小麦育种技术研究进展

小麦育种技术研究进展
小麦育种技术研究进展

微生物育种技术研究进展

微生物育种技术研究进展 摘要:生物育种是运用遗传学原理和技术对某种具有特定生产目的的菌株进行改造,去除不良性质,增加有益新性状,以提高产品的产量和质量的一种育种方法。微生物的育种技术已从常规的突变和筛选技术发展到基因诱变、基因重组和基因工程等,育种技术的不断成熟,大大提高了微生物的育种效果。但是有时候微生物育种也不是单一的一种方法,有的是需要多种方法综合使用。本文将各种微生物育种技术进行总结和细致分析。 关键词:微生物育种;诱变育种;基因重组育种;基因工程育种 1.常规育种 常规育种是以不经过人工处理,利用微生物自发突变为基础,从中筛选出具有优良性状菌株的一种育种方法一般情况下,由于DNA的半保留复制以及校正酶系的校正作用和光修复、切除修复、重组修复、诱导修复等作用,发生自然突变的几率特别低,一般为106~1010/BP,而且用于工业生产的菌株的性状往往由单一或少数基因控制,所以常规育种时间较长,工作量较大。,通过常规育种提高菌种生产能力、筛选高产菌株的效率较低,效果不明显。因此在生产实践中,常规育种的主要目的是用来纯化、复壮、稳定菌种。 2. 诱变育种 1927年MILLER发现X-射线能诱发果蝇基因突变之后人们发现其他一些因素 也能诱导基因突变,并逐渐弄清了一些诱变因素的机理,为微生物诱变育种提供了前提条件根据育种需要,有目的地使用诱变因素,可使菌株的基因发生突变以改良其生产性状.凡能诱发基因突变,并且突变频率远远超过自发突变的物理因子或化学物质被称为诱变剂。根据诱变剂的不同可以将诱变育种的方法分为:有物理因子诱变育种和化学因子诱变育种。,前者包括激光、X-射线、"r-射线、快中子等)后者主要是烷化剂(包括EMS、EI、NMU、DES、MNNG、NTG等),天然碱基类似物,亚硝酸和氯化锂在物理诱变因素中,紫外线比较有效、适用、安全,其他几种射线都是电离性质的,具有穿透力,使用时有一定的危险性,化学诱变剂的突变率通常要比电离辐射的高,并且十分经济,但这些物质大多是致癌剂,使用时必须十分谨慎.目前,多种诱变剂的诱变效果、作用时间、方法都已基本确定,人们可以有目的、有选择地使用各种诱变剂,以达到预期的育种效果. 2.1物理因子诱变 2.1.1 UV 所有传统的物理诱变手段中,使用得最为普遍的就是紫外线辐照,它是诱发微生物突变的一种非常有用的工具。对于紫外线的的作用有很多解释,但研究最清楚的是它可引起DNA结构的变化,尤其是可使DNA分子形成胸腺嘧啶二聚体,即两个相邻的嘧啶共价连接,二聚体的出现会减弱氢键的作用,引起双键结构变形,就可能影响胸腺嘧啶(T)和腺嘌呤(A)的正常配对,破坏了腺嘌呤的正常掺人,复制就在这一点上突然停止或错误地进行。如果错误地进行复制,且在新形成的链上有一个改变了的碱基次序,则在随后的复制过程中,碱基次序已改变的DNA链照常进行复制,产生了一个在两条链上碱基次序都是错误的分子而引起突变归J。利用紫外诱变的方法可选育出大量产量高,活性强的菌种,由于其设备简单,诱变效率高,操作安全而被广泛应用。白兰芳等用紫外线单因子处理、光复活处理西罗莫司产生菌Streptomyces hygro—scopicus得到了一正变株UV-8-61,效价比出发菌株提高了2—3倍。近些年来紫外线作为一种基本的诱变因子,也常常和其他一些诱变因子联合作用于微生物而提高诱变效果。胡永兰等用UV和DES(硫酸二乙酯)复合处理梧宁霉素产生菌,得到一株较高的突变株,效价比出发菌株提

小麦育种进展

09级种子科学与工程1班赵信林20092423 一、小麦育种中各项技术的应用。 1 、转基因技术在小麦育种中的应用 虽然转基因技术已经趋于成熟.但要获得稳定遗传的转基因小麦仍很困难。基因枪法是转基因的主要方法;花粉管通道法在我国得到了普遍应用,并具有较好的效果;农杆菌法的转化效率仍有待提高。应用转基因技术对小麦性状的改良主要包括:抗病性、抗寒(冻)性、抗旱性、抗穗发芽以及品质性状。 2 、分子标记技术在小麦遗传育种中的应用 2.1 标记和定位目的基因利用分子标记进行遗传连锁分析可将QTL定位,并借助与QTL连锁的分子标记在育种中对有关的QTL遗传动态进行跟踪,进而提高对数量性状优良基因型选择的准确性和预见性。 2.2 构建遗传图谱遗传图谱的构建是对基因组系统研究的重要内容和基础,也是小麦育种和分子克隆等应用研究的理论依据。 2.3 鉴定标记外源染色体片段分子标记技术在鉴定外源染色体片段方面有着广泛的应用。它不仅可以鉴别外源染色体片段,还可以对其携带的外源基因进行标记和定位。 2.4 种质资源鉴定传统的种质资源鉴定方法是建立在表型与杂交基础之上的,不同程度上均带有一定的人为性,而且耗时耗力,效率与准确度均不高。分子标记的引入应用为这一研究工作提供了一个强有力的工具,极大地提高了种质资源鉴定的成效与准确性。 2.5 分子标记辅助育种目前 小麦的许多重要性状都已获得了分子标记,包括与抗病、抗逆有关的质量性状和与产量、品质有关的数量性状。在小麦育种过程中利用这些与目标基因紧密连锁的分子标记进行辅助选择,可以大大提高选择效率、缩短育种年限,有着很大的优越性。 3远缘杂交在小麦育种中的应用 随着小麦育种水平的提高,现有种质源显得日益贫乏,利用近缘种属导入有利基因,创造新的种质资源,是目前小麦育种的一项重要工作。小麦族近缘属植物中具有多种多样的、普通小麦所不具备的而为育种发展所需要的重要性状基因,如蛋白质含量高、抗病、抗逆等优良性状.通过远缘杂交,把小麦近缘属植物的有益基因转移到小麦中去,克服或弥补常规育种遗传资源不足的缺点,是提高小麦育种水平的有效途径。小麦远缘杂交方面已经取得了巨大成就培育出了一系列小麦新品种。 4利用太谷核不育小麦进行小麦回交育种 用普通小麦与太谷核不育株杂交或回交, 其后代仍然会出现一半可育株和一半不育株, 可育株不再分离为不育株。优良的可育株经过选择稳定后, 可作为良种加以利用, 可免去人工杂交。用太谷核不育小麦进行回交, 一方面亲本的绝大数优良基因较为容易继承; 另一方面, 亲本个别的优良基因也容易获得选优汰

