P 132)标准形的矩阵是对角矩阵.二次型有下面的结论:定理6.1 线性变换下,二次型仍变为二次型.可逆线性变换下,二次型的秩不变. (定理6.1 P 133) 这是因为T T x CyB C ACTT A B C AC C 0R(A)R(B)f x Axfy By ==↔=≠=⇒==⇐.2. 合同变换在可逆线性变换下,研究前后的二次型就是研究它们的矩阵的关系.定义6.3 设A,B 是同阶方阵,如果存在可逆矩阵C ,使B=C T AC ,则称A 与B 是合同的,或称矩阵B 是A 的合同矩阵.对A 做运算C T AC 称为对A 进行合同变换,并称C 是把A 变为B 的合同变换矩阵. (定义6.4 P 133)矩阵的合同关系具有反身性、对称性、传递性.注意:(1)合同的矩阵(必须是方阵)必等价,但等价的矩阵(不一定是方阵)不一定合同. (P 134)A 与B 合同 ⇔∃可逆矩阵C ,∂B=C T AC A 与B 等价 ⇔∃可逆矩阵P ,Q ,∂B=PAQ(2)合同关系不一定是相似关系,但相似的实对称矩阵一定是合同关系. (推论1 P 137)正交矩阵Q ,∂Q -1AQ= Q T AQ=B ⇒ A 与B 既相似又合同合同变换的作用:对二次型施行可逆线性变换等价于对二次型的矩阵施行合同变换.x Cy TT TT C 0T C 0f x Ax y C ACy y ByA C AC B=∆≠≠===⇔=如果B 是对角矩阵,则称f=y T B y 是f=x T A x 的标准形.二、用正交变换化二次型为标准形 1. 原理由第五章第三节知:对于实对称阵A ,存在正交矩阵Q ,使Q -1AQ 为对角矩阵(对角线上的元素为A 的n 个特征值).因此,二次型f=x T A x 经正交变换x =Q y 就能化为标准形f=y T (Q T AQ)y =y T (Q -1AQ)y .定理6.2 任意实二次型都可经正交变换化为标准形,且标准形中的系数为二次型矩阵的全部特征值. (定理6.2 P 134)推论1 任意实对称矩阵都与对角矩阵合同. (推论1 P 137)推论2 任意实二次型都可经可逆线性变换化为规范形. (推论2 P 137)正交变换既是相似变换又是合同变换.相似变换保证矩阵有相同的特征值,化标准形则必须经合同变换.所以,正交变换是能把二次型化为“系数为特征值”的标准形的线性变换.2.用正交变换化二次型为标准形的步骤用正交变换化二次型f=x T A x 为标准形的过程与将实对称阵A 正交相似对角化的过程几乎一致.具体步骤如下:(1)求出A 的全部互异特征值λ1,λ2…,λs ;(2)求齐次线性方程组(λi E-A)x =ο(i=1,2,…,s)的基础解系(即求A 的n 个线性无关特征向量); (3)将每一个基础解系分别正交化、规范化,得到n 个正交规范的线性无关特征向量ε1,ε2,…,εn ; (4)正交相似变换矩阵Q=(ε1,ε2,…,εn ),正交相似变换x =Q y 把二次型f=x T A x 变为标准形f=y T (Q T AQ)y .例6.2(例6.2 P 134) 例6.3(例6.3 P 135)三、用配方法化二次型为标准除了正交变换,事实上,还存在其它的可逆线性变换能把二次型化为标准形.举例说明如下.例6.4(例6.4 P 139) 例6.5(例6.5 P 139)总结:用配方法化二次型为标准形的过程分两种情形: (1)二次型中含有平方项例如,若二次型中含有平方项a 11x 12,则把所有含x 1的项集中起来配方,接下来考虑a 22x 22,并类似地配方,直到所有项都配成了平方和的形式为止.(2)二次型中不含平方项,只有混合项例如,若二次型中不含平方项,但有混合项2a 12x 1 x 2,则令112212ii x y y ,x y y ,x y ,i 3,...,n.=+⎧⎪=-⎨⎪==⎩ 那么关于变量y 1,y 2,…,y n 的二次型中就有了平方项,然后回到(1).四、正定二次型 1. 惯性定理虽然把二次型化为标准形的可逆线性变换不唯一,从而标准形也可能不唯一,但同一个二次型的所有标准形却总满足如下惯性定理.定理6.3(惯性定理) 设实二次型f=x T A x 的秩为r ,且在不同的可逆线性变换x =C y 和x =D y 下的标准形分别为f=λ1y 12+λ2y 22+…+λr y r 2, λi ≠0,f=μ1y 12+μ2y 22+…+μr y r 2, μi ≠0,则λ1,λ2…,λr 与μ1,μ2…,μr 中正数的个数相同. (定理6.3 P 142)定义6.4 二次型f 的标准形中的正(负)系数的个数称为f 的正(负)惯性指数. (定义6.5 P 143)惯性定理指出,可逆变换不改变惯性指数.推论 n 阶实对称阵A 与B 合同的充分必要条件是A 与B 有相同的正惯性指数和负惯性指数. (推论 P 143)正惯性指数+负惯性指数=R(A). 正惯性指数=正特征值的个数, 负惯性指数=负特征值的个数.2. 二次型的分类二次型(/二次型的矩阵)的分类:(定义6.6-6.7 P 143)f f f f f /A f 0,x 0(A A 0)/A f 0,x 0(A A 0)/A f 0,x 0(A A 0)/A f 0,x 0(A A 0)/A x 0,f (x)0y 0,f (y)0⎧⇔>∀≠>⎪⇔≥∀≠≥⎪⎪⇔<∀≠<⎨⎪⇔≤∀≠≤⎪⎪⇔∃≠∂>∃≠∂<⎩正定正定记作半正定半正定记作负定负定记作半负定半负定记作不定且由此,根据惯性定理可知,合同变换不改变实对称矩阵的类型.3.正定二次型(正定矩阵)的判定定理6.4 n 元实二次型f=x T A x 为正定(负定)二次型的充分必要条件是f 的正(负)惯性指数等于n . (定理6.4 P 143)定理6.5 n 元实二次型f=x T A x 为半正定(半负定)二次型的充分必要条件是f 的正(负)惯性指数小于n ,且负(正)惯性指数为0. (推论1 P 143)推论2 n 阶实对称阵A 正定(负定)的充分必要条件是A 的n 个特征值全是正数(负数);A 半正定(半负定)的充分必要条件是A 的n 个特征值为不全为正数(负数)的非负数(非正数). (推论2 P 143)例6.6(例6.6 P 143) 例6.7(例6.7 P 144) 例6.8(例6.8 P 144) 例6.9(例6.9 P 144)定义6.4 设A=(a ij )n ,则行列式11121k 12222k k k1k2kka a a a a a D (k 1,2,,n)a a a ==称为A 的k 阶顺序主子式. (定义6.8 P 144)定理6.6 n 阶实对称矩阵A 正定的充分必要条件是A 的各阶顺序主子式都大于零;A 负定的充分必要条件是A 的所有顺序主子式中奇数阶的小于零而偶数阶的大于零. (定理6.5 P 144)例6.10(例6.10 P 145)五、二次型应用[实例6-1] 二次曲面图形的判定六、习题(P 148) 选择题:1.