舰船电力推进文献综述

舰船电力推进文献综述
舰船电力推进文献综述

舰船电力推进文献综述

摘要:本文简要介绍了舰船电力推进的历史,以及国内外发展的现状,电力推进在民用和军用中的发展,最后介绍吊舱式推进器的应用以及优缺点。

关键词:电力推进,吊舱式推进器

1引言:

起源于19世纪前期的电力推进, 作为舰船推进技术的一个重要分支, 伴随着电力电子和变频调速理论、技术的重大突破, 自20世纪80年代起进入了快速发展阶段。一般来说, 电力推进是指由舰船自带原动机组(电池、汽轮发电机、柴油发电机、燃气轮机发电机等)产生电能, 再由推进电动机将电能转换为机械能驱动螺旋桨(推进器) 实现舰船机动的一种推进方式。

电力推进从功能上可分为2类: 一是混合电力推进, 即在以大功率机械直接推进为主的动力系统中加入小功率电力推进, 以满足舰船低速巡航时的经济性和低噪声需求; 二是全电力推进, 即在舰船运行的全速范围内完全由电动机驱动螺旋桨(推进器)。

2电力推进的优缺点

与传统推进方式相比, 电力推进系统的优越性主要体现在以下几个方面:

( 1)减少了燃油消耗和维护费用, 船舶的全寿命费用相应大幅度降低, 而且在船舶负荷变化较大时效果更加显著。如动力定位船的控位/机动操纵时间通常很长, 基本和行驶操作时间相当, 这类船舶使用电力推进系统可以大量减少燃油消耗和维护费用;

( 2)不易受到单个故障的影响, 并且可以对原动机(柴油机或燃气轮机)的负荷进行优化;

( 3)为电力推进系统提供电力的高中速柴油机, 其重量小于作为主机的低速机, 设备体积小, 占用的船体空间更少, 从而增加了船舶的有效载荷, 为舰船的总体布置和设计提供了更多的空间;

( 4)通过电缆供电, 系统可以不与原动机布置在一起, 因此电力推进系统的位置选择具有较大的灵活性;

( 5)动态性能好, 使船舶具有良好的灵活性, 大幅提高了舰船的机动性能;

( 6)调速范围宽广, 可以保证船舶在不同工况下的各种船速。

电力推进系统与常规推进装置相比也有其不足之处:

( 1)电力推进系统的价格较传统推进装置更为昂贵, 因而船舶建造的初投资将会增加;

( 2)在原动机与螺旋桨之间增加的电器设备,如发电机、变压器、变频器和电动机等, 加大了船舶满载时的传输损耗;

( 3)大量采用电气设备可能引起一些危害, 如火灾和电网的谐波干扰等;

( 4)由于船舶安装了多种新型设备, 需要制定不同的运行、人员配备及维护策略, 对于操作人员和维护人员具有更高的要求。

3国外舰船电力推进的发展

3.1综合全电力推进

当前世界各国的电力推进船, 主要采用两种推进方式: 一种是电力推进与其他发动机推进组合的混合推进, 如英国23型护卫舰; 另一种是全电力推进, 即推进电源与船上辅助用电源由船上同一电站供给, 如美国的新型DD21水面舰船和英国的45型驱逐舰都采用这种方式。这两种方式中, 后者居多。近年来, 英国在23型护卫舰采用柴电- 燃气轮机联合推进( CODLAG) 的基础上, 大力研究电力推进应用于大型舰船上。英国劳斯莱司公司与国际研发公司对未来护卫舰和航母推进技术深入研究, 提出护卫舰使用的交直流两种综合电力推进( IFEP)方案和适用于航母的交流推进方案。两方案相比较, 最好采用交流IFEP方案。

3.2综合电力系统( IPS)

综合电力系统这一概念是由美国提出的,最初并非针对舰船使用。后来随着设备的改进和先进控制系统的出现, 美国于1990年代开展了舰船综合电力系统的研制。

3.2.1水面舰船综合电力推进

美国海军于1986年针对水面舰船的低能表现提出了“海上革命”计划。该计划涉及综合电力推进( IED) 和综合电力系统( IPS) 两种方案及水面舰船与潜艇两方面的应用。