小麦抗病育种最新研究进展

TILLING技术的形成和发展及其在麦类作物中的应用 TILLING(Targeting induced local lesions in genomes,定向诱导基因组局部突变技术)是一种高通量的等位变异创制和突变体快速鉴定技术,其实质是将传统的化学诱变方法和突变的高效筛选有效结合的反向遗传学研究方法.其技术原理是将传统的酶切技术与PCR技术相结合后采用红外双色荧光系统进行结果鉴定,从而筛选出相应的突变体.传统的TILLING技术主要用于筛选由人工诱导产生的突变体.Ecotilling技术由TILLING技术延伸而来,主要用于鉴定自然界中已经存在的突变体,其与传统的TILLING技术的区别主要为构建DNA池时略有差异.随着该项技术在拟南芥等模式植物中的成功应用,越来越多的人开始将其用于基因组较大的植物之中.本文对近年来TILLING技术在麦类作物中的应用进行了分析,并通过比较不同植物突变体库中的突变频率发现,经EMS处理的小麦等麦类作物突变体库中的突变频率显著高于其他植物,因此相信,TILLING技术将会作为一种常规手段在麦类作物尤其是普通小麦改良中得到越来越广泛的应用. 4 小麦抗赤霉病转基因研究 目前报道的抗赤霉病转基因研究多集中在对一些病程相关蛋白的研究上。如Chen等利用共转化技术将来源于水稻的类甜蛋白基因转入感赤霉病的小麦品种Bobwhite中,转基因植株的抗性鉴定结果表明,与非转基因植株相比,转基因植株可以延迟赤霉病的发生。Anand等从受赤霉病菌侵染的苏麦3号cDNA文库中获得了编码葡聚糖酶、几丁质酶及类甜蛋白的基因,将这些基因转入到感病品种Bobwhite中,并对转基因植株进行了温室及大田的抗性鉴定。在温室条件下,一个共表达几丁质酶及葡聚糖酶基因的株系可以延缓病菌侵染的扩散(Type II resistance),但在大田条件下,没发现转基因株系对病菌的最初侵染(Type I resistance)有明显作用。Rs-AFP2是一种来源于萝卜的抗菌肽,体外试验表明该抗菌肽可以强烈地抑制小麦赤霉病菌的菌素生长。廖勇等通过基因枪介导的方法将该基因转入小麦扬麦12中,目前已经获得转基因植株,进一步的抗性鉴定工作还在进行中。 除了转一些抗菌蛋白外,一些与抗性相关的基因也被用来进行抗赤霉病转基因研究。如拟南芥的NPR1基因(Nonexpresser of PR genes)可以调节植物的系统获得抗性(Systemic acquired resistance),Makandar等将此基因转入了小麦Bobwhite中,实验结果显示,NPR1基因在转基因小麦中的表达可以加快小麦在病原菌侵染时的内源防卫反应。 在进行植物源抗性基因研究的同时,研究者还对一些来自于微生物的基因进行了植物转基因研究,期望能够获得可提高赤霉病抗性的转基因植株。TrilO1基因是单端孢霉烯族毒素中T-2毒素的弱毒基因,该基因编码3-O-乙酰转移酶可将单端孢霉烯族类毒素(如T-2)的羟基氧化为羰-乙酰基,使其活性减弱。Okubara等将TrilO1基因转入感病的小麦品种中,共获得四个转基因株系,这些株系的胚乳和颖壳里都检测到TrilO1转录物的积累,温室的抗性鉴定表明转基因植株可在一定程度 上减轻病症。 5 展望