提示:110.5A 11000.50.50.51-⎛⎫ ⎪= ⎪ ⎪--⎝⎭⇒|1|=1>0, 119901100=>, 100A 199100.51 1.25=<-- ⇒ 选D2.提示:f(x 1,x 2,x 3)= x 12+2x 22+3x 32-2x 1x 2+2x 2x 3 =(x 1-x 2)2+(x 2+x 3)2+2x 32⇒ 正惯性指数为3,故选A3.提示:方法一 特征值为2,-1,-1,故选C.方法二 011A 101110⎛⎫ ⎪= ⎪⎪⎝⎭⇒ |0|=0,排除A,B011010=-<, |A|=2>0,排除D ⇒ 选C4. B填空题:1.提示:f(x 1,x 2,x 3)= x 12+2x 22+3x 32+4x 1x 2+8x 1x 3-2x 2x 3.2. 1200221001300000⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭. 错误的解答:120221012⎛⎫ ⎪⎪ ⎪⎝⎭3.提示:323221r r r r 2r r211211211A 121033033112033000-+-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⇒ 秩为2错误的解答:正惯性指数为3,故秩为3. 事实上,线性变换y1= x1+x2, y2= x2-x3, y3= x1+x3不可逆,故R(f)<3.4.提示:A可逆、对称⇒A-1=(A-1)T AA-1⇒x=A-1y.5.提示:tE-A的特征值为t-1, t-2,…, t-n ⇒t >n.6.提示:方法一a22A2a222a⎛⎫⎪= ⎪⎪⎝⎭与6⎛⎫⎪⎪⎪⎝⎭相似⇒3a=6 ⇒a=2方法二f(y1,y2,y3) =6y12⇒A有2个0特征值⇒R(A)=1 ⇒a=2方法三f(y1,y2,y3)=6y12⇒A的特征值为6,0,0二次型的特征值为a+4, a-2, a-2 ⇒a+4=0, a-2=0 ⇒a=27.提示:A的各行元素之和为3 ⇒A(1,1,…,1)T=3(1,1,…,1)TR(f)=1 ⇒3是A的唯一非零特征值⇒标准形为f(y1,y2,y3)=3y12或f(y1,y2,y3)=3y22或f(y1,y2,y3)=3y32解答题:1.参见P134-135的例6.2、例6.32.参见P139的例6.4、例6.53.参见P145的例6.104.(1)521A21111t-⎛⎫⎪=-⎪⎪--⎝⎭|5|=5>0,521021=>,101A211t2010t1=-=->-⇒t>2(2)1t 1A t 12125-⎛⎫ ⎪= ⎪ ⎪-⎝⎭|1|=1>0,21t1t 0t 1=->, 2A 5t 4t 0=--> ⇒ -4/5<t<05.提示:f=x T A x =x T U T U x =|U x |2≥0.因为U 可逆,故当x ≠ο时,U x ≠ο,从而f=|U x |2>0,所以f 为正定二次型(A=U T U 是正定矩阵).6.提示:因为A 正定,故存在正交矩阵Q 和正定对角矩阵D=diag(λ1,λ2,…,λn ),使A=QDQ T .令D 1=diag(12n ,,...,λλλ),则A=QDQ T = QD 1D 1T Q T =U T U ,其中U=(QD 1)T .5、6两题表明A 是正定矩阵的充分必要条件是存在可逆矩阵U 使A=U T U .7.提示:设对称矩阵A 与矩阵B 合同,则存在可逆矩阵C ,使C T AC=B. B T =(C T AC)T =C T AC=B ,所以与对称矩阵合同的矩阵必是对称矩阵.8.提示:方法一 矩阵A 与矩阵-A 合同,则存在可逆矩阵C ,使C T AC=-A .从而|C T AC|=|-A| ⇒ |C|2·|A|=(-1)n |A| ⇒ |A|(|C|2-(-1)n )=0A ⇒可逆|C|2=(-1)nC ⇒可逆|C|2>0,故n 为偶数方法二 A 的正惯性指数= -A 的负惯性指数A 的负惯性指数= -A 的正惯性指数 A 与-A 合同⇒ A 与-A 有相同的正惯性指数和负惯性指数 ⇒ A 的正惯性指数= A 的负惯性指数 ⇒ n 为偶数9.提示:513153 A153023 33k00k3---⎛⎫⎛⎫⎪ ⎪=--→-⎪ ⎪⎪ ⎪--⎝⎭⎝⎭因为R(A)=2,所以k=3.(或由R(A)=2,有|A|=0,得k=3.) 余下略.10.提示:20003a0a3⎛⎫⎪⎪⎪⎝⎭与125⎛⎫⎪⎪⎪⎝⎭相似a02200103a29a5a2 0a35>⇒=⇒-=⇒=余下略.11. 提示:1b1b a1111⎛⎫⎪⎪⎪⎝⎭与14⎛⎫⎪⎪⎪⎝⎭相似2a51b1a3b a1b1 111+=⎧⎪=⎧⎪⇒=⇒⎨⎨=⎩⎪⎪⎩余下略.12.提示:(1)A的特征值为1,1,0,Q的第3列是属于0的特征向量,1的特征向量与其正交,易知为(√2/2,0,-√2/2)T和(0,1,0)T,是Q的前两列.于是A=Qdiag(1,1,0)Q T=….(2)A+E的特征值为2,2,1,所以A+E为正定矩阵.13.提示:(1)a01E A0a111(a1)λ--λ-=λ--λ--222a 11(a)01110(a 1)a 12(a)01010(a 1)a2(a)1(a 1)(a)((2a 1)a a 2)(a)((2a 1)(a 2)(a 1))(a)((a 2))((a 1))λ--=λ--λ--λ--=λ--λ--λ--=λ--λ--=λ-λ--λ+--=λ-λ--λ+-+=λ-λ--λ-+ A 的特征值为a-2,a,a+1.(2)二次型f 的规范形为f(y 1,y 2,y 3)=y 12+y 22,所以A 有2个正特征值,一个0特征值.由于a-2<a<a+1,所以a-2=0,故a=2.14.提示:A 正定 ⇔ A 的任意特征值λ>0 ⇒ |A|>0⇒ A -1的任意特征值1/λ>0 ⇒ A -1正定A*的任意特征值|A|/λ>0 ⇒ A*正定15.提示:∀x ≠ο,x T (A+B)x =x T A x +x T B x >0 ⇒ A+B 正定16.提示:A 与对角矩阵diag(λ1,λ2,…,λn ) (λ1≥λ2≥…≥λn )相似⇔ ∃正交矩阵Q ,∂Q AQ=diag(λ1,λ2,…,λn )ny Qx T T2i i i 1n n 22i i 1i i n x 1y 1x 1y 1i 1i 1f x Ax y Dy y max f max y ,min f min y ========⇒===λ⇒=λ≤λ=λ≥λ∑∑∑ 当分别取T1y e =和T n y e =时,得1n x 1x 1max f ,min f ===λ=λ.17.