一元二次方程的概念及其解法
一元二次方程概念及解法(教师版)

一元二次方程概念与解法课首小测解下列方程:(1)2x-3=4 (2)3x+6=11 (3)242532-=-=+y x y x (4)1831552-=+=+y x y x参考答案:(1)x=3.5 (2)x=53(3) {11==X Y (4){12547=-=x y1知识梳理 1、一元二次方程的概念只含有 个未知数,并且未知数的最高次数是 ,这样的 方程叫一元二次方程。
一元二次方程的一般形式是20ax bx c ++=(a 、b 、c 是已知数且a ≠0),其中ax 2叫做 ,bx 叫做 ,a 叫做 系数,b 叫做 系数,c 叫做 。
2、一元二次方程的常用解法(1) 形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,可用 方法. (2) 配方法:用配方法解一元二次方程的一般步骤:①化二次项系数为1;②移项,使方程左边..为二次项和一次项,右边..为常数项; ③方程两边都加上一次项系数一半.......的平方..;④把原方程变为2()x m n +=的形式;⑤如果方程右边是非负数,就可以直接用开平方法求出方程的解. (3)公式法:求根公式为=x ( ≥0) (4)因式分解法:因式分解法的步骤: ①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解。
3、根的判别式:一元二次方程02=++c bx ax )0(≠a 根的情况(ac b 42-=∆)(1)当Δ>0时,方程有 实数根; (2)当 时,方程有两个相等的实数根; (3)当Δ<0时,方程 .※※易错知识辨析(1般形式中0≠a(2(3(4)用直接开平方的方法时要记得取正、负.2经典例题例题1:(1)关于x 的方程5)3(72=---x x m m是一元二次方程,则m =__-3______.(2)将方程(x+1)2+(x -2)(x+2)= 1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.参考答案:04222=-+x x , 22x , 2, 2x, -4【变式练习】1、方程化为一般形式为 011732=-+x x ,它的二次项系数是 3 ,一次项系数是 17 ,常数项是 -1 。
1、一元二次方程的定义及解法

第一讲一元二次方程的定义及解法1.1 一元二次方程的定义知识网络图定义直接开平方法一元二次方程配方法解法公式法因式分解法知识概述1.一元二次方程的概念:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,都能化成形如ax2bx c 0(a 0),这种形式叫做一元二次方程的一般形式.其中ax2是二次项, a 是二次项系数;bx 是一次项, b 是一次项系数; c 是常数项. 3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根课堂小练1.(2018?马鞍山二模)已知 a 是方程x2﹣2x﹣1=0 的一个根,则代数式2a2﹣4a﹣1的值为()A . 1 B.﹣ 2 C.﹣ 2 或 1 D .22(.2018?岐山县二模)若关于x 的一元二次方程(m﹣1)x2+x+m2﹣5m+3=0 有一个根为1,则m 的值为()A .1 B.3 C.0 D.1 或33.(2017 秋?潮南区期末)一元二次方程(x+3)(x﹣3)=5x 的一次项系数是()A .﹣ 5 B.﹣9 C.0 D .5课后练习1.(2018?荆门二模)已知 2 是关于x 的方程x2﹣(5+m)x+5m=0 的一个根,并且这个方向的两个根恰好是等腰△ABC 的两条边长,则△ABC 的周长为()A .9 B.12 C.9 或12 D. 6 或12 或152.(2018?河北模拟)若关于x 的一元二次方程ax2﹣bx+4=0 的解是x=2,则2020+2a﹣b 的值是()A .2016B .2018 C.2020 D.20223.(2017 秋?武城县期末)若关于x 的一元二次方程(m﹣2)x2+3x+m 2﹣3m+2=0 的常数项为0,则m 等于1.2 直接开平方法知识概述1.直接开方法解一元二次方程:(1) 直接开方法:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法 (2)直接开平方法的理论依据:平方根的定义课堂小练1.(2017 春?费县校级月考)解方程:(1)25x 2﹣36=0 课后练习1.(2017 秋?天宁区校级月考)解方程:(1)(x+2)2﹣16=0 1.3 配方法4. 5. A . 0 B .1 C .2 2017 秋?蓬溪县期末)关于 A .1B .﹣ 12017 秋?常熟市期末)已知 A . 2015 D .1 或 2x 的一元二次方程(C .±12元二次方程 x 2﹣ xB .2016C .2018 22a ﹣ 1) x 2+2ax+1 ﹣ a 2=0 有一个根是 0,则D .0﹣ 2=0 的一个根是 m ,则 2018﹣ m 2+m 的值是( D . 2020(3)能用直接开平方法解一元二次方程的类型:①形如关于 x 的一元二次方程 ,可直接开平方求解可直接开平方求解,两根是2)4(2x ﹣1)2=36.2)x 2﹣2x ﹣4=0.②形如关于 x 的一元二次方程知识概述1.配方法解一元二次方程: (1)配方法解一元二次方程:将一元二次方程配成 的形式,再利用直接开平方法求解,这种解一元二次方程的方法 叫配方法 .(2)配方法解一元二次方程的理论依据是公式: (3)用配方法解一元二次方程的一般步骤:① 移项:将含未知数的项移到左边,不含未知数的项移到右边; ②化系数为 1:方程两边同时除以二次项的系数,将二次项系数化为1;③ 配方:方程两边同时加上一次项系数一半的平方; ④ 再把方程左边配成一个完全平方式,右边化为一个常数;⑤ 若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解 课堂小练1.( 2018?临沂)一元二次方程 y 2﹣ y ﹣ =0 配方后可化为( )A .(y+ ) 2=1B .(y ﹣ )2=1C .(y+ )2=D .(y ﹣ )2=22.(2018?旌阳区模拟)用配方法解方程 x 2﹣ x ﹣1=0 时,应将其变形为()2 2 2 2A .(x ﹣ ) =B .(x+ ) =C .(x ﹣ ) =0D .( x ﹣ ) =3.( 2018?中江县模拟)用配方法解方程: x 2﹣7x+5=0 .课后练习上方程用配方法变形正确的是(1.( 2018?秀洲区二模)在《九章算术》 勾股”章里有求方程 2x +34x ﹣71000=0的正根才能解析的题目,以2A .(x+17 ) 2B .(x+17)2=71289 2C .(x ﹣17)2=70711 2D .(x ﹣17)2=712892.(2017 秋?定安县期末)将一元二次方程 x 2﹣ 4x ﹣ 6=0化成( x ﹣ a ) 2=b 的形式,则 b 等于( )[来A . 4B . 6C . 8D . 103.(2018?宁河县一模)解下列方程:21)x 2+10x+25=022) x 2﹣ x ﹣1=0.4.(2017?广东模拟)解方程:(x+1)(x﹣1)+2(x+3)=8.1.4 公式法知识概述1. 一元二次方程的求根公式一元二次方程,当时,2. 一元二次方程根的判别式①当时,原方程有两个不等的实数根②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3. 用公式法解一元二次方程的步骤①把一元二次方程化为一般形式;②确定a、b、c 的值(要注意符号);③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根课堂小练1.(2016 秋?通江县月考)下列方程适合用求根公式法解的是(A .(x﹣3)2=2 B.325x2﹣326x+1=0 C.x2﹣100x+2500=0 D .2x2+3x ﹣1=0 2.(2016秋?