第三节 小麦品质的检验方法

第三节小麦品质的检验方法 一、籽粒硬度的测定(研磨时间法) (1)适用范围本方法适用于快速测定小麦及其他谷物籽粒的硬度。 (2)方法提要本方法利用小麦籽粒的研磨特性来测定其硬度。因为硬麦研磨后得到粗的颗粒粉易于从磨体间隙中流出,而软麦研磨后得到细的颗粒粉不易从磨体间隙中流出,故研磨一定数量不同硬度的小麦所用时间不同,硬麦时间短,软麦时间长。此方法称为研磨时间法(ground time),简称GT法,以秒数表示小麦的硬度。数值越小,籽粒越硬。 (3)仪器设备使用国产ZL Y-1型自动粮食硬度计(牡丹江市机械研究所和北京市粮食科,学研究所联合研制)或联邦德国布拉本德( Brabender)公司制造的微型硬度计(micro-hardness Tester)。 ZI_Y-1型自动粮食硬度计的结构和技术参数:‘ ①结构仪器包括主机和天平两个组成部分。主机由锥形磨体,磨隙调节环,传动机构,电器控制,时间显示器等部分组成,如图2-2所示。 ②技术参数厂_一 380V:圆锥50Hz磨隙可调o.0~1.50mm。电源380V±10%,50Hz,具有水冷却系统可保证磨体工作温度稳定(要另配恒温水浴或使用自来水龙头供水)。 天平:称量范围0-20g,精度±0.Olg。 时间测量:液晶数系显示000.0~999. 9s,精度±0.1s. ③安装。将仪器从包装箱中取出,将底座⑩与主机用6个M8螺钉连接起来,将电源导线与天平信号导线分别接入相应的插孔,天平放在主机下部。将仪器安装在靠近水龙头的地方,但不得靠近振动大的振源,以防影响仪器精度。使用前检查仪器是 (4)样品制备选取有代表性的小麦样品种子,去杂后按四分法缩分,取样量不得少于30g。样品种子要干燥,含水量相对一致。 (5)测定步骤 ①接通电源,将电源开关(12)置于“l”的位置,此时电源开关上指示灯亮,液晶显示器⑤显示数字,天平上的取少灯(13)亮。 ②将天平的一个托盘对准仪器磨体的下斜口,并调整天平的水平位置。在另一天平托盘上放4g砝码。 ③将磨隙调节环的螺丝③放松,把刻度调节到6.O的位置,拧紧固定螺丝。 ④将仪器后面的冷却水管分别与恒温水浴的出水口和入水口连接,或与自来水龙头连接,向仪器通入恒温水20min。 ⑤在正式测定样品前,为了预热和清理仪器,取非供试小麦20g,投入进料口④ 中,按下磨起动钮⑧,研磨完后,按下磨停止钮⑨,使仪器处于待测工作状态。 ⑥按下液晶显示器清零钮(14)使显示器显示ooo.O。 ⑦用精度为0. lg的天平(用户自备)称量6g供试样品,放入仪器进料口④中。 按下起动钮⑥,磨体开始转动,计时器也开始工作。当粉碎物由磨体下口流人天平托(PSD)。此法比较准确,应用最多。研磨功耗法使用硬度一结构仪测定研磨小麦时所需要的力和功,需与粉质/阻力测定仪( farinogranh/resistograph)配合使用。此法更为精确,但用样量大,每次测定需要50g,且费工时。研磨时间法即本书引用的方法,其准确性较差,但有快速,微量的优点,适于大批样品,特别适于育种工作者使用。d.近红外法,它可以快速测定谷物的蛋白质、脂肪、水分含量等。在1680nm处的反射光密度与研磨时间法的GT值或研磨细度法的PSI值都有较好的相关性,因此可用来测定小麦的硬度,已有应用的报道。 ③用研磨时间法测定小麦硬度,其结果会受到样品含水量、环境温度和湿度等的影响。

小麦转基因研究进展

转基因小麦研究进展及前景 摘要:自第一株转基因小麦报道以来,小麦转基因育种研究发展迅速,通过转基因技术实现的小麦遗传转化弥补了经典小麦育种的不足,突破了可利用基因库的限制,取得了可喜的进展。简要介绍了基因枪法、农杆菌介导法和花粉管通道法等基因转化方法在小麦遗传转化中的应用,讨论了转基因技术在获得抗除草剂、抗病虫、抗逆、改良品质和雄性不育转基因小麦植株等方面的应用现状及其存在的主要问题与对策。 关键词:小麦;转基因;分子育种;进展 采用远缘杂交技术将小麦野生近缘物种中的有益外源基因导入小麦栽培品种,对其抗性、品质、产量的提高发挥了重要作用。但由于双亲亲缘关系较远造成杂交不结实、杂种不育、杂种后代长期分离、预见性差,使该技术在小麦遗传改良上的应用受到一定限制。 植物转基因技术被证明是进行外源基因定向转移独特而有力的手段,一定程度上补充或改进了传统的育种方法。通过植物遗传转化技术,可以按照需要,将有遗传信息的DNA 片段即目的基因进行人工重组,在离体条件下转入宿主细胞进行复制、表达,定向改造植物,可以打破基因流的界限,而且大大缩短育种周期。小麦是举世公认的最难转化的重要农作物之一,且转基因研究起步较晚,经过许多学者十几年的不懈努力,取得了长足的进展。目前,几乎所有的作物都开展了转基因研究,育种目标涉及到高产、优质、高效、兼抗性及多用途等诸多方面,一批抗逆性(如抗病、抗虫、抗除草剂)转基因作物已进入商品化生产阶段。美国研制成功的世界第一例抗草甘磷除草剂转基因小麦已经通过安全性试验;抗草胺膦转基因小麦、抗咪唑啉酮转基因小麦、高蛋白转基因小麦、抗虫和耐镇草宁除草剂转基因小麦、抗蚜虫转基因小麦、抗小麦黄花叶病毒转基因小麦,以及抗白粉病、赤霉病和黄矮病的转基因小麦正在田间释放[1,2];高分子量谷蛋白亚基转基因小麦[3]、转Trx-S 基因抗穗发芽小麦新品系已进入中试阶段[4]。近年来,中国在小麦转基因方面也取得了初步的进展,并获得了一批具有抗病虫、抗逆境及改善品质的转基因小麦新材料,部分品系已经进入环境释放阶段。本文概述了小麦转基因研究常用遗传转化技术及其在小麦遗传改良中的应用,讨论了存在的主要问题及采取的应对措施。 1 小麦转基因技术 小麦转基因技术是指用人工方法将外源基因或DNA 导入小麦细胞,使之稳定地整合、表达并遗传的综合技术。小麦转基因技术可根据转化目的基因否需要通过组织培养再生植株分为两大类,第一类需要通过组织培养,常用的方法有农杆菌介导法、基因枪介导法、花粉管通道法等;第二类不需要通过组织培养,如PEG法、电激法等。在小麦遗传改良中应用最广泛的是第一类方法。 1.1 花粉管通道法 中国学者周光宇1974 年提出的DNA 片段杂交假说是花粉管通道法的理论基础,他于1983 年建立了花粉管通道法,该技术利用植物授粉后花粉萌发形成的花粉管,将外源DNA 送入胚囊中尚不具备正常细胞壁的合子。利用该法进行基因转移的工作主要集中在中国。1992 年,周文麟等通过花粉管法将C4作物的DNA 导入小麦,获得了具有C4作物若干性状的转“基因”后代[5]。随后,曾君祉等利用该法将带有GUS基因的pBI121 质粒导入小山3号,获得 5株转基因植株,转化率为4.7%[6]。阎新甫等将抗白粉病的大麦DNA导入花76,既获得了符合遗传规律的稳定抗病后代,还明确了抗白粉病基因由一对显性基因控制[7]。Ziberstein A 等将质粒DNA 涂于授粉的柱头,提高了转化频率,并完成后代分析和分子鉴定[8]。成卓敏等将大麦黄矮病毒GPV 株系的外壳蛋白基因导入小麦品种,获得了抗黄矮病毒GPV 的转基