1988年11月, 美国海军海上系统指挥部( NA VSEA) 与GE公司签订合同, 研制水面舰船用IED系统, 它由发电、推进及船用辅助电源等三部分组成。IED系统作为 海上革命的先期预研计划虽然有许多优点, 但不是最合理的方案, 于是在1994年又出现了IPS的新概念。

3.2.2水面舰船的IPS预研计划

NA VSEA下属的水面舰船动力装置预研规划局( Advanced Surface Machinery Programs Office) 开展了一项适用于21世纪整个舰队的, 力图通过设备的通用性、实施的简易性和标准化来实现未来舰队高性能与低成本的IPS研制计划。

IPS系统由一系列模块组成, 设计者可通过合理选用各种模块, 以适用于美海军各种水面舰艇和辅船的电力推进和辅助用电的所有要求。这些模块和功能是:

( 1) 发电模块: 为船上的电力推进和辅助用电提供电力;

( 2) 输变电与配电模块: 为全船各种辅助系统进行输、变配电;

( 3) 推进模块: 为舰船提供电力推进。

该系统的特点是采用滞留分区配电, 所有操作均采用标准监控系统来实现。

3.2.3美海军新型潜艇电力推进

推进电动机采用永磁和轴向间隙结构, 转子装有轴向磁化的铷、铁、硼永久磁体, 两个定子绕组接成多个三相扇形段, 每个扇形段由独立的逆变动单独供电, 它可实现小型轻量和低速大转矩。

电动机的有效部分为环形, 由位于磁体内缘附近的斜垫式径向和轴向上推轴承支撑。电动机敞开的中间部位可放置隔声连轴器或将电动机直接连接在带扭矩盘的轴上, 永磁体斜置以减小电磁转矩脉动。位于电动机两侧的空档放置给每个定子扇段供电的逆变器模块。

为了把新型电力推进与配电系统相结合, 全尺寸船用系统的研制目标是一台15MW、高速、高频、永磁杯式发电机。转子作成杯形, 位于定子外面。这种结构配以高速、高频运行, 将使发电机的重量与尺寸大幅度减小。

4电力推进在民用和军用方面的发展

4.1民用船舶电力推进技术的发展

80年代以后, 各种舰船重又大量采用电力推进首先是从民用船舶开始的。这时已不再局限于破冰船、工程船等一些传统采用电力推进的船舶, 而是扩大到客货船、半潜式海洋平台、化学品船、油船、LPG船、布缆船、科考船、救捞船、渡船等更大范围的船舶。这些船舶采用电力推进主要考虑以下因素:

( 1) 经过综合分析研究, 发现电力推进可以统筹全船的能量, 改善设备的运行状态, 提高螺旋桨的效率, 在很大的航速范围内燃油消耗相对比较低, 因而能够维持最低的运行成本。

( 2) 推进电机的转速易于调节, 且由静态变频器供电, 在正反转各种转速下都能提供恒定的转矩,因而能得到最佳的工作特性, 使船舶取得优良的机动性能。

( 3) 电力推进可以不采用齿轮减速装置和可变螺距螺旋桨, 在降低动力装置的费用投入上具有一定的竞争力。

( 4) 电力推进改善了机舱的布置, 使动力装置各种设备的安排更加合理, 同时又节省了大量的空间。

( 5) 发动机是船上主要的振动源, 采用电力推进后, 发动机安装在弹性机座上带动发电机, 并以恒定转速运行, 它既与轴系上的电力推进系统没有任何联系, 又与船体没有直接联结, 这就大大减小了振动和噪声。对于现代的客船, 特别是豪华型游船, 这是非常重要的。

( 6) 采用电力推进更有利于船舶控制环境污染。

4.2军用舰船电力推进技术的发展

为了降低噪声, 增强反潜能力, 英国海军在1990年建成的23型护卫舰上首次采用了柴-电-燃联合动力装置( CODLAG) 。虽然该舰选用的仅仅是巡航用小功率推进电机, 但电力推进在水面舰船上应用所显示的价值立即引起各国海军的极大关注。美国海军表示要和英国合作, 把他们原先的“先进水面舰艇机械”研究项目加以扩展, 形成包含具有更高燃油效率的中冷回热式舰船用燃气轮机、综合全电力推进系统、区段式配电系统、标准机械监视与控制