提示:设λ是A 的特征值,则λ3+λ2+λ-3=0,λ的值为1或复数. 因为A 是实对称矩阵,所以A 的特征值全为1,因此A 为正定矩阵.18.提示:A,B 实对称 ⇒ A,B 的特征值都是实数A 的特征值都大于a ,B 的特征值都大于b⇒ A-aE 和B-bE 正定 (若λ是A 的特征值,则λ-a 是A-aE 的特征值)15⇒第题 (A-aE)+(B-bE)正定,即A+B-(a+b)E 正定⇒ A+B 的特征值都大于a+b.19.提示:必要性 设R(A)=n ,令B=A ,则AB+B T A=2A 2为正定矩阵.充分性 设AB+B T A 是正定矩阵,若R(A)<n ,那么A x =ο有非零解y . 因此,y T (AB+B T A)y =(A y )T By+ y T B T (A y )=ο,这与AB+B T A 正定矛盾,所以R(A)=n.20.提示:考虑二次型g(x,y,z)=2x 2+4y 2+5z 2-4xz ,由于202E A 040(1)(4)(6)205λ-λ-=λ-=λ-λ-λ-λ-,⇒ A 的特征值全为正数⇒ g(x,y,z)=2x 2+4y 2+5z 2-4xz 是椭球曲面⇒ f(x,y,z)=2x 2+4y 2+5z 2-4xz+2x-4y+1是椭球曲面附加题:1.设A 为m 阶正定矩阵,B 为m×n 实矩阵,证明:B T AB 为正定矩阵的充分必要条件为R(B)=n .提示:B T AB 正定⇔ ∀x ≠ο, x T B T AB x =(B x )T A(B x )>0⇔ ∀x ≠ο,有B x ≠ο⇔ B x =ο只有零解⇔ R(B)=n七、计算实践实践指导:(1)掌握二次型及其矩阵表示,了解二次型的秩的概念.(2)了解实二次型的标准形式及其求法.(3)了解合同变换和合同矩阵的概念.(4)了解惯性定理和实二次型的规范形.(5)了解正定二次型、正定矩阵的概念及其判别法.例6.1 设12A 21⎛⎫= ⎪⎝⎭, 则在实数域上与A 合同的矩阵为[D ]. (A)2112-⎛⎫ ⎪-⎝⎭; (B)2112-⎛⎫ ⎪-⎝⎭; (C)2112⎛⎫ ⎪⎝⎭; (D)1221-⎛⎫ ⎪-⎝⎭.(2008 数二 三 四)提示:合同的矩阵有相同的秩,有相同的规范形,从而有相同的正惯性指数与负惯性指数.故选D .例6.2 已知二次型f(x 1,x 2,x 3)=(1-a)x 12+(1-a)x 22+2x 32+2(1+a)x 1x 2的秩为2.(1)求a 的值;(2)求正交变换x =Q y ,把f 化成标准形;(3)求方程f(x 1,x 2,x 3)=0的解. (2005 数一)解 (1) 1a 1a 0220A 1a 1a 01a 1a 0002002-+⎛⎫⎛⎫ ⎪ ⎪=+-→+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭R (A )2=⇒1+a=1-a ⇒ a=0(2) 略.(3) f(x 1,x 2,x 3)=0⇔ (x 1+x 2)2+2x 32=0 ⇔ x 1=-x 2, x 3=0 ⇒ 解为k(-1,1,0)T , k ∈R例6.3 若二次曲面的方程x 2+3y 2+z 2+2axy+2xz+2yz=4经正交变换化为y 12+4z 12=4,则a= 1 . (2011 数一)提示:二次型f(x,y,z)=x 2+3y 2+z 2+2axy+2xz+2yz 经正交变换化为标准形f=y 12+4z 12,因此二次型矩阵1a 1A a 31111⎛⎫ ⎪= ⎪ ⎪⎝⎭与014⎛⎫ ⎪ ⎪ ⎪⎝⎭相似.所以 1a 1a 310a 1111=⇒=.例6.4 设矩阵211100A 121,B 010112000--⎛⎫⎛⎫ ⎪ ⎪=--= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,则A 与B [B ].(A)合同且相似; (B)合同但不相似;(C)不合同但相似; (D)既不合同也不相似. (2007 数一)解 211E A 121121112112λ-λλλλ-=λ-=λ-λ-λ-2111030(3)003=λλ-=λλ-λ-即A 的特征值为0,3,3.故A 与B 不相似.由于A 与B 有相同的正惯性指数与负惯性指数,所以A 与B 合同.故选B .例6.5 设A 为3阶非零矩阵,如果二次曲面x (x y z)A y 1z ⎛⎫ ⎪= ⎪ ⎪⎝⎭在正交变换下的标准方程的图形如下图,则A 的正特征值个数为[B ]. (2008 数一)(A) 0; (B) 1; (C) 2;(D)3.提示:图形是双曲抛物面,说明A 的秩为2,正惯性指数为1,所以选B.例6.6 设A 为三阶实对称矩阵, 且满足条件A 2+2A=O .已知A 的秩R(A)=2,(1)求A 的全部特征值;(2)当k 为何值时,矩阵A+kE 为正定矩阵.解 (1)设λ是A 的特征值,则λ2+2λ=0,λ=0或-2R(A)=2 ⇒ A 的特征值为0,-2,-2(2) A+kE 的特征值则为k, k-2, k-2 ⇒ 当k>2时,A+kE 为正定矩阵例6.7 设101A 020101=⎛⎫ ⎪ ⎪ ⎪⎝⎭,矩阵B=(kE+A)2,其中k 为实数,E 为单位矩阵. 求对角矩阵Λ,使B 与Λ相似,并问k 为何值时,B 为正定矩阵.解 A 是实对称矩阵,则kE+A 是实对称矩阵,(kE+A)2是实对称矩阵.A 与diag(0,2,2)相似⇒ kE+A 与diag(k,k+2,k+2)相似⇒ (kE+A)2与diag(k 2,(k+2)2,(k+2)2)相似⇒ Λ=diag(k 2,(k+2)2,(k+2)2)⇒ 当k ≠0且k ≠-2时,B 为正定矩阵例6.8 设A ,B 分别为m 阶和n 阶正定矩阵, 试判定分块矩阵A O C O B =⎛⎫ ⎪⎝⎭的正定性. 解 ∀x ≠ο, y ≠ο,有x T A x >0, x T B x >0⇒ x ≠ο或y ≠ο,有(x T ,y T )≠ο, (x T ,y T )C ⎛⎫ ⎪⎝⎭x y =x T A x +x T B x >0 ⇒ A O C O B =⎛⎫ ⎪⎝⎭正定例6.9 设T A C D CB =⎛⎫ ⎪⎝⎭为正定矩阵,其中A,B 分别为m 阶与n 阶对称矩阵,C 为m ⨯n 矩阵. (1) 计算P T DP ,其中1m n E A C P OE --=⎛⎫⎪⎝⎭. (2) 利用(1)的结果,判断矩阵B-C T A -1C 是否为正定矩阵,并证明你的结论. (2005 数三)。