惠安县校级期中)用求根公式法解方程x2﹣2x﹣5=0 的解是()A .x1 =1+ ,x2=1﹣B.x1=2+ ,x2=2﹣C.x1=1+ ,x2=1﹣ D .x 1=2+ ,x2=2﹣[来源学§科§网Z§X§X§K]3.(2018?和平区模拟)解方程:(x﹣3)(x﹣2)﹣4=0.课后练习1.解方程2(1)3x2+5x+1=0 .1.5 因式分解法知识概述1.用因式分解法解一元二次方程的步骤1)将方程右边化为0;2)将方程左边分解为两个一次式的积;3)令这两个一次式分别为0,得到两个一元一次方程;4)解这两个一元一次方程,它们的解就是原方程的解2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式)要点诠释:22)2x2﹣7x+6=03)4x2﹣3=12x(用公式法解)24)2x2+3x=1 (用公式法解),十字相乘法等[来源 学#科# 网 Z#X#X#K]( 1)能用分解因式法来解一元二次方程的结构特点:方程的一边是 0,另一边可以分解成两个一次因式的 积;( 2)用分解因式法解一元二次方程的理论依据:两个因式的积为 0,那么这两个因式中至少有一个等于 0; ( 3)用分解因 式法解一元二次方程的注意点:①必须将方程的右边化为 0;②方程两边不能同时除以含有 未知数的代数式 . 课堂小练1.( 2018?泸县模拟)解方程: x (x ﹣1)=4x+6 .2.(2017 秋?白银期末)解方程:(1)3( x ﹣ 1) 2=x (x ﹣1)课后练习1.解方程(1) 4x 2﹣ 8x+3=0(2)x (x+6)=7 (3)2(x ﹣3)2=5(3﹣x )22)4)3x(x﹣1)=2(x﹣5)x(x+5)=14;6)x(x﹣2)+(x﹣2)=0.1)[来源学#科# 网Z#X#X#K]。
一元二次方程概念和解法(复习课001)

x2-3x-28=0 (x-7)(x+4)=0
x-7=0或x+4=0
x1=7, x2= -4
1、用适当的方法解下列方程:
(直接开 (2) t2-4t=1 (配方法) (1) (x-1) =3 平方法) (因式 (3) 2y2-4y-2=0 (求根 (4) x(x-1)=3(x-1) 分解法) 公式法) 温馨提示:
三、公式法 用公式法解一元二次方程的一般步骤:
1、把方程化成一般形式。并写出a,b,c的值。 2、求判别式△ =b2-4ac的值,并与O比较来判 定根的情况
(1)当△ ﹥0, b . 方程有两个不相等的实数 解 : x12 2a (2)当△ =0, 方程有两个相等的实数根 解 : b 0 b .
(1) (2X-1)
2
=1 (直接开平方法) (配方法或求根公式法)
(2) X2+6X=7
(3) 2y2-1=2y (求根公式法) (4) x(x-2)=x-2 (因式分解法) (5) x2-3x=28 (因式分解法)
温馨提示: 选择一元二次方程的解法的优先顺序是:
先考虑能否用直接开平方法和因式分解法,如果不 能用这两种特殊方法,再用公式法和配方法。
例(1) x(x-2)=x-2
解: x(x-2)-(x-2)=0 (x –2)(x-1)=0 x- 2=0 或 x-1=0 x1=2, x2= 1
移项(方程右边为0) 提公因式化为(x+a)(x+b)=0的形式 化为一元一次方程
(1)形如 x a 0 运用平方差公式得: x a 0 或 x a 0 x1 a x 2 a ( x a )( x a ) 0
九年级上册数学第21章《一元二次方程》知识点梳理完整版

【学习目标】1.了解一元二次方程及有关概念;九年级数学上册第21 章《一元二次方程》知识点梳理2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程;3.掌握依据实际问题建立一元二次方程的数学模型的方法.【知识网络】【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.要点诠释:1 2 判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为 0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为 2.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为 0.要点二、一元二次方程的解法1. 基本思想一元二次方程 −降−次−→ 一元一次方程 2. 基本解法 直接开平方法、配方法、公式法、因式分解法.要点诠释:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.要点三、一元二次方程根的判别式及根与系数的关系1. 一元二次方程根的判别式一元二次方程 ax 2 + bx + c = 0(a ≠ 0) 中, b 2 - 4ac 叫做一元二次方程 ax 2 + bx + c = 0(a ≠ 0) 的根的判别式, 通常用“ ∆ ”来表示,即∆ = b 2 - 4ac(1) 当△>0 时,一元二次方程有 2 个不相等的实数根;(2) 当△=0 时,一元二次方程有 2 个相等的实数根;(3) 当△<0 时,一元二次方程没有实数根.2. 一元二次方程的根与系数的关系如果一元二次方程 ax 2 + bx + c = 0(a ≠ 0) 的两个实数根是 x ,x ,那么 x + x = - b, x x = c . 1 2 a 1 2 a注意它的使用条件为 a≠0, Δ≥0.要点诠释:1. 一元二次方程的根的判别式正反都成立.利用其可以解决以下问题:(1) 不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.2. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.要点四、列一元二次方程解应用题1.列方程解实际问题的三个重要环节:一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审 (审题目,分清已知量、未知量、等量关系等);设 (设未知数,有时会用未知数表示相关的量);列 (根据题目中的等量关系,列出方程);解 (解方程,注意分式方程需检验,将所求量表示清晰);验 (检验方程的解能否保证实际问题有意义);答 (写出答案,切忌答非所问).4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.要点诠释:列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.【典型例题】类型一、一元二次方程的有关概念1.(2016•诏安县校级模拟)关于x 的一元二次方程(a﹣1)x2+x+a2﹣1=0 的一个根是0,则a 的值为()A.1 B.﹣1 C.1 或﹣1D.【思路点拨】根据方程的解的定义,把 x=0 代入方程,即可得到关于 a 的方程,再根据一元二次方程的定义即可求解.【答案】B;【解析】解:根据题意得:a2﹣1=0 且a﹣1≠0,解得:a=﹣1.故选 B.【总结升华】本题主要考查了一元二次方程的解的定义,特别需要注意的条件是二次项系数不等于0.举一反三:【变式】关于 x 的方程(a2−2a −8) x2+ (a + 2) x −1 = 0 ,当a 时为一元一次方程;当a 时为一元二次方程.【答案】a =4;a ≠4且a ≠-2.类型二、一元二次方程的解法2.用适当的方法解一元二次方程(1) 0.5x2- =0; (2) (x+a)2= ;(3) 2x2-4x-1=0;(4) (1- )x2=(1+ )x.【答案与解析】(1)原方程可化为 0.5x2=∴x2=用直接开平方法,得方程的根为∴x1= ,x2=- .(2)原方程可化为 x2+2ax+a2=4x2+2ax+∴x2= a2用直接开平方法,得原方程的根为∴x1= a,x2=-a.(3) a=2,b=-4,c=-1b2-4ac=(-4)2-4×2×(-1)=24>0x=∴x1= ,x2= .(4)将方程整理,得(1- )x2-(1+ )x=0用因式分解法,得x[(1- )x-(1+ )]=0∴x1=0,x2=-3-2 .