分子蒸馏技术及其应用的研究进展(精)

综述与专论 分子蒸馏技术及其应用的研究进展 陈立军陈焕钦 (华南理工大学化学工程研究所,广州510640 摘要分子蒸馏是一种在高真空下进行的特殊蒸馏技术。分子蒸馏是一项国内外正在工业化开发应用的高新分离技术,尚未实现大规模的工业化。分子蒸馏技术同普通蒸馏技术的差别很大。介绍了分子蒸馏基本原理、技术特点、主要装置和优势。此外还详细介绍了分子蒸馏技术在国内外的应用新进展,并提出了未来分子蒸馏领域的重点研究方向。关键词 平均自由程分子蒸馏应用进展R esearch Progress in the T echnique of Molecular Distillation and its Application Chen Lijun Chen H uanqin (R esearch I nstitute of Chemical E ngineering ,Southern China U niversity of T echnology ,G uangzhou 510640 Abstract The m olecular distillation (short -path distillation or unobstructed distillation is a special separation technique of liquid -liquid and a special distillation technique under the high vacuum.It is an industrializing Hi -tech at home and abroad and not used in

玉米分子育种研究现状

玉米分子育种研究现状 王玲琼 (河西学院农业与生物技术学院,甘肃张掖 734000) 摘要:随着分子遗传学的发展和实验能力的提高,分子标记随之出现并且发展迅速,尤其是在玉米遗传育种上的应用。本文通过阅读大量的文献,介绍了分子标记育种在玉米遗传图谱的构建及基因定位、杂种优势群划分、优良品种的获得等方面的应用。 关键词:SSR AFLP 分子标记玉米育种 1.序言 在学习《植物分子育种技术》的课程中,认识到了分子标记在玉米育种中的重要性,但具体内容仍不了解,所以通过查阅文献增进对分子标记的了解,并将了解的内容进一步整理,写了这篇读书报告。分子标记直接表现在DNA水平上,是一种在分子遗传学快速发展而产生的技术。玉米是重要的粮食与饲料作物, 是世界三大作物之一。但是由于对玉米中许多性状的遗传机制缺乏了解, 从而限制了玉米产量的提高与品质的改善, 阻碍了玉米育种工作的进程。建立在分子遗传学基础上的分子标记技术的迅速发展,促进了作物育种研究各个领域的发展。 2.分子标记概述 分子标记是继形态标记、细胞标记和生化标记之后发展起来的一种新的较为理想的遗传标记形式。随着分子生物学的快速发展,分子标记也同样得到非常迅速发展。根据分子标记所依赖的的生物技术的不同,分子标记经历了三代的变化。1974,Graz- dicker 等人在鉴定温度敏感表形的腺病毒DNA突变体时,利用经限制性内切酶酶解后得到的DNA片断的差异,首创了DNA分子标记,即第一代分子标记——限制性片断长度多态性标记(restrictionfragment lengthpolymorphism,RFLP)。第一代分子标记主要是以分子杂交技术为基础的分子标记,1982 年Hamade发现第2 代DNA 分子标记——简单序列重复标记(Simplesequence repeat,SSR)。第2代分子标记是以聚合酶链式反应(PCR)为基础建立。1990年Williams和welsh 等人发明了随机扩增多态性DNA标记(randomly amplified polymorphic DNA,RAPD)和任意引物PCR(arbitrary primer PCR,AP-PCR)。1991 年Adams 等建立了表达序列标签(expressed sequen- cetag,EST)标记技术。1993 年Zabeau 和Vos 合作发明了扩展片断长度多态性标记(Amplified fragment lengthpolymorphism,AFLP)。1994 年Ziekiewicz 等发明了简单重复间序列标记(inter-simple sequence repeat,ISSR)。1998 年在人类基因组计划的实施过程中,第3代分子标记——单核苷酸多态性(single nucleotidep-