矩阵等价相似合同的关系

矩阵等价相似合同的关系

矩阵等价相似合同的关系等价指的是两个矩阵的秩一样。

合同指的是两个矩阵的正定性一样,也就是说,两个矩阵对应的特征值符号一样。

相似是指两个矩阵特征值一样。

相似必等价,合同必等价。

1.等价矩阵:同型矩阵A,B的秩相等,那么A,B等价,即是随意两个秩相等的同型矩阵通过初等变换都可以相互转化相等与另一个。

2.相似矩阵的定义是:存在可逆矩阵P,使得P--1AP=B,则称B是A的相似矩阵。

原因:A与B相似有一个必要条件就是A与B的特征值相同,即|B-aE|=|A-aE|所以|B-aE|=|P--1||A-aE||P|,所以|B-aE|=|P--1AP-aP--1EP|,即|B-aE|=|P--1AP-aE|所以B=P--1AP3.合同矩阵定义:若存在可逆矩阵C,使得C T AC=B,即A与B合同。

对于合同矩阵要从二次型说起,二次型为:f=X T AX。

可通过X=CY变换,即把X=CY带入,于是f=(CY)T A(CY)=Y T[C T AC]Y,其中令C T AC=B,即A与B合同。

首先相似不一定合同,合同也不一定相似,但是如果相似或者合同则必然等价,而等价却不能反推出相似或者合同,原因是前者只能是对方阵,而后者则只需要同型。

相似合同和等价都具有反身性。

对称性和传递性,合同和相似能推出等价是因为他们的秩相等。

而对于矩阵A只有当他是实对称矩阵时,存在C T AC=C--1AC,即这个时候矩阵合同和相似可以等价,这个时候C是正交矩阵,然而当C 不是正交矩阵时,则只能满足其中一个条件,或者说如果P--1AP=B,即A与B相似,但如果P不是正交矩阵,则不能称A与B合同,如果P T AP=B,即A与B合同,但是PP T≠I,则一样不能推出相似。

相似必合同,合同必等价。

等价就是矩阵拥有相同的r。

矩阵合同,C T AC=B,矩阵乘以可逆矩阵他的r不变,r(B)=r(C T AC)=r(AC)=r(A),等价。

同理两矩阵相似一定等价。

矩阵之间的三个关系总结

矩阵之间的三个关系总结
来源:文都教育
相信在学习《线性代数》的过程中,同学们和我一样都对矩阵之间的三个关系印象深刻,但又因为这三个关系之间类似的表现形式让人欢喜让人忧,等价矩阵、合同矩阵、相似矩阵每每出现都要经历一番头脑风暴。

为了在考试中不再因此带来困扰,本文将这三种关系列出,理清每种关系的特征,使同学们再也不用担心碰到三种关系时不知所措。

以上总结了等价矩阵、相似矩阵和合同矩阵的定义和一些性质,在具体的题目中往往会将其结合起来进行考查,因此掌握他们的本质特征至关重要。

通过比较记忆再结合一些有针对性的习题,相信与这部分内容有关的题目可以迎刃而解。

合同矩阵


发展史
1855年,埃米特(C.Hermite,1822-1901)证明了其他数学家发现的一些矩阵类的特征根的特殊性质,如称为 埃米特矩阵的特征根性质等。后来,克莱伯施(A.Clebsch,1831-1872)、布克海姆(A.Buchheim)等证明了对称 矩阵的特征根性质。泰伯(H.Taber)引入矩阵的迹的概念并得出了一些有关的结论。
正定二次型
半正定二次型:其对应的对称矩阵在实数域内可以合同到一个对角线元素只由0和1构成的对角矩阵。 一个二次型是半正定二次型,当且仅当它的正惯性指数等于它对应矩阵的秩。 正定二次型:其对应的对称矩阵在实数域内合同于单位阵。 一个n元二次型是正定二次型,当且仅当它的正惯性指数是n。正定二次型对应矩阵一定是可逆矩阵,且行列 式大于0。 同样的可以定义半负定、负定和不定的二次型。
合同矩阵
线性代数的定义
目录
01 定义
03 正定二次型
02 性质 04 发展史
合同矩阵,在线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。两个矩阵A和B是合同的, 存在可逆矩阵 C,使得CTAC=B,则称方阵A合同于矩阵B。
定义
合同矩阵:设A,B是两个n阶方阵,若存在可逆矩阵C,使得 例题则称方阵A与B合同,记作 A≃B。 一般在线代问题中,研究合同矩阵的场景是在二次型中。二次型用的矩阵是实对称矩阵。两个实对称矩阵合 同的充要条件是它们的正负惯性指数相同。由这个条件可以推知,合同矩阵等秩。
谢谢观看
性质
合同关系是一个等价关系,也就是说满足: 1、反身性:任意矩阵都与其自身合同; 2、对称性:A合同于B,则可以推出B合同于A; 3、传递性:A合同于B,B合同于C,则可以推出A合同于C; 4、合同矩阵的秩相同。 矩阵合同的主要判别法: 设A,B均为复数域上的n阶对称矩阵,则A与B在复数域上合同等价于A与B的秩相同. 设A,B均为实数域上的n阶对称矩阵,则A与B在实数域上合同等价于A与B有相同的正、负惯性指数(即正、负 特征值的个数相等)。