【总结升华】在以上归纳的几种解法中,因式分解法是最简便、最迅捷的方法,但只有一部分方程可以运用这种方法,所以要善于及时观察标准的二次三项式在有理数范围内是否能直接因式分解,凡能直接因式分解的,应首先采取这种方法.公式法是可以解任何类型的一元二次方程,但是计算过程较繁琐,所以只有选择其他解法不顺利时,才考虑用这种解法.虽然先配方,再开平方的方法也适用于任何类型的一元二次方程,但是对系数复杂的一元二次方程,配方的过程比运用公式更繁琐,所以,配方法适用于系数简单的一元二次方程的求解.举一反三:【变式】解方程. (1)(3x-2)2+(2-3x)=0; (2)2(t-1)2+t=1.【答案】(1)原方程可化为:(3x-2)2-(3x-2)=0,∴(3x-2)(3x-2-1)=0.∴3x-2=0 或 3x-3=0,∴x=2,x= 1.1 3 2(2)原方程可化为:2(t-1)2+(t-1)=0.∴(t-1)[2(t-1)+1]=0.∴(t-1)(2t-1)=0,∴t-1=0 或2t-1=0.∴t= 1,t=1 .1 2 2类型三、一元二次方程根的判别式的应用1 23.(2015•荆门)若关于 x 的一元二次方程 x 2﹣4x+5﹣a=0 有实数根,则 a 的取值范围是() A .a≥1B . a >1C . a≤1D . a <1【答案】A ;【解析】∵关于 x 的一元二次方程 x 2﹣4x+5﹣a=0 有实数根,∴△=(﹣4)2﹣4(5﹣a )≥0,∴a≥1.故选 A .【总结升华】本题考查的是一元二次方程根的判别式,根据方程有两个实数根,得到判别式大于等于零,求出 a 的取值范围.类型四、一元二次方程的根与系数的关系4.已知 x 1、x 2 是关于 x 的方程 x 2- 2x + t + 2 = 0 的两个不相等的实数根, (1)求 t 的取值范围; (2)设 s = x 2+ x 2 ,求 s 关于 t 的函数关系式.【答案与解析】(1) 因为一元二次方程有两个不相等的实数根.所以△=(-2)2-4(t+2)>0,即 t <-1. (2)由一元二次方程根与系数的关系知: x 1 + x 2 = 2 , x 1x 2 = t + 2 , 从而 s = x 2 + x 2 = (x + x )2 - 2x x = 22 - 2(t + 2) = -2t ,即 s = -2t (t < -1) .1 2 1 2 1 2【总结升华】利用根与系数关系求函数解析式综合题.举一反三:【变式】已知关于 x 的一元二次方程 x 2 = 2(1- m )x - m 2 的两实数根为 x , x .1 2(1) 求 m 的取值范围;(2) 设 y = x 1 + x 2 ,当 y 取得最小值时,求相应 m 的值,并求出最小值.【答案】(1)将原方程整理为 x 2 + 2(m -1)x + m 2 = 0 .∵ 原方程有两个实数根.∴ △= [2(m -1)]2 - 4m 2 = -8m + 4 ≥ 0 ,∴ m ≤ 1. 2(2) y = x + x = -2m + 2 ,且 m ≤ 1 . 1 2 2因为 y 随 m 的增大而减小,故当m 1时,取得最小值 1.2类型五、一元二次方程的应用5.如图所示,在长为 10cm,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的 80%,求所截去的小正方形的边长.【答案与解析】设小正方形的边长为 xcm,由题意得 4x2=10×8×(1-80%).解得 x1=2,x2=-2.经检验,x1=2 符合题意,x2=-2 不符合题意舍去.∴x=2.答:截去的小正方形的边长为 2cm.【总结升华】设小正方形的边长为 x cm,因为图中阴影部分面积是原矩形面积的 80%,所以 4 个小正方形面积是原矩形面积的 20%.举一反三:【变式】(2015 春•启东市月考)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙 MN 最长可利用 25m),现在欲砌 50m 长的墙,砌成一个面积 300m2的矩形花园,则 BC 的长为多少 m?【答案】解:设 AB=x 米,则 BC=(50﹣2x)米.根据题意可得,x(50﹣2x)=300,解得:x1=10,x2=15,当x=10,BC=50﹣10﹣10=30>25,故x1=10(不合题意舍去), 50﹣2x=50﹣30=20.答:BC 的长为 20m.6.某旅行社有 100 张床位,每床每晚收费 10 元,空床可全部租出;若每床每晚提高 2 元,则减少 10 张床位租出;若每床每晚收费再提高 2 元,则再减少 10 张床位租出.以每次提高 2 元的这种方法变化下去,为了每晚获得 1120 元的利润,每床每晚应提高多少元?【答案与解析】设每床每晚提高 x 个2 元,则每床每晚收费为(10+2x)元,每晚出租出去的床位为(100-10x)张,根据题意,得(10+2x)(100-10x)=1120.整理,得 x2-5x+6=0.解得,x1=2,x2=3.∴ 当 x=2 时,2x=4;当 x=3 时,2x=6.答:每床每晚提高 4 元或6 元均可.【总结升华】这是商品经营问题,总利润=每张床费×床数.可设每床每晚提高 x 个2 元,则床费为(10+2x)元,由于每晚每床提高 2 元,出租出去的床位减少 10 张,则出租出去的总床位为(100-10x)张,据此可列方程.一元二次方程及其解法(一)直接开平方法【学习目标】1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式;2.掌握直接开平方法解方程,会应用此判定方法解决有关问题;3.理解解法中的降次思想,直接开平方法中的分类讨论与换元思想.【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.要点诠释:识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是 2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可.2.一元二次方程的一般形式:一般地,任何一个关于 x 的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.要点诠释:(1)只有当时,方程才是一元二次方程;(2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号.3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.4.一元二次方程根的重要结论(1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1 是一元二次方程的一个根,则a+b+c=0.(2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1 是一元二次方程的一个根,则a-b+c=0.(3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为 0.要点二、一元二次方程的解法1.直接开方法解一元二次方程:(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:①形如关于 x 的一元二次方程,可直接开平方求解.若,则;表示为,有两个不等实数根;若,则 x=O;表示为,有两个相等的实数根;若,则方程无实数根.②形如关于 x 的一元二次方程,可直接开平方求解,两根是.要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.【典型例题】类型一、关于一元二次方程的判定1.判定下列方程是不是一元二次方程:(1) ;(2) .【思路点拨】识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是 2.【答案】(1)是;(2)不是.【解析】(1)整理原方程,得,所以.其中,二次项的系数,所以原方程是一元二次方程.(2)整理原方程,得,所以.其中,二次项的系数为,所以原方程不是一元二次方程.