现代生物技术在育种中的应用及展望

现代生物技术在育种中的应用及展望。 现代生物技术也称生物工程是在分子生物学基础上建立的创建新的生物类 型或新生物机能的实用技术,是现代生物科学和工程技术相结合的产物。现代 生物技术综合基因工程、分子生物学、生物化学、遗传学、细胞生物学、胚胎学、免疫学、有机化学、无机化学、物理化学、物理学、信息学及计算机科学 等多学科技术,可用于研究生命活动的规律和提供产品为社会服务等。随着基 因组计划的成功,在系统生物学的基础上发展了合成生物学与系统生物工程学,开发生物资源,涉及农业生物技术、环境生物技术、工业生物技术、医药生物 技术与海洋生物技术,乃至空间生物技术等领域,将在21世纪开发细胞制药厂、细胞计算机、生物太阳能技术等发挥关键作用。 现代生物技术在农业育种上的应用主要有:作物组织培养技术、体细胞杂 交技术、农作物人工种子、转基因育种技术、分子标记育种技术等。农作物组 织培养技术主要用于品种培育和良种繁育,其次用于无性繁殖作物的脱毒和快 速繁育以及种质资源的保存;体细胞杂交可以创造出更有经济价值或更广泛适 应性的作物新品种;人工种子可对一些自然条件下不结实或种子昂贵的作物进 行繁殖,缩短育种年限,并可人为控制作物生长发育和抗性,防止种性退化;转基因育种是对农作物进行基因转移,使其获得新的优良品性,培育出具有抗寒、抗旱、抗盐、抗病虫害等抗逆特性及品质优良的作物新品系;分子标记辅 助育种技术是利用与目的性状基因紧密连锁的的分子标记,鉴定和筛选具有目 的性状的种质资源和育种后代,或分析和评价种质资源、亲本之间的亲缘关系 的一种方法,与传统育种依表现型进行选择相比,该项技术具有选择效率高, 结果准确等特点,特别是对隐性基因控制的性状选择更为有效。 现代生物技术在棉花育种中已经广泛应用。细胞工程中, 通过胚珠培养、 体细胞培养等技术获得了一些新种质材料;基因工程方面, 随着农杆菌介导法、 基因枪轰击法及花粉管通道法等技术的突破, 在棉花抗病虫害和及抗除草剂等 方面的育种获得成功, 相应的新品种已开始了商业化生产。我国棉花生物技术 在抗棉铃虫等方面达到世界领先水平,其他方面尚有差距。 现代生物技术中的单倍体育种技术、基因工程育种、分子标记辅助育种等 生物技术手段与常规育种技术的有机结合提高了玉米育种的效率, 开辟了玉米 育种的新途径。利用单倍体育种技术选育自交系已经成为自交系选育的重要手段、利用分子标记划分玉米杂种优势群和杂种优势模式已经得到了大家的认可 并在育种实践中加以应用, 转基因玉米已经逐步从实验室走向田间, 并将很快实 现产业化。而高成本、掌握难、重复性和通用性差等问题仍然制约着生物技术 在玉米育种中应用。 现代生物技术在育种中的应用,大大加快了育种速度,缩短了育种年限, 同时也为品种改良开辟了新的道路,是现代育种中不可或缺的技术手段。应加 大对现代生物技术的投入与研究力度,因为我国的生物技术水平,在现阶段,

作物育种学各论小麦试题库复习资料版

作物育种学各论 小麦育种试题库 一、名词解释 1、产量潜力针对某一品种而言,即某一品种在适宜的气候和栽培条件下可能达到的潜在产量,有品种的遗传特性决定。 2、环境胁迫通常将小麦生长过程中所遇到的不利气候、土壤等非生物因素的影响称为环境协迫或逆境灾害。 3、营养品质指小麦籽粒的各种化学成分的含量及组成,其中主要是蛋白质含量和蛋白质中各种氨基酸的组成,尤其是赖氨酸的含量。 4、一次加工品质指磨粉品质,指小麦品种能否在磨粉过程中满足和保证出粉率高、能耗低和低成本的要求。 5、二次加工品质指面粉在加工成食品的过程中能否满足加工单位的需求。食品加工品质主要取决于小麦蛋白质含量、面筋质量、淀粉特性。 伯尔辛克值它主要指将加有酵母的全麦粉面团放入有水的杯中,保持水温30℃,随着发酵产生CO2,面团比重降低上升到水面,继续发酵,直到破裂,下面一半落入水中,那么从放入面团到面团破裂,下面一半落入水中所经历的时间称为伯尔辛克值,以min表示。 7、洛类抗源指前苏联用小麦与黑麦杂交后得到的易位系的衍生物。 8、完全异源双二倍体即将两亲本种属的两种来源和性质不同的染色体组相结合而成的新杂种,其染色体数目为双亲染色体数目的总和。 不完全异源双二倍体: 即亲本之一的部分染色体与另一亲本的全套染色体组相结合而成的新杂种,其染色体数目不等于双亲染色体数目的总和。 9、双二倍体将具有不同染色体组的两个物种经杂交得到的Fl杂种再经染色体加倍后产生的。 10、收获指数也叫经济系数,是指经济产量与生物产量的比值。 11、抗逆性育种(小麦)品种对逆境灾害的抵抗和忍耐能力称抗逆性。通过抗逆育种可以从遗传上改良和提高品种对环境胁迫的抗耐性,从而提高产量的稳定性。 12、T型不育系,我国从1965年起就对小麦提莫菲维(T.timopheevi)雄性不育,简称T型不育系,不育系分为质核互作型不育系和核不育系 13、化学杀雄剂一种能阻滞植物花粉发育、抑制自花授粉、获得作物杂交种子的化学药品或药剂。

分子蒸馏技术的原理和应用(精)