合同变换法的原理

合同变换法的原理今天来聊聊合同变换法的原理。

你知道吗?平时我们整理东西的时候,就有点像合同变换的感觉。

比如说你整理书架上的书,横七竖八放着的书要怎么整理得整整齐齐?你可能会把同一类书放到一块儿,比如小说都放在左边那一层,工具书放在右边。

这其实就像是一种变换,你没有改变书的本质,不过它们的呈现方式和关系改变了。

合同变换法是在线性代数里的一个重要概念。

简单来说,合同变换是一种不改变矩阵一些本质特征而改变其表象形式的方法。

打个比方吧,合同变换对于矩阵就好像是装修房子,你没有改变房子的整体结构框架(也就是矩阵所代表的一些内在性质),只是改变了房间的布局(矩阵的形式)。

这里面涉及到线性变换、对称矩阵这些概念。

线性变换就好比是一种规则,按照这个规则向量或者矩阵的元素会进行一种有规律的改变。

对称矩阵呢,可以想象成一面镜子里和镜子外相对称的图案,有特殊的对称性。

说说我自己的学习经历吧,一开始我真的不明白合同变换到底有啥用,就觉得这些复杂的矩阵变换真是头疼。

后来我发现它在实际计算二次型的时候特别有用。

比如说某些工程问题里,需要计算能量、物理量的一些二次函数形式,就可以通过合同变换来简化计算。

说到这里,你可能会问,怎么才能知道一个变换是不是合同变换呢?其实啊,是通过一些规则来界定的。

就好比交通规则,遵守了某些特定规则的行驶(变换)就是合法(符合合同变换定义)的。

合同变换在实际应用中还有很多考前的考量。

一个是计算要精确,还有要正确理解矩阵背后代表的物理或者实际意义,不然就容易出错。

它也有一定的局限性,在处理一些非线性问题的时候就不能直接用了。

有意思的是,我发现合同变换的原理虽然是数学范畴里的,但是在生活中的类似逻辑其实无处不在。

像旅游的时候安排行程安排得合理不合理,也是一种类似于优化结构,跟合同变换有某种逻辑相通的地方。

我希望大家也能分享一下自己关于合同变换法或者类似数学概念理解的经历呀,或者有没有不同看法?反正这个概念虽然理解起来有一定难度,但只要联系生活细细琢磨,还是很有趣的。