【总结升华】不满足(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是 2.的方程都不是一元二次方程,缺一不可.举一反三:关联的位置名称(播放点名称):一元二次方程的概念-例 1】【变式】判断下列各式哪些是一元二次方程.①x2 +x +1 ;②9x2 - 6x = 0 ;③1y2= 0 ;④5x2-1+ 4 = 0 ;2 2x⑤x2+xy - 3y2= 0 ;⑥3y2= 2 ;⑦(x +1)(x -1) =x2.【答案】②③⑥.【解析】①x2 +x +1不是方程;④5x2-12x+4 = 0 不是整式方程;⑤ x2+xy - 3y2= 0 含有 2 个未知数,不是一元方程;⑦(x + 1)(x -1) =x2化简后没有二次项,不是 2 次方程. ②③⑥符合一元二次方程的定义.类型二、一元二次方程的一般形式、各项系数的确定2.把下列方程中的各项系数化为整数,二次项系数化为正数,并求出各项的系数:(1)-3x2-4x+2=0; (2) .【答案与解析】(1)两边都乘-1,就得到方程3x2+4x-2=0.各项的系数分别是: a=3,b=4,c=-2.(2)两边同乘-12,得到整数系数方程6x2-20x+9=0.各项的系数分别是:.【总结升华】一般地,常根据等式的性质把二次项的系数是负数的一元二次方程调整为二次项系数是正数的一元二次方程;把分数系数的一元二次方程调整为整数系数的一元二次方程.值得注意的是,确定各项的系数时,不应忘记系数的符号,如(1)题中 c=-2 不能写为 c=2,(2)题中不能写为.举一反三:关联的位置名称(播放点名称):一元二次方程的形式-例 3】【变式】将下列方程化为一元二次方程一般形式,并指出二次项系数、一次项系数和常数项:(1)3x2 = 5x - 2 ;(2)a(x +1)(x -1) = 2 -x .【答案】(1)3x2 - 5x+2=0 ,二次项系数是 3、一次项系数是-5、常数项是 2.(2)a(x +1)(x -1) = 2 -x 化为ax2 +x -a - 2 = 0, 二次项系数是 a、一次项系数是 1、常数项是-a-2.⎩ ⎩类型三、一元二次方程的解(根)3. 如果关于 x 的一元二次方程 x 2+px+q =0 的两根分别为 x 1=2,x 2=1,那么 p ,q 的值分别是( ) A .-3,2 B .3,-2 C .2,-3 D .2,3【答案】A ;【解析】∵ x =2 是方程 x 2+px+q =0 的根,∴ 22+2p+q =0,即 2p+q =-4 ①同理,12+p+q =0,即 p+q =-1 ②⎧2 p + q = -4, ⎧ p = -3,联立①,②得⎨ p + q = -1, 解之得: ⎨q = 2.【总结升华】由方程根的定义得到关于系数的方程(组),从而求出系数的方法称为待定系数法,是常用的数学解题方法.即分别用 2,1 代替方程中未知数 x 的值,得到两个关于 p 、q 的方程,解方程组可求 p 、q 的值.类型四、用直接开平方法解一元二次方程4. (2016 春•仙游县月考)求下列 x 的值 (1)x 2﹣25=0 (2)(x+5)2=16.【思路点拨】(1)移项后利用直接开方法即可解决.(2)利用直接开方法解决.【答案与解析】解:(1)∵x 2﹣25=0, ∴x 2=25, ∴x=±5.(2)∵(x+5)2=16, ∴x+5=±4,∴x=﹣1 或﹣9.【总结升华】应当注意,形如 =k 或(nx+m )2=k(k≥0)的方程是最简单的一元二次方程,“开平方”是解这种方程最直接的方法.“开平方”也是解一般的一元二次方程的基本思路之一.举一反三:【变式 1】用直接开平方法求下列各方程的根:(1)x 2=361;(2)2y 2-72=0;(3)5a 2-1=0;(4)-8m 2+36=0.【答案】(1)∵ x2=361,∴ x=19 或 x=-19.(2)∵2y2-72=0,2y2=72,y2=36,∴ y=6 或y=-6.(3)∵5a2-1=0,5a2=1,a2= ,∴a=或 a=- .(4)∵-8m2+36=0,-8m2=-36,m2= ,∴m=或m=- .【变式 2】解下列方程:(1) (2015 •东西湖区校级模拟)(2x+3)2-25=0;(2)(2014 秋•滨州校级期末)(1﹣2x)2=x2﹣6x+9. 【答案】解:(1)∵ (2x+3)2=25,∴ 2x+3=5 或 2x+3=-5.∴x1=1,x2=-4.(2)∵(1﹣2x)2=x2﹣6x+9,∴(1﹣2x)2=(x﹣3)2,∴1﹣2x=±(x﹣3),∴1﹣2x=x﹣3 或1﹣2x=﹣(x﹣3),4∴x1=,x2=﹣2.3一元二次方程的解法(二)配方法【学习目标】1.了解配方法的概念,会用配方法解一元二次方程;2.掌握运用配方法解一元二次方程的基本步骤;3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力.【要点梳理】知识点一、一元二次方程的解法---配方法1.配方法解一元二次方程:(1)配方法解一元二次方程:将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为 1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式a2± 2ab +b2= (a ±b)2.知识点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为 0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.【典型例题】类型一、用配方法解一元二次方程1. (2016•淄博)解方程:x2+4x﹣1=0.【思路点拨】首先进行移项,得到 x2+4x=1,方程左右两边同时加上 4,则方程左边就是完全平方式,右边是常数的形式,再利用直接开平方法即可求解.【答案与解析】解:∵x2+4x﹣1=0∴x2+4x=1∴x2+4x+4=1+4∴(x+2)2=5∴x=﹣2±∴x1=﹣2+ ,x2=﹣2﹣.【总结升华】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为 1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为 1,一次项的系数是 2 的倍数.举一反三:【变式】用配方法解方程.(1)x2-4x-2=0;(2)x2+6x+8=0.【答案】(1)方程变形为 x2-4x=2.两边都加 4,得 x2-4x+4=2+4.利用完全平方公式,就得到形如(x+m)2=n 的方程,即有(x-2)2=6.解这个方程,得x-2= 或 x-2=- .于是,原方程的根为x=2+ 或x=2- .(2)将常数项移到方程右边 x2+6x=-8.两边都加“一次项系数一半的平方”=32,得x2+6x+32=-8+32,∴ (x+3)2=1.用直接开平方法,得x+3=±1,∴ x=-2 或 x=-4.类型二、配方法在代数中的应用2.若代数式M = 10a2 +b2 - 7a + 8 ,N =a2 +b2 + 5a +1 ,则M -N 的值()A.一定是负数B.一定是正数C.一定不是负数D.一定不是正数【答案】B;【解析】(作差法)M -N = 10a2+b2- 7a + 8 - (a2+b2+ 5a +1)=10a2 +b2 - 7a + 8 -a2 -b2 - 5a -1= 9a2 -12a + 7 = 9a2 -12a + 4 + 3 = (3a - 2)2+ 3 > 0 .故选B.【总结升华】本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.3.(2014•甘肃模拟)用配方法证明:二次三项式﹣8x2+12x﹣5 的值一定小于 0.【答案与解析】解:﹣8x2+12x﹣5=﹣8(x2﹣x)﹣5=﹣8[x2﹣x+()2]﹣5+8×()2=﹣8(x﹣)2﹣,∵(x﹣)2≥0,∴﹣8(x﹣)2≤0,∴﹣8(x ﹣)2﹣ <0, 即﹣8x 2+12﹣5 的值一定小于 0.【总结升华】利用配方法将代数式配成完全平方式后,再分析代数式值的符号. 