分子蒸馏技术的原理和应用 分子蒸馏技术简介 分子蒸馏是一项较新的尚未广泛应用于产业化生产的分离技术,能解决大量常规蒸馏技术所不能解决的题目。分子蒸馏是一种特殊的液-液分离技术,能在极高真空下操纵,它依据分子运动均匀自由程的差别,能使液体在远低于其沸点的温度下将其分离,特别适用于高沸点、热敏性及易氧化物系的分离。由于其具有蒸馏温度低于物料的沸点、蒸馏压强低、受热时间短、分离程度高等特点,因而能大大降低高沸点物料的分离本钱,极好地保护了热敏性物质的特点品质,该项技术用于纯自然保健品的提取,可摆脱化学处理方法的束缚,真正保持了纯自然的特性,使保健产品的质量迈上一个新台阶。 分子蒸馏技术,作为一种对高沸点、热敏性物料进行有效的分离手段,自本世纪三十年代出现以来,得到了世界各国的重视。到本世纪六十年代,为适应浓缩鱼肝油中维生素A的需要,分子蒸馏技术得到了规模化的产业应用。在日、美、英、德、苏相继设计制造了多套分子蒸馏装置,用于浓缩维生素A,但当时由于各种原因,应用面太窄,发展速度很慢。但是,在过往地三十多年中,人们一直在不断地重视着这项新的液-液分离技术的发展,对分离装置精益求精、完善,对应用领域不断探索、扩展,因而一直有新的专利和新的应用出现。特别是从八十年代末以来,随着人们对自然物质的青睐,回回自然潮流的兴起,分子蒸馏技术得到了迅速的发展。 对分子蒸馏的设备,各国研制的形式多种多样。发展至今,大部分已被淘汰,目前应用较广的为离心薄膜式和转子刮膜式。这两种形式的分离装置,也一直在精益求精和完善,特别是针对不同的产品,其装置结构与配套设备要有不同的特

点,因此,就分子蒸馏装置本身来说,其开发研究的内容尚十分丰富。 在应用领域方面,国外已在数种产品中进行产业化生产。特别是近几年来在自然物质的提取方面应用较为突出,如:从鱼油中提取EPA与DHA、从植物油中提取自然维生素E等。另外,在精细化工中间体方面的提取和分离,品种也越来越多。 我国对分子蒸馏技术的研究起步较晚,八十年代末期,国内引进了几套分子蒸馏生产线,用于硬脂酸单甘酯的生产。国内的科研职员也曾经作过一些研究,但未见产业化应用的报道。 分子蒸馏成套产业化装置具有设计新奇、结构独特、工艺先进,可明显进步分离效率。从小试到产业化生产又到小试的反复循环实验探索中,特别解决了产业化生产中轻易出现的突出题目。如有效地解决了物料返混题目,明显地进步了产品质量,创造性地设计了有补偿功能的消息密封方式;实现了产业装置高真空下的长期稳定运行。该项技术属国内领先、国际先进。 截止目前为止已经开发的产品有二十余种,如:硬脂酸单甘酯、丙二醇酯、玫瑰油、小麦胚芽油、米糠油、谷维素等。并已确定了应用分子蒸馏技术的有关工艺条件,为进行产业化生产奠定了基础。 分子蒸馏的原理和装置的结构决定其有如下特点: 1、分子蒸馏的操纵温度远低于物料的沸点: 由分子蒸馏原理可知,混合物的分离是由于不同种类的分子溢出液面后的均匀自由程不同的性质来实现的,并不需要沸腾,所以分子蒸馏是在远低于沸点的温度下进行操纵的,这一点与常规蒸馏有本质的区别。 2、蒸馏压强低: 由于分子蒸馏装置独特的结构形式,其内部压强极小,可以获得很高的真空,因此分子蒸馏是在很低的压强下进行操纵,一般为×10-1Pa数目级(×10-3为托数目级)。