矩阵的合同与相似及其等价条件讲解

矩阵的相似与合同及其等价条件研究(数学与统计学院 09级数学与应用数学一班) 指导老师:王晶晶引言矩阵的相似与合同及其等价三者在线性代数中是很重要的概念,在线性代数的学习中,矩阵的相似与合同作为研究工具,得到广泛的应用[1-10],起着非常重要的作用,能够把要处理的问题简单化[9],本文对矩阵的等价,合同,相似进行了简单的介绍并对其判别方法给了具体的例子进行解释说明,对矩阵的应用学习有一定的帮助.1 矩阵的等价与相似及其合同的基本概念1.1矩阵等价的定义[1]定义 1.1 如果矩阵A 可以有矩阵B 经过有限次初等变换得到,称A 与B 是等价的.由于要与矩阵的相似,合同进行比较,上述概念可以约束条件得到:定义1.2 如果n 阶矩阵A 可以由n 阶矩阵B 进过有限次初等变换得到,则称A 与B 是等价的.根据初等变换和初等矩阵的关系以及可逆矩阵的充分必要条件,可以用数学语言描述:定义1.3 设矩阵A ,B 为n 阶矩阵,如果存在n 阶可逆矩阵P 和Q ,使得B PAQ =,则称矩阵A 与B 等价,记作A ∽B . 1.2 矩阵相似的定义[2]定义 1.4 设矩阵A ,B 为n 阶矩阵,如果存在一个是n 阶可逆矩阵P ,使得B AP P =-1,则称矩阵A 与矩阵B 相似,记作A ~B .1.2.1 n 阶矩阵的相似关系,具有下列性质[3]:性质1.1 反身性,即任一n 阶矩阵A 与自身相似. 性质1.2 对称性,即如果A ~B ,则B ~A . 性质1.3 传递性,如果A ~B ,B ~C ,则A ~C .性质1.4 P A k AP P k P A k A k P 221122111)(+=+--. (21,k k 是任意常数)性质1.5 ))(()(2111211P A P P A P P A A P ---=.性质1.6 若矩阵A 与矩阵B 相似,则m A 与m B 相似. (m 为正整数) 证明 存在一个可逆矩阵P ,使得B AP P =-1,那么()P A P B AP P m m m11--==,故可以得到m A 与相m B 相似.性质1.7 如果矩阵A 、B 都是满秩,则A ~B ,那么1-B ~1-A . 证明 存在一个可逆矩阵P ,使得B AP P =-1,那么()P A P B AP P 11111-----==,故可以得到1-B ~1-A .性质1.8 如果矩阵A ~B ,那么B A =.证明 存在一个可逆矩阵P ,使得B AP P =-1,又因为B AP P =-1,11=-P P ,故可以得到B A =.性质1.9 相似矩阵或者都可逆,或者都不可逆.并且当它们都可逆时候,它们的逆矩阵也相似.证明 设AP P B 1-=,若矩阵B 可逆,()P A P AP P B 11111-----==,从而1-B 和1-A 也相似.若B 不可逆,则AP P 1-不可逆,即A 也不可逆.性质1.10 相似矩阵有相同的特征值.证明 设AP P B 1-=,AP P EP P B E 11---=-λλ ()PA E P -=-λ1A E -=λ故矩阵A 的特征值与矩阵B 有相同的特征值.性质1.11 相似矩阵有相同的迹.证明 可以设矩阵A 与矩阵B 相似,那么存在一个可逆矩阵P ,使得B AP P =-1,()()AP P t B t r r 1-=()PA P t r 1-= ()A t r =例1 ⎪⎪⎭⎫ ⎝⎛=3002A ,⎪⎪⎭⎫⎝⎛=2003B ,求分别求矩阵A 、B 的特征多项式,特征值秩,迹,行列式,矩阵A 与B 是否相似,它们之间有什么关系?解 从已知可知63002==A ,,2)(=A Rank 5)(=A t r 对于A 的特征多项式3002--=-λλλA E )3)(2(--=λλ 故A 的特征值为2和3.对于矩阵B ,62003==B ,,2)(=B Rank 5)(=B t r 矩阵B 的特征多项式)3)(2(23--=--=λλλλB .故矩阵B 的特征值是2和3.存在一个可逆矩阵⎪⎪⎭⎫ ⎝⎛=0110P 使得B AP P =-1,从定义矩阵B 与矩阵A 相似. 从结果看到相似矩阵有相同的特征多项式、相同的特征值、相等的行列式的值、相等的迹[2-4].例2 设实数域上的3级实对称矩阵⎪⎪⎪⎭⎫⎝⎛------=124242421A ,对角矩阵⎪⎪⎪⎭⎫⎝⎛-=400050005B .求矩阵A 、B 的特征值,特征多项式并且矩阵A 与矩阵B 相似吗?如果相似求出可逆矩阵P .解 由矩阵A 的特征多项式为11020242421124242421-+---=---λλλλλλλ1242421---=λλλ )4()5(2+-=λλ 故矩阵A 的特征值为5和—4.容易知道矩阵B 的特征多项式和矩阵A 的相同,故矩阵B 的特征值为5和-4.那么存在一个可逆矩阵P ,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=325310315152552325154551P 验证得到B AP P =-1,那么矩阵A 与矩阵B 相似,它们有相同的特征值和特征多项式. 1.3 矩阵合同的定义[2]定义1.5 设A ,B 为n 阶矩阵,如果存在一个n 阶可逆矩阵C ,使得B AC C T =,则称A 与B 合同,记作B A ≅.n 阶矩阵的合同关系具有下列性质:⑴ 反身性: 即任一n 级矩阵与自身合同. ⑵ 对称性: 即如A 与B 合同,则B 与A 合同. ⑶ 传递性: A 与B 合同,B 与C 合同,则A 与C 合同. ⑷ 合同的两矩阵有相同的二次型标准型. ⑸ 任何一个实对称矩阵合同于一个对角矩阵.⑹ 两个实对称矩阵合同,它们的秩相等,而且正惯性指数相等.2. 合同矩阵与相似矩阵的关系2.1 矩阵的相似与合同的相同点[5].⑴ 从上面可以看到,相似关系满足反身性、对称性、传递性;合同关系也具有反身性、对称性、传递性.⑵ 相似 、合同矩阵均有相同的秩.若矩阵A 相似与矩阵B ,则)()(B Rank A Rank =,若矩阵A 合同于矩阵B ,则)()(B Rank A Rank =.可见,如果两个矩阵相似或合同,那么它们的秩相同.⑶ 相似与合同的矩阵要求是同型的方阵.若矩阵A 于矩阵B 相似,则要求A 、B 都是方阵;若A 合同与B ,则要求A 、B 都方阵.