注意在变形的过程中不要改变式子的值.举一反三:【变式】求代数式 x 2+8x+17 的最小值【答案】x 2+8x+17= x 2+8x+42-42+17=(x+4)2+1∵(x+4)2≥0,∴当(x+4)2=0 时,代数式 x 2+8x+17 的最小值是 1.4.已知 a2- 3a + b 2 - b + 37= 0 ,求 a - 4 2 16的值.【思路点拨】解此题关键是把 37拆成 9+ 1,可配成两个完全平方式.16 4 16【答案与解析】将原式进行配方,得⎛ a 2- 3a + 9 ⎫ + ⎛ b 2 - b +1 ⎫ = 0 ,4 ⎪ 2 16 ⎪ ⎝ ⎭ ⎝ ⎭⎛ 3 ⎫2 ⎛ 1 ⎫2即 a - 2 ⎪ + b - 4 ⎪ = 0 , ⎝ ⎭ ⎝ ⎭∴ a - 3 = 0 且b - 1= 0 ,24∴ a = 3,b = 1. 2∴ a - 4 4= 3 - 2= 3 - 2 = - 1 . 2 2【总结升华】本题可将原式用配方法转化成平方和等于 0 的形式,进而求出 a .b 的值.b b1 4【学习目标】一元二次方程的解法(三)--公式法,因式分解法1.理解一元二次方程求根公式的推导过程,了解公式法的概念,能熟练应用公式法解一元二次方程;2.正确理解因式分解法的实质,熟练运用因式分解法解一元二次方程;3.通过求根公式的推导,培养学生数学推理的严密性及严谨性,渗透分类的思想.【要点梳理】要点一、公式法解一元二次方程1.一元二次方程的求根公式一元二次方程,当时,.2.一元二次方程根的判别式一元二次方程根的判别式:.①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定 a、b、c 的值(要注意符号);③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选择.(2)一元二次方程ax2+bx +c = 0 (a ≠ 0) ,用配方法将其变形为:(x + b)22a=b2- 4ac4a2.①当∆=b2-4ac > 0 时,右端是正数.因此,方程有两个不相等的实根:x1,2 =2a .②当∆=b2 - 4ac = 0 时,右端是零.因此,方程有两个相等的实根:x =-b1,2 2a .③ 当∆=b2 - 4ac < 0 时,右端是负数.因此,方程没有实根.要点二、因式分解法解一元二次方程1.用因式分解法解一元二次方程的步骤(1)将方程右边化为 0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是 0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为 0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、公式法解一元二次方程1.用公式法解下列方程.(1) x2+3x+1=0; (2) 2x2 = 4x -1 ;(3) 2x2+3x-1=0.【答案与解析】(1) a=1,b=3,c=1∴x==.∴x1= ,x2= .(2)原方程化为一般形式,得2x2 - 4x +1 = 0 .-b ±∵a = 2 ,b =-4 ,c =1 ,∴b2- 4ac = (-4)2- 4 ⨯ 2 ⨯1 = 8 > 0 .∴ x =4 ± 2 2= 1±2,即x =1+2,x= 1-2.2 ⨯ 2 2 1 2 2 2(3) ∵a=2,b=3,c=﹣1∴b2﹣4ac=17>0∴x=∴x1= ,x2= .【总结升华】用公式法解一元二次方程的关键是对 a、b、c 的确定.用这种方法解一元二次方程的步骤是:(1)把方程化为一元二次方程的一般形式;(2)确定 a,b,c 的值并计算b2 - 4ac 的值;(3)若b2 - 4ac 是非负数,用公式法求解.举一反三:【变式】用公式法解方程:(2014•武汉模拟)x2﹣3x﹣2=0.【答案】解:∵a=1,b=﹣3,c=﹣2;∴b2﹣4ac=(﹣3)2﹣4×1×(﹣2)=9+8=17;∴x==,∴x1=,x2= .2.用公式法解下列方程:(1) (2014•武汉模拟)2x2+x=2; (2) (2014 秋•开县期末)3x2﹣6x﹣2=0 ;(3)(2015•黄陂区校级模拟)x2﹣3x﹣7=0.【思路点拨】针对具体的试题具体分析,不是一般式的先化成一般式,再写出a,b,c的值,代入求值即可.【答案与解析】解:(1)∵2x2+x﹣2=0,∴a=2,b=1,c=﹣2,∴x== = ,-1± 3 -1- 3 -1+ 3 ∴x 1=,x 2=.(2) ∵a=3,b=﹣6,c=﹣2,∴b 2﹣4ac=36+24=60>0,∴x=, ∴x 1= ,x 2= (3)∵a=1,b=﹣3,b=﹣7.∴b 2﹣4ac=9+28=37.x== ,解得 x 1=,x 2= .【总结升华】首先把每个方程化成一般形式,确定出 a 、b 、c 的值,在b 2- 4ac ≥ 0 的前提下,代入求根公式可求出方程的根.举一反三:【变式】用公式法解下列方程: 2x 2+ 2x = 1;【答案】解:移项,得2x 2 + 2x -1 = 0 .∵ a = 2 ,b = 2 ,c = -1 , b 2 - 4ac = 22 - 4 ⨯ 2 ⨯(-1) = 12 > 0 ,∴ x =-2 ± 12 = , 2 ⨯ 2 2∴ x 1 =2 , x 2 = 2 .类型二、因式分解法解一元二次方程3.(2016•沈阳)一元二次方程 x 2﹣4x=12 的根是() A .x 1=2,x 2=﹣6 B .x 1=﹣2,x 2=6 C .x 1=﹣2,x 2=﹣6D .x 1=2,x 2=6【思路点拨】方程整理后,利用因式分解法求出解即可.【答案】B【解析】解:方程整理得:x 2﹣4x ﹣12=0, 分解因式得:(x+2)(x ﹣6)=0,解得:x1=﹣2,x2=6,故选 B【总结升华】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.4.解下列一元二次方程:(1)(2x+1)2+4(2x+1)+4=0; (2) (3x -1)(x -1) = (4x +1)(x -1) .【答案与解析】(1)(2x+1)2+4(2x+1)+4=0,(2x+1+2)2=0.即(2x + 3)2= 0 ,∴x =x =-3 .1 2 2(2) 移项,得(3x-1)(x-1)-(4x+1)(x-1)=0,即(x-1)(x+2)=0,所以x1=1 ,x2=-2 .【总结升华】解一元二次方程时,一定要先从整体上分析,选择适当的解法.如 (1)可以用完全平方公式.用含未知数的整式去除方程两边时,很可能导致方程丢根,(2)容易丢掉 x=1 这个根.举一反三:【变式】(1)(x+8)2-5(x+8)+6=0 (2)3 x(2 x+1) =4 x+2【答案】(1)(x+8-2)(x+8-3)=0(x+6)(x+5)=0X1=-6,x2=-5.(2)3x(2x+1)-2(2x+1)=0(2x+1)(3x-2)=0x =-1, x =2.1 2 2 35.探究下表中的奥秘,并完成填空:一元二次方程两个根二次三项式因式分解x2﹣2x+1=0x1=1,x2=1 x2﹣2x+1=(x﹣1)(x﹣1)x2﹣3x+2=0x1=1,x2=2 x2﹣3x+2=(x﹣1)(x﹣2)x1= ,x 2=﹣13x2+x﹣2=3(x﹣)(x+1)2x2+5x+2=2(x+)(x+2)x1=﹣,x2=﹣2将你发现的结论一般化,并写出来.【思路点拨】利用因式分解法,分别求出表中方程的解,总结规律,得出结论.【答案与解析】填空:﹣,﹣3;4x2+13x+3=4(x+)(x+3).发现的一般结论为:若一元二次方程 ax2+bx+c=0 的两个根为 x1、x2,则ax2+bx+c=a(x﹣x1)(x﹣x2).【总结升华】考查学生综合分析能力,要根据求解的过程,得出一般的结论,解一元二次方程——因式分解法.一元二次方程根的判别式及根与系数的关系【学习目标】1.会用一元二次方程根的判别式判别方程根的情况,由方程根的情况能确定方程中待定系数的取值范围;2.掌握一元二次方程的根与系数的关系以及在各类问题中的运用.【要点梳理】知识点一、一元二次方程根的判别式1.