系统以及系统结构等多项研究在内的大项目——综合全电力推进系统( IPS) 。近年来, 舰船燃气轮机已日趋完善, 它体积小、重量轻、性能优, 自然成为综合全电力推进系统的首选动力装置。燃气轮机和电力推进结合, 以极大的优势突破了舰船的传统布置, 为彻底改变舰船的面貌开辟了广阔的天地。

德国等其他国家海军也都开发了类似的电力推进系统。舰船综合全电力推进成为现代高新技术的舞台。目前美国海军以其雄厚的实力, 投入很大的力量对综合全电力推进系统进行大规模的开发。从美国海军海上系统司令部( NA VSEA) 实施IPS计划所表现的目标的明确性、细节的周密性以及步骤的现实性来看, 不可否认, 这个计划代表着一种未来的发展方向。

经过一段时间的研究和实践以后, 美国海军逐渐认识到综合电力系统只是一种以动力系统为主体的局部概念。舰船仅仅综合全部电力, 普遍采用电力推进还不能全面地体现他们彻底改变舰船面貌的期望, 而应该再进一步更新未来舰船的概念。2001年年中, 荷兰皇家海军( RNLN) 倡议了全电力舰(AES) 的概念。荷兰全国应用自然科学研究总会( TNO) 的Prins Maurits Laboratory参加了全电力舰概念的研究计划。这个计划的近期和中期目标就是要生成新系统概念的知识和技术, 以便荷兰皇家海军在参与全电力舰的开发, 实现进一步电气化时能作出经过周密考虑的决策。

西方国家海军近年来对综合全电力推进系统看法上的微妙变化反映了他们增强舰船军事能力和购买力的认识一直在不断提高和深化。未来舰船究竟叫“全电力舰”还是“电力战舰”,实际上并不重要, 关键在于所赋予的实质性研究内容如何能够体现未来舰船在总体上发生的根本变化, 而采用综合全电力推进系统则是未来舰船发展的核心。

5舰船电力推进系统的分类

目前世界上有3种主流电力推进系统, 分别是轴系推进系统、全方位推进系统和吊舱式推进系统。尤其是吊舱式推进系统除了噪声低和振动小的特点, 还能够大大提高舰船的机动性, 显著降低船舶燃料费用, 并能够将船舶的推进效率提高近10%, 因此目前绝大部分新造的豪华游船都采用吊舱式电力推进系统。

5.1轴系推进系统

在带轴系螺旋桨的柴油电力推进系统中, 螺旋桨通常由变速电动机驱动。变速电动机与螺旋桨轴的连接方式通常有两种:

( 1)直接连接方式能够使系统结构更简单、更牢固、更耐用;

( 2)通过齿轮装置将电动机与螺旋桨轴相连方式有助于提高电动机的转速, 同时使电动机的结构更加紧凑, 缺点则是导致电动机的机械结构较为复杂, 并增加整个电力推进系统的机械功率损失。

轴系推进系统通常配备在以下3类船舶:

( 1)船舶所需要的推进功率比较大, 超出了全方位推进系统能提供的功率范围;

( 2)船舶不需要进行控位操作和机动操作, 因而无需横向推力;

( 3)船舶需要横向推力, 但通过使用导管推进器等更经济的方法来获得横向推力。

采用轴系电力推进系统常见的船型包括穿梭油船、科学考察船、抛锚船和电缆敷设船。

5.2全方位推进系统

这种系统可以自由转动, 能产生任何方向的推力。其推力既可以通过定速CPP螺旋桨或变速FPP螺旋桨控制, 也可以在特殊情况下通过速度和螺距联合控制。与定速CPP螺旋桨相比, 变速FPP螺旋桨的水下机械结构更加简单, 其推力损失也更小。

全方位推进系统内部的电机通常有两类。对推进器内部高度有严格限制的船舶上, 电动机通常是卧式的, 采用Z型齿轮传动; 反之, 在推进系统内部高度允许的情况下, 就采用立式电动机和L型齿轮传动, 使整个结构更加简单, 功率损耗更小。

由于全方位推进系统大多是按照单向推力的思路进行设计的, 因而一般无法反向转动产生推力。如果全方位推进系统在一定程度上具有产生反向推力的能力, 那么就可以在不转动该推进系统的情况下维持动态推力。