就是说相似与合同的矩阵要求是同型矩阵,而且都是方阵. 2.2 矩阵的相似与合同的不同点[5].矩阵的相似与合同有一些不同之处,如A ~B ,则B A =,A 与B 有相同的特征值.但若A ≅B ,那么A 与B 的行列式的值不一定相等;A 与B 也不一定有相同的特征值.例1 设⎪⎪⎪⎭⎫ ⎝⎛----=542452222A ,⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=32455032454513145252T ,⎪⎪⎪⎭⎫⎝⎛=1000010001B , 不难验证:B AT T T =,有B A ≅.我们可以知道上面的矩阵等式满足矩阵的合同同时满足矩阵的相似,能够知道矩阵T 为正交矩阵,故A ~B ,矩阵A 的行列式可以等于B 的行列式,下面举出合同但是行列式不等的情况.例2 ⎪⎪⎭⎫ ⎝⎛=3221A ,⎪⎪⎭⎫ ⎝⎛--=12441B ,⎪⎪⎭⎫⎝⎛-=2001C . 经过验证可以知道1-=A ,4-=B ,然而B AC C T =,B A ≠,可以得到矩阵A 合同于B ,但是行列式可以不等.我们知道矩阵相似具有相同的特征值,这是因为相似矩阵有相同的特征多项式. 我们设A ~B ,则有可逆矩阵P ,使得AP P B 1-=,于是111()E B E P AP P E P P AP λλλ----=-=-=1()P E A P λ--=E A λ-故特征值相同.然而对于矩阵A 合同与矩阵B ,但是它们的特征值不一定相同:例3 设⎪⎪⎪⎪⎭⎫⎝⎛=121211A ,⎪⎪⎭⎫⎝⎛=43001B ,⎪⎪⎭⎫ ⎝⎛-=10211C 不难验证B AC C T =,即B A ≅,但是A 的特征值为21和23,B 的特征值为1和43显然,矩阵的相似与矩阵的合同是不同的概念. 2.3 矩阵等价、合同与相似的联系[7].结论2.1 相似矩阵一定是等价矩阵,等价矩阵未必为相似矩阵.证明 设n 级矩阵A 、B 相似,从定义知道存在n 阶矩阵P ,使得B AP P =-1,从等价的定义B A ≅.反过来,对于矩阵⎪⎪⎭⎫ ⎝⎛=010001A ,⎪⎪⎭⎫⎝⎛=010121B ,A 与B 等价,但是A 与B 并不相似.结论2.2 合同矩阵一定是等价矩阵,等价矩阵未必是合同矩阵.证明 设n 阶方阵B A ,合同,由定义1.5有,存在n 阶可逆矩阵1P ,使得B AP P T =1,若记11,P Q P P T== ,则有B PAQ =因此由定义1.3得到n 阶方阵B A ,等价.反过来对于矩阵⎪⎪⎭⎫⎝⎛=1001A ,⎪⎪⎭⎫ ⎝⎛=1021B 等价,但是A 与B 并不合同,即等价矩阵未必合同.2.4矩阵合同与相似的关系[7]结论2.3 如果M 与N 都是n 级对称矩阵,且有相同的特征值,则M 与N 既合同又相似.证明 设M 、N 的特征值均为1λ 、2λ、 n λ,因为M 与N 都是n 级实对称矩阵,则一定存在n 阶正交矩阵P ,使得:⎪⎪⎪⎭⎫ ⎝⎛=-n MP P λλ 11同理,可以找到一个正交矩阵Q ,使得:⎪⎪⎪⎭⎫ ⎝⎛=-n NQ Q λλ 11从上面两式有:NQ Q MP P 11--=将上式两边分别左乘Q 和又乘1-Q ,得:MPQ QP N 1`-= ()()11`1---=PQ M PQ由于 E QQ E PP T T ==, 故 T PQ 可逆,又由于:(1111)()()T TPQ PQ PQ Q P ----=T T QP PQ =E =所以1-PQ 是正交矩阵故M ~N N M ≅,结论2.4 若n 阶矩阵A 与B 中只要有一个正交矩阵,则AB 与BA 相似且合同. 证明 不妨A 是正交矩阵,则A 可逆取,A P =, 有()()BA BA A A ABA A ABP P ===---111,则AB 与BA 相似, 又A 是正交阵,所以AB 与BA 既相似又合同.结论2.5 若A ~B ,且B A ≅,C ~D 且D C ≅,则⎪⎪⎭⎫ ⎝⎛C A 00~⎪⎪⎭⎫ ⎝⎛D B 00,⎪⎪⎭⎫⎝⎛≅⎪⎪⎭⎫ ⎝⎛D B C A 0000证明 从已知,C ~B , C ~D ,故存在可逆矩阵1P ,2P 使得BAP P =-111D CP P =-212令 ⎪⎪⎭⎫ ⎝⎛=210P P P 则 ⎪⎪⎭⎫ ⎝⎛=---1211100P P P且 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛---21211110000CP P AP P P C A P⎪⎪⎭⎫ ⎝⎛=D B 00故 ⎪⎪⎭⎫ ⎝⎛C A 00~⎪⎪⎭⎫⎝⎛D B 00又因为D C B A ≅≅,,,故存在可逆矩阵1T ,2T ,使得 1122,T TT AT B T CT D ==令⎪⎪⎭⎫ ⎝⎛=2100T T T则 ⎪⎪⎭⎫ ⎝⎛=T TTT T T 2100 然而 112200000000T TT T A A T T T T C C T ⎛⎫⎛⎫⎛⎫⎛⎫=⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 11220000TT T T T T ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ 11220000T TBT AT D T CT ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭故 ⎪⎪⎭⎫ ⎝⎛C A 00≅⎪⎪⎭⎫⎝⎛D B 003 相似矩阵的应用3.1 相似矩阵的简单应用[8]在矩阵m A 的求解过程中,很难得到它的值,然而可以找到与矩阵A 相似的简单的矩阵,可把矩阵化简为对角矩阵,使得BP P A 1-=,其中P 为可逆矩阵,B 对角矩阵,可知矩阵A 与矩阵B 相似,那么()P B P BPP A m mm 11--==,从而可以使得不宜求的矩阵简单化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实对称矩阵的合同变换
根据欧拉原理,是实数形式的矩阵和实对称矩阵不存在最大和最小的非对称性,实对称矩阵的合同变换是最大的非对称矩阵。