一元二次方程根的判别式一元二次方程ax 2+bx +c = 0(a ≠ 0) 中,b 2- 4ac 叫做一元二次方程ax 2+bx +c = 0(a ≠ 0) 的根的判别式,通常用“ ∆”来表示,即∆=b 2- 4ac(1)当△>0时,一元二次方程有 2 个不相等的实数根;(2)当△=0时,一元二次方程有 2 个相等的实数根;(3)当△<0时,一元二次方程没有实数根.要点诠释:利用根的判别式判定一元二次方程根的情况的步骤:①把一元二次方程化为一般形式;②确定a,b.c的值;③计1 2 算b 2 - 4ac 的值;④根据b 2 - 4ac 的符号判定方程根的情况.2. 一元二次方程根的判别式的逆用在方程 ax 2 + bx + c = 0(a ≠ 0) 中,(1) 方程有两个不相等的实数根⇒b 2 - 4ac ﹥0; (2) 方程有两个相等的实数根⇒b 2 - 4ac =0; (3) 方程没有实数根⇒b 2 - 4ac ﹤0.要点诠释:(1) 逆用一元二次方程根的判别式求未知数的值或取值范围,但不能忽略二次项系数不为 0 这一条件;(2) 若一元二次方程有两个实数根则 b 2 - 4ac ≥0.知识点二、一元二次方程的根与系数的关系1. 一元二次方程的根与系数的关系如果一元二次方程 ax 2 + bx + c = 0(a ≠ 0) 的两个实数根是 x ,x ,那么 x + x = - b , x x = c . 1 2 a 1 2 a注意它的使用条件为 a≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.2. 一元二次方程的根与系数的关系的应用(1)验根.不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根;(2)已知方程的一个根,求方程的另一根及未知系数;(3)不解方程,可以利用根与系数的关系求关于 x 1、x 2 的对称式的值.此时,常常涉及代数式的一些重要变形;如:① x 2 + x 2 = (x + x )2 - 2x x ; 1 2 1 2 1 2② 1 +1 x 1 x 2= x 1 + x 2 ; x 1 • x 2 ③ x x 2 + x 2 x = x x (x + x ) ; 1 2 1 2 1 2 1 2。
一元二次方程定义及其解法(配方法)

一元二次方程定义及其解法(配方法) 一元二次方程的定义及其解法(配方法)一、目标导航1.掌握一元二次方程的定义及a、b、c的含义;2.掌握配方法解一元二次方程的方法。
二、教学重难点重点:1.掌握一元二次方程的定义及a、b、c的含义;2.掌握配方法解一元二次方程的方法。
难点:配方法解一元二次方程。
三、走进教材知识点一:一元二次方程的定义1.一元二次方程的定义:方程两边都是整式,只含有一个未知数,并且未知数的最高次数为2的方程叫做一元二次方程。
2.一元二次方程的一般形式:ax^2+bx+c=0(其中a≠0),其中ax^2叫做二次项,a叫做二次项系数,bx叫做一次项,b叫做一次项系数,c叫做常数项。
举例:x^2+2x-3=0.3.一元二次方程的解:能使一元二次方程的左右两边相等的未知数的值叫做一元二次方程的解,一元二次方程的解也可以叫做一元二次方程的根。
自主练:下列方程中,是一元二次方程的有。
(填序号)①x=5;②x+y-3=0;③3x^2+2x-5x-3=0;④x(x+5)=x-2x^2;⑤2x^2-5x+8=0;⑥4x^2-2y^2=0.知识点二:配方法解一元二次方程1.解一元二次方程的思路:降次,即把二次降为一次,把一元二次方程转化为一元一次方程,化未知为已知,化繁为简,这是转化思想的体现。
2.配方法:利用配方法将一个一元二次方程的左边配成完全平方形式,而右边是一个非负数,即把一个方程转化成(x+n)^2=p(p≥0)的形式,这样解方程的方法叫做配方法。
3.配方法具体操作:1)对于一个二次三项式,当二次项系数为1时,配上一次项系数一半的平方就可以将其配成一个完全平方式,举例:解方程x^2+2x-3=0.2)当二次项系数不为1时,首先把二次项系数化为1,方程两边除以二次项系数,然后再利用(1)的步骤完成配方。
举例:解方程2x^2+2x-3=0.4.(x+n)^2=p(p≥0)的解法:对于方程(x+n)^2=p(p≥0),它的左边是一个完全平方式,右边是非负数,利用平方根的定义,可以将这个方程进行降次,降为两个一元一次方程,即x+n=√p和x+n=-√p,解两个一元一次方程即可。
一元二次方程的概念及解法

一元二次方程的概念及解法一、 考点突破1. 理解一元二次方程的定义、解,食+版& = 0 (在0), a 、b 、c 均为常数,尤其。
不为零要切记。
2. 熟练掌握一元二次方程的几种解法,如因 式分解法、公式法等,弄清化一元二次方程为一 元一次方程的转化思想。
二、 重难点提示熟练掌握一元二次方程的几种解法。
一、知识结构厂一元一次方程O 壬二元一次方程组整式方程一 A去分母二、解题策略与方法 解一元二次方程的基本策略是:降次。
降次 的主要方法是因式分解法和开平方法。
1. 一元二次方程的概念只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一般形式: 杯+Zxr + c = O 是常数,且"0).2. 一元二次方程的解法(1)直接开平方法降次「解法 —元二次方程- _______ L 根的判别式 W方程一 分式方程形如(mx + n)2= /• (r > 0) 的方程,两边开平方,即可转化为两个一元一次方程来解,这种方法叫做直接开平方法.(2)配方法把一元二次方程通过配方化成如+ 〃)2=,(房0)的形式,再用直接开平方法解,这种方法叫做配方法.用配方法解一元二次方程次& + ”0 (^0)的一般步骤是:① 化二次项系数为1,即方程两边同除以二次项系数〃;②移项,也就是使方程的左边为二次项和一次项,右边为常数项;③ 配方,即方程两边都加上一次项系数一半的平方;④ 化原方程为(》+〃?)、〃的形式;⑤ 如果,20就可通过两边开平方来求出方程的解;如果〃V0,则原方程无解.(3)公式法通过配方法可求得二元二次方程ax2 + bx + c = 0(。
n 0)的求根公式:x=-b土尸,用求根公式解一元二次方程的方法叫做本'式法.兀—次方程ar2 + + c = 0 ( a,b,c是常数,且心0)的根的判别式是屏-4必.利用根的判别式可以判定方程实根的个数;利用根的判别式也可以建立等式、不等式,求方程中的参数的值或取值范围; 通过根的判别式可证明与方程有关的代数问题,也可运用一元二次方程必定有解的代数模型,解几何存在性问题、最值问题等。
一元二次方程概念与解法

一元二次方程概念与解法教学目标1•了解一元二次方程及其相关概念,会用配方法、公式法、分解因式法解简单的一元二次方程2•能够利用一元二次方程解决简单的实际问题。
教学重点一元二次方程的三种解法:配方法、公式法、分解因式法。
教学难点列一元二次方程解决实际问题。
知识点梳理:一元二次方程知识框图:1•一元二次方程:只含有一个未知数,并且含未知数的项的最高次数是2的整式方程,这样的方程叫做一元二次方程。
2. —元二次方程的一般形式:a2x+bx+c=0(a丰0)3•—元二次方程的解法直接开平方法:适用于(mx+n) 2=h (h > 0)的一元二次方程。
配方法:适用于化为一般形式的一元二次方程。
关键:方程两边都加上一次项系数一半的平方。
公式法:-b b2 4acx=(b2-4ac> 0)2a关键:b2-4ac>0时,方程才有解。
因式分解法:适用于方程右边是0,左边是易于分解成两个一次因式乘积的一元二次方程。