5.3吊舱式推进系统

这种系统可以自由转动并产生任何方向的推力。与全方位推进系统不同的是, 吊舱式推进系统将电动机与螺旋桨直接集成在一个封闭的吊舱装置中, 定距螺旋桨则直接安装在电动机轴上。由于不需要使用机械式齿轮传动装置, 其传动效率要比全方位推进系统高。此外, 由于螺旋桨的螺距是固定的, 其机械结构也相对简单。吊舱式推进系统的优越性还体现在吊舱既可以设计成推式也可以设计成拉式。拉式吊舱的螺旋桨能够产生均匀的伴流区,提高螺旋桨的流体动力效率并减少空泡现象, 从而降低系统产生的噪声和振动。

吊舱式推进装置的优点有:

( 1)省去了舵、轴系、托架、轴毂、尾侧推等装置;

( 2)减小阻力, 提高效率, 节省功率;

( 3)不需要外加冷却系统;

( 4)节省船上的空间;

( 5)无轴系, 不需要轴系对中, 安装方便, 甚至可以在下水后安装;

( 6)操纵性好, 尤其在低速时, 仍有良好的操纵性;

( 7)降噪, 减振, 改善舒适性。

吊舱式推进装置的缺点有:

( 1)多要求柴-电布置, 采用电力推进会有电力损耗, 与柴油机直接推进相比, 电力损耗为5%~8%;

( 2)尽管维护要求低, 但发生故障需要大修时往往很困难;

( 3)电动机的转矩受限制, 故要求较高的转速,有些情况下不能实现最优螺旋桨效率, 每个螺旋桨存在功率限制(大约30MW)。

现代船舶电力推进将是21世纪船舶发展的重大关键之一。我国船舶工业正进入高附加值造船的领域, 应该充分重视电力推进的研究和发展。

目前世界上电力推进系统的研究和发展方向主要是交流推进系统, 而它的工业基础主要是大功率变频调速技术和大容量电机制造技术。1990年代起, 我国大功率AC/AC变频调速装置取得了长足的进展, 迄今为止, 国产大型传动AC/AC变频调速系统已经超过150套, 变频装机容量达20MW, 驱动电机容量达10MW, 我国的大型传动AC/AC变频调速技术已经跨入世界先进行列。然而, 在更适合于舰船电力推进系统的PWM高压变频器方面, 与世界先进水平相比还有很大的差距。

通过多年的攻关和科研, 我国已建立了具有一定规模的电力推进设备生产基地和人才

队伍, 应打破电力推进应用对象的局限性, 加强交流电力推进系统的研究, 实现与基础工业系统的联合, 进一步加强舰船总体设计与电力推进行业之间, 以及电力推进行业与电力电子行业之间的沟通和联系, 各方共同大力合作开发和应用, 促进我国电力推进装置更好更快的发展。

参考文献:

【1】赫琇,舰船电力推进。船电技术,2011,5

【2】王满,张春来等,舰船联合电力推进装置浅析。大连海事大学学报,2010,6:213-216。【3】芮江,由大伟等,舰船综合电力推进技术的现状和发展趋势。舰船科学技术,2010.4 【4】云峻峰,黄仁和等,现代舰船电力推进设计走向。舰船科学技术,2003.2