分子标记在番茄抗性育种研究进展

分子标记在番茄抗性育种中研究进展 摘要:本文综述了近年来RFLP RAPD SSA AFLP CAPS和SNP分子标记技术在番茄抗性育种上的应用,分析了目前的研究进展,对今后研究的重点进行了讨论。 关键词:分子标记;番茄;抗性;进展。 Molecular marker in tomato resistance breeding research progress in Abstract: This paper reviewed recent RFLP RAPD SSA AFLP CAPS and SNP in the application of tomato resistance breeding, analysis of the current research progress, the focus of the future research are discussed. Key words: Molecular markers; tomato; resistance; progress. 番茄既是蔬菜也是水果, 其中含有丰富的维生素C对心血管有良好的保护作用;番茄红素具有良好的抗氧化作用,能清除体内废物,增加免疫力。它也是营养师大力提倡的减肥食品。它早已成为人们日常生活中的不可缺少的食物。 随着遗传学的发展,遗传标记的种类和数量也在不断增加。形态标记、细胞学标记、生化标记都是以基因表达的结果(表现型)为基础,是对基因的间接反映;而DNA分子标记则是DNA水平遗传变异的直接反映。与表型标记相比,DNA分子标记具有能对各发育时期的个体、组织、器官甚至细胞作检测,既不受环境的影响,也不受基因表达与否的限制;数量丰富;遗传稳定;对生物体的影响表现“中性”以及操作简便等特点。分子标记的所有这些特性,奠定了它具有广泛应用性的基础。本文在介绍一些常用的DNA分子标记技术基础上,综述分子标记应用于番茄遗传育种研究的新进展,并就我国今后番茄分子育种主要研究方向进行讨论。 分子标记的介绍 分子标记的概念:广义的分子标记是指可遗传的并可检测的DNA序列或蛋白质。狭义分子标记是指能反映生物个体或种群间基因组中某种差异的特异性DNA片段。 在番茄遗传育种研究工作中使用的DNA分子标记主要涉及基于Southern杂交的限制性片段长度多态性标记( RFLP)、基于PCR技术的DNA扩增方法的随机扩增多态性DNA标记( RAPD),简单重复序列标记(SSR)、以及基于PCR与酶切相结合的扩增片段长度多态性标记(AFLP)、切割扩增的多态性序列标记(CAPS)和单核苷酸多态性(SNP) 等。 2.分子标记基本原理 RFLP(限制性片段长度多态性, restriction fragment length polymorphism,简称RFLP)基本原理是:植物基因组DNA经限制性内切酶酶切后,通过电泳将大小不同的酶切片段按照各自的长度分离,通过Southern吸印与标记的探针杂交,放射自显影检测酶切片段的多态性,此方法稳定可靠。 RAPD(随机扩增的DNA多态性,random amplified polymorphic DNA,简称RAPD)是以基因组总DNA为模板,利用随机引物对模板进行PCR扩增得到多态性DNA片段,然后通过电泳检测片段的多态性,以此来诊断生物体内在基因排布与外在性状表现规律的技术。它基于PCR,无需预先知道DNA序列信息。 简单重复序列(simple sequence repeats,简称SSR)又叫微卫DNA( microsatellite DNA)。所谓微卫星是由2~ 6bp的重复单位串联而成,一个微卫星长度一般小于100bp,不同品种或个体核心序列的重复次数不同,但重复序列两端序列多是保守的单拷贝序列,通过PCR扩增其间的核心微卫星DNA序列,利用电泳分析不同基因型个体在每个SSR位点上的多态性。 AFLP (扩增片段长度多态性,amplified fragments length polymorphism,简称AFLP)原理是把限制性酶切片段通过PCR反应进行扩增,再把扩增好的酶切片段通过聚丙烯酰胺凝胶等高分辨率的分析胶电泳,最后检出片段的多态性。

河南省小麦品质育种的现状及建议概要

河南省小麦品质育种的现状及建议 2002-12-17 14:03:09 1小麦品质育种工作现状 河南省的小麦品质育种工作始于 20世纪 80年代初期, 80年代中后期至 90年代初期处于徘徊状态, 90年代末期有了较大发展。 80年代中后期至 90年代初期育成的主要品种豫麦 14、豫麦 23、豫麦 28等,在产量和品质上仍有一些不足。 90年代中后期以来育成了一大批优质小麦新品种, 在一定程度上实现了优质品种类型的多样化。①强筋类优质面包小麦豫麦 34、豫麦 35、豫麦 47等,其中豫麦 34的各项指标均达到国家规定的面包小麦标准,豫麦 47的面包体积超过 800ml ,二者均与加麦附近。②适宜做优质面条、馒头的中筋偏强类型豫麦 49、豫麦 54、豫麦 55等。③蛋糕、饼干专用优质软麦新品种豫麦 50、豫麦 60,其中豫麦 50的稳定时间为 1.05分钟,评价值 88.29。④选育了一批有苗头的优质小麦新品系,如丰优 7号、郑农 16等。这些品种的育成,标志着河南省小麦品质育种工作达到了国内先进水平。但也农业发达国家相比, 在蛋白质质量与面筋指数方面仍处于落后局面,不能满足国内外市场的需求。 2小麦品质育种工作存在的问题 2.1 优质品种不过硬面包小麦品种, 就蛋白质而言, 在量和质方面大多是以量取胜,虽然籽粒蛋白质含量能达到 15%以上,但面包体积仅达 750立方厘米,与国外相比还有一定差距;从面筋含量和面筋指数来看,我省小麦粉的湿面筋含量在 31.6%- 37.2%、面筋指数在 12-84之间,而法国小麦粉的湿面筋含量为 22.6%-36.1%、面筋指数在 86-100之间, 虽然我省小麦粉的湿面筋含量高于法国小麦粉, 但面筋指数大大低于法国小麦粉, 这是法国小麦粉的烘、焙品质优于河南小麦粉, 这是法国小麦粉的烘、焙品质优于河南小麦粉的根本原因。饼干、蛋糕用弱筋小麦品种, 其粉

分子蒸馏的应用研究进展

!" 分子蒸馏的应用研究进展 陈文伟,陈 钢,高荫榆 (南昌大学食品科学教育部重点实验室,江西南昌!!##$%) 摘 要:阐述了分子蒸馏的基本原理及其区别于普通真空蒸馏的主要特点,并介绍了分子蒸馏在食品、医 药、香料等工业方面的应用研究。 关键词:分子蒸馏;短程;研究应用中图分类号:&’#()*) 文献标识码:+ 文章编号:,##%-.!/"0(##!1#"-##!"-#! 分子蒸馏过程一般可分为以下"步: 21物料在加热面上的液膜形成;31分子在液膜表面上的自由蒸发;41分子从加热面向冷凝面的运动;51分子在冷凝面上的捕获;61馏出物和残留物的收集。! 分子蒸馏的特点 分子蒸馏具有如下特点: 0,1分子蒸馏的操作温度。由分子蒸馏原理可知,混合物的分离是由于不同种类的分子逸出液面后的平均自由程不同的性质来实现的,并不需要沸腾,所以分子蒸馏是在远低于沸点的温度下进行操作的。这点与常规蒸馏有本质的区别。 0(1蒸馏压强低。整个物料系统均在真空下,其最低蒸馏压力必须保证低于#*"7892,因此物料不易氧化受损。 从以上两个特点可知,分子蒸馏一般是在远低于常规蒸馏温度的情况下进行操作的。一般常规真空蒸馏或真空精馏由于在沸腾状态下操作,其蒸发温度比分子蒸馏高得多,加之其塔板或填料的阻力,比分子蒸馏大得多,所以其操作温度比分子蒸馏高得多。 0!1受热时间短。由分子蒸馏原理可知,受加热的液面与冷凝面间的距离要求小于轻分子的平均自由程,而由液面逸出的轻分子,几乎未经碰撞就到达冷凝面,所以受热时间很短。另外,混合液体呈薄膜状,使液面与加热面的面积几乎相等,这样物料在蒸馏过程中受热时间就变得更短。对真空蒸馏而言,受热时间为,:,而分子蒸馏仅为十几秒。 0$1分离程度更高。分子蒸馏能分离常规蒸馏 收稿日期:(##!-#(-(#作者简介:陈文伟(,/%.-) ,男,硕士,研究方向为食品资源的开发与利用。分子蒸馏0;<864=82>5?@A?882A?A -D2A:5?@A?882A?