4 .一元二次方程ax2+bx+c=0 (a丰0)的根的判别式是_____________________ ,当 _______ 时,它有两个不相等的实数根;当_____________ 时,它有两个相等的实数根;当 ____________ 时,?它没有实数根.5.根的判别式及应用(△ =b2-4ac)(1) 判定一元二次方程根的情况.△ >0 有两个不相等的实数根 △ =0 有两个相等的实数根 △ <0 没有实数根; △ > 0有实数根•6.根与系数的关系(韦达定理)的应用bc 韦达定理:如果一元二次方程 ax 2+bx+c=0(a 工的两根为X 1、X 2,则X 1+X 2=-,X 1 X 2=.aa(1) 已知一根求另一根及未知系数; (2) 求与方程的根有关的代数式的值 ; (3) 已知两根求作方程;(4) 已知两数的和与积,求这两个数; (5) 确定根的符号:(X i ,X 2是方程两根).0,一元二次方程的应用解应用题的关键是把握题意 是否符合实际意义• 例题讲解1: 一元二次方程基本概念(1) mf-3x+x 2=0是关于X 的一元二次方程的条件是 A m=1 B m 丰-1 C m 丰0 D m为任意实数(2) (k-1 ) x 2-kx+仁0是关于x 的一元二次方程的条件是 Js 丰1_.有两正根X ,x 2x ,x 2 00,有两负根有一正根一负根0,X 1 x 2 x 1x 20,0, X 1X 2 0有一正根一零根0,X 1 X 2 0 X 1X 2 0 有一负根一零根0, X 1 x 2 0X 1=X 2=00, X i X 2,找准等量关系,列出方程•?最后还要注意求出的未知数的值(3) _____________________________________ 已知方程mX+mx+3m-X+x+2=0,当m 时,为一元二次方程;当m ___________________________ 时,为兀一次方程1. 关于x 的方程(k — 3)X 2+ 2x — 1 = 0,当k _______ 时,是一元二次方程。
一元二次方程的性质与解法

一元二次方程的性质与解法一元二次方程是高中数学中的重要内容,它在代数学中有着重要的应用和解决实际问题的能力。
本文将介绍一元二次方程的性质和解法,并给出详细的解题步骤,帮助读者更好地理解和掌握这个概念。
一元二次方程是指形式为ax²+bx+c=0的方程,其中a、b、c都是常数,且a≠0。
一元二次方程最高次项是二次项,未知数的最高次数是2。
在解一元二次方程之前,我们先来看一下它的一些性质。
一、一元二次方程的解的个数根据一元二次方程的根的判别式Δ=b²-4ac,我们可以得到解的个数的结论。
1. 当Δ>0时,方程有两个不同实根;2. 当Δ=0时,方程有两个相等的实根,也称为重根;3. 当Δ<0时,方程无实根。
此时,方程的解为共轭复数。
二、一元二次方程的解的性质1. 设x₁, x₂为方程ax²+bx+c=0的两个根,则有以下关系成立:(1)x₁+x₂=-b/a;(2)x₁x₂=c/a;2. 方程x²+(a+b)x+ab=0的两个根分别为-1和-a;3. 如果方程ax²+bx+c=0有根α,则其对应的齐次方程ax²+bx+c=0的通解为x=k(α+1),其中k为常数。
解一元二次方程的方法有很多,我们下面将介绍三种常用的解法。
一、配方法步骤:1. 将一元二次方程ax²+bx+c=0移项并进行因式分解,即得到(a₁x+b₁)(a₂x+b₂)=0;2. 求解出(a₁x+b₁)=0和(a₂x+b₂)=0的两个一元一次方程;3. 解出这两个一元一次方程,得到两组根:x₁= -b₁/a₁,x₂= -b₂/a₂;4. 将得到的解带入原方程进行验证,如果两边相等,则说明解是正确的。
二、公式法步骤:1. 计算出方程的判别式Δ=b²-4ac,确定解的个数;2. 根据解的个数和判别式的结果,采取相应的公式求解:(1)当Δ>0时,方程的两个解分别为x₁=(-b+√Δ)/2a和x₂=(-b-√Δ)/2a;(2)当Δ=0时,方程有两个相等的实根,即x₁=x₂=-b/2a;(3)当Δ<0时,方程无实根,解为共轭复数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程的概念及其解法一元二次方程的概念及解法和讲义知识点一:一元二次方程的概念 (1)定义:只含有一个未知数........,并且未知数的最高次数是.........2.,这样的整式方程....就是一元二次方程。
(2)一般表达式:)0(02≠=++a c bx ax(3)四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为)0(02≠=++a c bx ax 的形式,则这个方程就为一元二次方程.(4)将方程化为一般形式:02=++c bx ax 时,应满足(a ≠0)例1:下列方程①x 2+1=0;②2y(3y-5)=6y 2+4;③ax 2+bx+c=0 ;④0351=--x x,其中是一元二次方程的有 。
变式:方程:①13122=-x x ②05222=+-y xy x ③0172=+x ④022=y 中一元二次程的是 。
例2:一元二次方程12)3)(31(2+=-+x x x 化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。
变式1:一元二次方程3(x —2)2=5x -1的一般形式是 ,二次项系数是 ,一次项系数是 ,常数项是 。
变式2:有一个一元二次方程,未知数为y ,二次项的系数为-1,一次项的系数为3,常数项为-6,请你写出它的一般形式______________。
例3:在关于x 的方程(m-5)x m-7+(m+3)x-3=0中:当m=_____时,它是一元二次方程;当m=_____时,它是一元一次方程。
变式1:已知关于x 的方程(m+1)x 2-mx+1=0,它是( ) A .一元二次方程 B .一元一次方程 C .一元一次方程或一元二次方程 D .以上答案都不对 变式2:当m 时,关于x 的方程5)3(72=---x x m m是一元二次方程知识点二:一元二次方程的解(1)概念:使方程两边相等的未知数的值,就是方程的解。
(2)应用:利用根的概念求代数式的值; 【典型例题】(1)(2)形如()()02≥=+p p n mx 的方程的解为p n±- 形如()02=+-n ma x 的方程可先化成()2nx a m-=-的形式,再用直接开平方法解。
【例题讲解】1、方程(x-2)2=9的解是( )A .x 1=5,x 2=-1B .x 1=-5,x 2=1C .x 1=11,x 2=-7D .x 1=-11,x 2=72、若方程x 2=m 的解是有理数,则实数m 不能取下列四个数中的( )A .1B .4C .14D .123、对于形如p x=2的一元二次方程,能直接开平方的条件是___________________。
4、方程0162=-x 的根是________________________。
5、用直接开平方法解下列方程: (1)81162=x (2)24322=m( 3)02592=-x (4)()0364122=--x【同步训练】1、用直接开平方法解方程(x-3)2=8,得方程的根为( ) A .3.x 12x 22C .2.x 13,x 232、方程12(x-3)2=0的根是( ) A .x=3 B .x=0 C .x 1=x 2=3 D .x 1=3,x 2=-33、方程()900622=+x 的根是________________________。
4、方程()16922=-t 的根是_____________________。
5、用直接开平方法解下列方程: (1)()072=-x (2)()1282112=+y(3)09)13(42=--x (4)9161642=++x x二:配方法配方法:将形如20(0)ax bx c a ++=≠的一类方程,化为2()mx n p +=形式求解的方法叫做配方法。