【5】范啸平,王敏,现代舰船综合电力推进技术综述。船舶动力装置,2007.4

【6】金焘,国外舰船电力推进技术发展概况。上海造船,2002.2

【7】高益朋,曾凡明等,吊舱推进器在舰船推进系统中的发展现状及关键技术分析。中国舰船研究,2011.2

计算机科学与技术JAVA文献综述

北京工业大学耿丹学院 文献综述 JAVA创意游戏坦克大战的设计与实现 姓名王辰 系名信息工程系 专业计算机科学与技术 指导教师黄俊莲 日期2012年3月10日

前言 JAVA创意游戏坦克大战的设计与实现是我毕业设计的题目,我选择这样一个游戏软件作为题目的原因,不光光因为我是一个喜爱玩游戏的大男孩,同样的我也很看好游戏行业的市场发展前景,毕业后我有意从事相关工作。 现在游戏行业在我国的发展速度很快,电视广告,动画片,电影以及很多平面媒体上我们都能见到很多相关的宣传与资讯。据统计,全球范围内数字娱乐市场的规模将达到1000亿美元,而中国有近500万动画,网络游戏爱好者,另外至少还有400多万潜在用户群,以此带动的市场近有10亿元的规模。而随着影视业的发展,市场竞争的加剧,游戏行业将成为方兴未艾的朝阳产业。随着人们生活水平的日渐提高,解决一日三餐,温饱出行已经不再是问题。人们更多的关注自己的精神娱乐生活,也更关注自己的生活质量。在网络的环境中,可以给与的不仅仅是很大程度上的自由,并且丰富多彩的娱乐项目,庞大的数据信息,在人们的生活中越来越占据主流的位置。 主题 游戏行业,是文化产业的重要组成部分。是21世纪最具发展潜力的朝阳产业。据统计,全国游戏行业的从业者不足1万人,人才的缺口相当之大。最然我国的游戏产业比不上美国,韩国。但是我们拥有的是无比巨大的潜在市场。我相信随着市场秩序的建立,国家的大力扶持,游戏产业的春天就在不远的前方。 2007年的中国网游市场风云突变,新旧交替。这一年我们见证了

韩系网游几乎全线溃败。领略了史玉柱从征途到巨人的资本胜利。遭遇了韩国网游屡屡向中国运营伙伴发难的无奈。更多的也发现了中国网络游戏玩家的逐渐成熟。从2007年一季度到三季度,网络游戏市场总体增量约6.4亿。其中,完美时空,金山,巨人,网龙等新企业迅速成长。目前的网民群体中,玩过网络游戏的网民也已经接近一半,其中付费游戏用户平均每月花费的金额达到84元。我国在2006至2008年间,网络游戏产业总值将达到221.6亿元。网络游戏所带来的巨大财富效应已是不争的事实。 当然,网络游戏的好景能否持久?一位软件公司的老总这样认为。机遇当然会伴随风险,然而也正是风险才能成就更大的机遇。渴求成功的人士,只要掌握问题的关键,自可趋吉避凶。他指出,目前网络游戏鱼龙混杂,如战国之乱,因此还难以形成专一的用户群。用户忠诚度不够,私服外挂问题,也是每一款游戏心中的痛。因此,谨慎的做法是仔细考虑游戏产品是否具有竞争力,有独特之处,有市场前景。专业人士预言,随着网络游戏的蛋糕做大,国内运营商不甘心为韩日游戏开发商久做嫁衣,而思自立。而深厚的中华文化底蕴必能在玩家人心方面更胜一筹,就看产品开发,美工能否成功挖掘这部分市场。游戏产业如火如荼,然而Java作为一款火爆的编程语言同样广受欢迎。2011年上半年,我国信息技术服务业实现收入7817亿元,呈现高成长态势。信息技术咨询服务,数据处理和运营服务实现收入761和1073亿元。软件产品和信息系统集成服务分别实现收入2867和1673亿元。数据显示,软件开发行业前景广阔。

参考文献书目

参考文献 [1] 曹景亮.分布式电源对配电网继电保护的影响研究[D].武汉:华中科技大学, 2008 [2] Secretary of State for Energy and Climate Change,UK Renewable Energy Strategy, July 2009 [3] 吴争荣,王钢,李海锋等.含分布式电源配电网的相间短路故障分析[J]. 中 国电机工程学报,2013,33(1):130-136 [4] 孙景钌,李永丽,李盛伟等.含分布式电源配电网保护方案[J].电力系统自动 化,2009,33(1):81-84 [5] 王伟.含微网配电系统的继电保护问题研究[D].济南:山东大学,2009 [6] 徐虹,芦晶晶,孙宇斌等.含分布式电源的智能配电网的多目标优化调度[J]. 电气技术,2012,8:7-9 [7] Renewable global status report. Paris, France: IEA, 1999 [8] 邱永生,姜玉磊.分布式发电系统继电保护技术[J].江苏电机工程,2009,28 (6):81-83 [9] 金强.分布式电源故障特性分析及微电网保护原理的研究[D].天津:天津大 学,2011 [10] 王成山,李鹏.分布式发电、微网与智能配电网的发展与挑战[J].电力系统 自动化,2010,34(2):11-14 [11] 周捷锦,王辉,杨东升等.分布式电源接入崇明电网的分析与建议[J].电 力与能源,2011,32(6):488-491 [12] 范兵.分布式电源接入崇明电网的影响分析[D].上海:上海交通大学,2012 [13] Darren M, Bagnall, Matt Boreland.Photovoltaic technology Energy Policy,IEEE 2008 [14] 曹贵明.基于正序故障分量的含分布式电源配电网保护研究[D].重庆:重庆 大学,2012 [15] 张志华.配电网继电保护配合与故障处理关键技术研究[D].西安:西安科 技大学,2012 [16] 林霞,陆于平,王联合.分布式发电条件下的多电源故障区域定位新方法[J].电工技术学报,2008,23(11):139-145 [17] 谭又宁.含分布式电源的配电网继电保护研究[D].成都:西南交通大学,2012 [18] 王成山,孙晓倩.含分布式电源配电网短路计算的改进方法[J].电力系统自 动化,2012,30(23):54-58 [19] 刘健,张小庆,同向前等.含分布式电源配电网的故障定位[J].电力系统自 动化2013,37(2):36-43 [20] 陆志刚,王科,董旭柱等.分布式发电对配电网影响分析[J].电力系统及其 自动化学报,2012,24(6):100-106 [21] 康龙云,郭红霞,吴捷等.分布式电源及其接入电力系统时若干研究课题综 述[J].电网技术,2010,34(11):43-47 [22] 韦钢,吴伟力,胡丹云等.分布式电源及其并网时对电网的影响[J].高电压