小麦品质研究

专业文献综述 题目: 小麦优质蛋白亚基与小麦品质的研究进展 姓名: 赵娇娇 学院: 农学院 专业: 种子科学与工程 班级: 种子72班 学号: 1127219 指导教师: 王秀娥职称: 教授 2010年5 月31 日 南京农业大学教务处制

小麦优质蛋白亚基与小麦品质的研究进展 赵娇娇指导老师:王秀娥 (南京农业大学农学院种子科学与工程72班, 江苏南京 210095) 摘要:小麦籽粒蛋白质含量约为 8%-20%,主要包括谷蛋白和醇溶蛋白,是面团弹性和延伸性的物质基础。蛋白质组分与格组分的分布是影响小麦品质的重要因素,特别是高分子量麦谷蛋白(HMW-GS),因此提高蛋白质含量和改进 HMW-GS 组成一直是我国小麦加工品质改良的重要途径。目前推广的优质强筋小麦基本都携带优质亚基,然而真正适合烘焙优质面包的强筋小麦并不多,贮藏蛋白组分的含量及比例不合理是主要原因,改进贮藏蛋白亚基的质量组成是进一步提高我国小麦加工品质的有效途径。 关键词:谷蛋白、醇溶蛋白、品质、加工品质 Wheat proteins and their subunits and quality of wheat flour ZHAO Jiaojiao (Seed Science and Engineering 72, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095) Abstract: Key words: 前言(引言):×××××(标题用小四号黑体,其它文字用小四宋体)××××××××××××××××××……… 正文:×××××(标题用小四号黑体,其它文字用小四宋体)××××××××××××××××××××××……… 结论:××××××(小四宋体)××××××××××××××××××××××××××××××××××××……… 参考文献: [1] 作者姓名,作者姓名.参考文献题目. 期刊或杂志等名称,年份,(期数). [2] 刘凡丰. 美国研究型大学本科教育改革透视[J] . 高等教育研究,2003,(1) [3] 作者姓名,作者姓名. 参考文献题目. 期刊或杂志等名称,年份,(期数).

分子蒸馏技术及其应用

分子蒸馏技术及其应用 摘要 分子蒸馏又称短程蒸馏,是一种新型的液-液分离技术,与常规蒸馏相比具有许多优点,本文对分子蒸馏的基本原理、设备、特点以及在食品、医药、化工工业中的应用进行了阐述。 关键词:分子蒸馏、食品工业。 分子蒸馏是在高真空度下进行的非平衡蒸馏技术(真空度可达 0.01Pa),是以气体扩散为主要形式、利用不同物质分子运动自由程的差异来实现混合物的分离。由于蒸发面和冷凝面的间距小于或等于被分离物料的蒸气分子的平均自由程,所以也称短程蒸馏。由于分子蒸馏过程中。待分离物质组分可以在远低于常压沸点的温度下挥发,并且各组分的受热过程很短,因此分子蒸馏已成为对高沸点和热敏性物质进行分离的有效手段。目前已广泛应用于食品、医药、油脂加工、石油化工等领域,用于浓缩或纯化低挥发度、高分子量、高沸点、高黏度、热敏性、具有生物活性的物料。 一、分子蒸馏的概念原理和过程 1.1分子蒸馏的基本概念分子有效直径:分子在碰撞过程中,两分子质心的最短距离,即发生斥离的质心距离。分子运动自由程:指一个分子与其他气体分子相邻两次分子碰撞之间所走的路程。分子运动平均自由程:在一定的外界条件下,不同物质中各个分子的自由程各不相同。就某一种分子来说在某时间间隔内自由程的平均值称为平均自由程。 1.2分子蒸馏的基本原理分子蒸馏的分离是建立在不同物质挥发度不同的基础上,其操作是在低于物质沸点下进行,当冷凝表面的温度与蒸发物质的表面温度有差别时就能进行分子蒸馏。根据分子运动理论,液体混合物中各个分子受热后会从液面逸出,不同种类的分子,由于其有效直径不同,逸出液面后直线飞行距离是不相同的。轻分子的平均自由程大,重分子的平均自由程小,若在离液面小于轻分子平均自由程而大于重分子平均自由程处设置一冷凝面,使得轻分子落在冷凝面上被冷凝,而重分子则因达不到冷凝面,返回原来液面这样就将混合物分离了,分子平均自由程是分子蒸馏基本理论的核心。 1.3分子蒸馏的基本过程根据分子蒸馏的基本理论,可将蒸馏过程分解为 以下5个步骤:①物料在加热面上形成液膜;②分子在液膜表面上自由蒸发;③分子从加热面向冷凝面的运动;④轻分子在冷凝面上被捕获,重分子返回物料液膜;⑤馏出物和残留物的收集。 二、分子蒸馏的特点