一般步骤: (1)把常数项移到方程右边;(2)方程两边同除以二次项系数,化二次项系数为1; (3)方程两边都加上一次项系数一半的平方;(4)原方程变形为2()x m n +=的形式;5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解. 【例题讲解】1、用配方法解关于x 的一元二次方程x 2-2x-3=0,配方后的方程可以是( )A .(x-1)2=4B .(x+1)2=4C .(x-1)2=16D .(x+1)2=16 2、若一元二次方程式x 2-2x-3599=0的两根为a 、b ,且a >b ,则2a-b 之值为何?( )A .-57B .63C .179D .181 3、用适当的数填空:①、x 2+6x+ =(x+ )2 ②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2 ④、x 2-9x+ =(x - )24、将二次三项式2x 2-3x-5进行配方,其结果为_________.5、已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.6、将x 2-2x-4=0用配方法化成(x+a )2=b 的形式为___ ____,•所以方程的根为_________.7、若x 2+6x+m 2是一个完全平方式,则m 的值是 8、用配方法解下列方程:(1)015122=-+x x (2)982=+x x (3)2532=-x x(4)044412=--x x (5)0342=--x x (6)x x 7422=-9、用配方法求解下列问题(1)求2x 2-7x+2的最小值 ; (2)求-3x 2+5x+1的最大值。
【举一反三】1.把方程x+3=4x 配方,得( ) A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=2 2.用配方法解方程x 2+4x=10的根为( )A .210.-214.10.103. 用配方法解下列一元二次方程(1)9642=-x x (2)0542=--x x(3)01322=-+x x (4)07232=-+x x三:公式法(1)公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
由配方法得2222b c b x a a a ⎛⎫⎛⎫+=-+ ⎪ ⎪⎝⎭⎝⎭ ,化简:22224b c b x a a a ⎛⎫+=-+⇒ ⎪⎝⎭22224244b ac b x a a a ⎛⎫+=-+⇒ ⎪⎝⎭ 222424b b ac x a a -⎛⎫+=⇒ ⎪⎝⎭22424b b acx a a-+=±⇒ 242b b ac x a -=-±⇒24b b ac x -±-=一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x214b b ac x -+-=,224b b acx ---= 公式法的步骤:就把一元二次方程的各系数分别代入,这里a 为一次项系数,b为二次项系数,c 为常数项。
【典型例题】例1:一般地,对于一元二次方程ax 2+bx+c=0(a ≠0),当b 2-4ac ≥0时,它的根是_____,当b-4ac<0时,方程_________. 例2:用公式法解方程x 2=-8x-15,其中b 2-4ac=_______,x 1=_____,x 2=________.例3:一元二次方程x 2-2x-m=0可以用公式法解,则m=( ). A .0 B .1 C .-1 D .±1例4:不解方程,判断所给方程:①x 2+3x+7=0;②x 2+4=0;③x 2+x-1=0中,有实数根的方程有( )A .0个B .1个C .2个D .3个 例5:方程(x+1)(x-3)=5的解是( )A .x 1=1,x 2=-3B .x 1=4,x 2=-2C .x 1=-1,x 2=3D .x 1=-4,x 2=2 例6:一元二次方程06222=-+x x 的根是( )A. 221==x xB. 22,021==x xC. 23,221-==x xD. 23,221=-=x x 例7:一元二次方程x 2-3x-1=0的解是 。
(1)23520x x --+=; (2)22330x x ++=; (3)2210x x -+=;例9:若x 2-xy-3y 2=0(y >0),求yx的值.【举一反三】1. 用公式法解方程x 2=-8x-15,其中b 2-4ac=_______,x 1=_____,x 2=________.2. 用公式法解方程4y 2=12y+3,得到( ) A .y=362-± B .y=362± C .y=3232± D .y=332-±3. 不解方程,判断所给方程:①x 2+3x+7=0;②x 2+4=0;③x 2+x-1=0中,有实数根的方程有( )A .0个B .1个C .2个D .3个4. 用公式法解方程(1)x 2+15x=-3x; (2)x 2+x-6=0; (3)3x 2-6x-2=0; (4)4x 2-6x=0四:因式分解法因式分解法的步骤是:(1)将方程右边化为0;(2)将方程左边分解为两个一次因式的乘积:(3)令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.例题讲解:(1)x2+12x=0; (2)4x2-1=0;(3)0++x;+x(2=42)2练习巩固:(2)x2-4x-21=0; (3)(x-1)(x+3)=12; (3)3x2+2x-1=0;(4)10x2-x-3=0;(5)(x-1)2-4(x-1)-21=0.练习巩固用适当方法解下列方程(1)x2-4x+3=0; (2)(x-2)2=256;(3)x2-3x+1=0;(4)x2-2x-3=0;(5) (2t+3)2=3(2t+3); (6)(3-y)2+y2=9;(7)7-2x 2=-15 (8)030222=--x x (9)2x 2-8x =7 (10)5x 2-(52+1)x +10=0; (11)(x +5)2-2(x +5)-8=0.知识点四:判定根的情况(韦达定理)根的判别式及应用(Δ=240b ac -≥)判定一元二次方程根的情况: Δ>0,方程有两个不相等的实数根; Δ=0,方程有两个相等的实数根; Δ<0,方程没有实数根.确定字母的值或取值范围:应用根的判别式,其前提为二次项系数不为0.韦达定理:实系数一元二次方程ax 2+bx+c=0(a≠0)存在实数解x 1,x 2,那么x 1+x 2=-b a ,x 1x 2=ca.这是在初中时韦达定理的定义,但在高中时应用就更为广阔.由代数基本定理可推得:任何一元n 次方程在复数集中必有根,因此,该方程的左端可以在复数范围内分解成一次因式的乘积形式,两端比较系数即得韦达定理,所以韦达定理在复数范围内同样适用. 一元二次方程ax 2+bx+c=0(a≠0)在有解的情况下,两个解为x 124b b ac-+-,x 224b b ac ---x 1+x 2=-b a ,x 1x 2=c a.例 1、 已知关于x 的一元二次方程x 2-2x +k =0(1)方程有两个不相等的实数根,求k 的取值范围; (2)在(1)中当k 取最大整数时,求所得方程的实数根.2、已知关于x 的方程kx 21k --2=0有两个不相等的实数根.........,求k 的取值范围.例 2已知x 1,x 2是方程2x 2+14x -16=0的两实数根,求2112x x x x +的值.练习:1.已知x 1,x 2是方程3x 2+2x -1=0的两个实数根,求2212x x +的值.2.设α,β是一元二次方程x 2+3x -7=0的两个实数根,求α2+4α+β的值.综合练习1、如果关于x的方程x2+px+q=0的两个根是x1,x2,那么x1+x2=-p,x1·x2=q.请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0(n≠0),求出一个一元二次方程,使它的两根分别是已知方程两根的倒数;(2)已知a,b满足a2-15a-5=0,b2-15b-5=0,求a bb a的值;(3)已知a,b,c均为实数,且a+b+c=0,abc=16,求正数c的最小值.2、若x1,x2是一元二次方程ax2+bx+c=0的两根,则有x1+x2=ba-,x1x2=ca.这是一元二次方程根与系数的关系,我们可以利用它来解题.例如,已知x1,x2是方程x2+6x-3=0的两根,求x12+x22的值.解法如下:∵x1+x2=-6,x1x2=-3,∴x12+x22=(x1+x2)2-2x1x2=(-6)2-2×(-3)=42.若x1,x2是方程x2+2x-2007=0的两个根,试求下列各式的值:(1) x12+x22;(2)1211x x+; (3)( x1-5)( x2-5); (4)12||x x-.。