智能电网中微电网优化调度综述

智能电网中微电网优化调度综述 智能电网是一种智能技术系统,它包括优先使用清洁能源、动态定价以及通过调整发电、用电设备功率优化负载平衡等特点。终端用户不仅能从电力公司直接购买用电,同时还可以从储能设备中获取新能源和清洁能源,例如太阳能、风能,燃料电池、电动汽车等。另一方面智能电网具备高速、双向的通信系统,供电端与用电端实现实时通信、并且系统能够保证电网安全、稳定和优化运行。具有坚强、自愈、兼容、优化等特征。 微电网是一种新型的网络结构,是实现主动式配电网的一种有效的方式。由一组微电源、负荷、储能系统和控制装置构成的系统单元,可实现对负荷多种能源形式的高可靠供给。微电网中的电源多为容量较小的分布式电源,即含有电力电子接口的小型机组,包括微型燃气轮机、燃料电池、光伏电池、小型风力发电机组以及超级电容、飞轮及蓄电池等储能装置,它们接在用户侧,具有成本低、电压低及污染低等特点。开发和延伸微电网能够促进分布式电源与可再生能源的大规模接入,使传统电网向智能网络的过渡[1]。 1、微电网的组成及结构 微电网是由多种分布式电源(既包含有非可再生能源发电的燃料电池、微型燃气轮机;又包含可再生能源发电的风力和光伏发电单元等),再加上控制装置、储能装置和用电负荷共同组成。微电网的组成结构十分灵活,可以满足某片区域的特殊供电需求。微电网不仅可以通过公共连接点(PCC)与大电网连接,采用并网运行模式;还可以在大电网电能质量下降或者电网故障而影响到微电网内负荷正常用电时,在公共连接节点(PCC)处与大电网断开,采用孤岛运行模式。 典型的微电网结构如图1-1 所示。它是由热电联产源(CHP)如微型燃气轮机、燃料电池,非CHP源如风力发电机组、光伏电池组及储能装置等组成。微电源和储能设备通过微电源控制器(MC)连接到馈线A和C。微电网通过公共连接点(PCC)连接到配网中进行能量交换,双方互为备用,提高了供电的可靠性[2]。