实对称矩阵是一个包含很多实数的特殊矩阵。

如有一个双曲对称性极强的实对称矩阵在两个相反方向上都是非线性的。

当向量上任意两个对方值相等时称为实对称矩阵。

实对称矩阵都具有唯一的非对称性质。

•一、理论分析
如有一个实对称矩阵G={d}={b, c}(b),设它是一个满足一般等价于任意两个对称性均相等的实数群,其对应的函数为[b, c]是矩阵G的全部实数。

若G是一组复数族,则称G属于复数族族。

由定义可知在函数(f^1)上具有双曲对称性。

显然,当f^1=1时,存在复数矩阵g= e^- f> e (f^2);当f^- f> e时,存在复数矩阵g= e′* f^2= e (a} i’’)和双曲对称性极强的实对称矩阵,且可视为满足欧拉原理、不成立双曲非方程组以及非线性的微分方程组。

•二、证明
定理证明:当i是实对数时,满足以下几个条件:其中1、i是实数;2、i与其对方值相等;3、n阶实数;4、i与t值的乘积积之和为1;5、i上有无限多个复数;6、i在任意二重映射的条件下都有一个顶点;7、i最大二重映射的条件就是i的一元积等于该维数。

定理证明:2、若p、q是实数(i为p下的顶点)的集合F、Q、q都相等时,则有u、q是k维实对称矩阵。

注:以上证明见下一节。

•三、结论
实数形式的实口矩阵有4种形式,其中只有一种没有非对称,这就是典型的实对称矩阵。

实对称矩阵中包含n个实数,它们在对方值相等时称为对称矩阵。

最大的实对称矩阵有N 个实数和N+1对方值相等的特殊矩阵。

相关文档
最新文档