船舶电力推进系统优势

船舶电力推进系统优势 随着国际海事组织在船舶排放方面制定越来越严格的标准,加上石油资源逐渐耗尽,内燃机将逐步退出历史舞台,绿色环保的电力推进系统将成为未来船舶动力发展的方向。国外已经开发了多种类型电力推进系统,并在多型船舶上应用。我国在此领域的研究则刚刚起步,应加速对相关技术的研究和开发应用,积极参与到这一领域的国际竞争,在市场上占有一席之地。 “与传统的船舶动力系统相比,电力推进系统具有调速范围广、驱动力大、易于正反转、体积小、布局灵活、安装方便、便于维修、振动和噪音小等优点。电力推进作为船舶的新型推进动力,世界各国都在进行深入的研究” 中国工程院院土、中国船舶轮机专家闻雪友表示,作为船舶主动力系统的电力推进系统,由于其高效率、高可靠性、高自动化以及低维护,正成为新世纪大型水面船舶青睐的主推进系统。目前,发达国家新造船舶的30%已采用电力推进系统。船舶电力推进新技术的研发及应用,将大大减轻船舶污染和海洋环境污染,充分体现了“绿色航运”和“绿色船舶”的环保节能理念,这将是今后船舶动力领域的一个发展方向。 “相对于传统的柴油机推进系统,电力推进系统可谓优势多多。”据上海海事大学教授汤天浩介绍,一是电力推进具有良好的经济性。在一艘船上多台中速柴油机用于发电,可根据用电负荷选择发电机运行台数,使机组始终运行于高效工作区,实现最大的经济性。与同功率的船舶相比,采用电力推进要比内燃机推进耗油减少10%左右,减少船体阻力5%-10%,提高运输效率15%,航速可提高0.5节。二是电力推进系统操纵性好。采用电力推进系统后,操纵控制方便,起动加速性好,制动快,正反车速度切换快,可推进电机转速易于调节,在正反转各种转速下都能提供恒定转矩,因此能得到最佳的工作特性,使船舶取得优良的操纵性。二是电力推进系统具有良好的安全性。对于柴油机推进的船舶来说,一旦主机重要部件或舵机、轴系出现故障往往导致瘫船。而电力推进则使用多台原动机,个别机组故障不致丧失动力。电力推进系统多采用两套以上互为备用,同步电动机定子有两组相互独立的绕组,一组出了故障仍可减载运行。四是电力推进系统节省空间。采用传统推进系统的船舶轴系长度往往占到船长的40%左右,采用电力推进系统的船舶省去了传动轴系、减速齿轮箱,改善了机舱布局结构,使动力装置安排更加合理,节省了大量空间。五是电力推进系统噪音低。采用电力推进后,主要振动源——发动机安装在弹性底座上,以恒定转速运行,与轴系和船体也无直接联结,大大减少了振动和噪声,工作区整洁,提高了乘船的舒适程度。六是采用电力推进系统有利于船舶控制环境污染,降低排放。对同一功率船舶而言,电力推进中的中速柴油机可以始终在最佳工作区工作,燃油燃烧质量好,燃烧产物中的氮氧化物含量少,减少了废气排放,使机舱内空气新鲜,环境质量得到改善。

舰船电力推进技术的发展现状

舰船电力推进技术的发展现状 电力推进是指由舰船的原动机(柴油机或燃气轮机或两者混合,甚至核动力装置)驱动发电机产生电能,再由电动机将电能转换为机械能驱动推进器实现舰船机动的一种推进方式。一艘电力推进船舶,不管采用何种方式发电,电力不是像传统布置一样直接与驱动装置相连,但可为全船提供电力,这种方式能提供更大的供电灵活性、高效性和生存性。舰船步入全电力时代就像当初从帆船时代步入蒸汽时代一样,是一个巨大的跨越。 一电力推进的优缺点 1 电力推进的优点 1)可以灵活布置船上大型机械设备; 2)便于操控和航行; 3)可降低运行噪声。因为没有齿轮箱等大功率后传动机械装置和长轴系,明显降低了舰艇运行噪声,提高了乘员的舒适度,且提高了舰船的隐身性; 4)如果电动机设计成低速(100~200 r/min)运行,并直接与推进轴连接,则可省去减速齿轮;

5)与常规的机械推进比较,电力推进的重量和体积大大减少; 6)电力推进系统能效更高; 7)电力由冗余电缆传输,可靠性高,并可减少维护; 8)节能环保。所有原动机均以恒定速度运行于最佳工作状态,并可根据负载变化动态调整,明显降低能耗和排放; 9)全电力舰船所需的舰员人数会大幅减少,进一步减少使用成本。10)可使舰船成为电磁武器的搭载平台。大型舰船变频调速电力推进在功率等级上与电磁武器基本相当,随着这种新型电力推进技术的工程化应用,将在电能管理和脉冲式电源变换等重大技术上为大功率雷达、电磁炮、电磁弹射等新装备装舰扫清障碍。 2 电力推进系统相对常规推进装置的不足之处 1)电力推进系统的价格较传统推进装置更为昂贵,因而船舶建造的初投资将会增加; 2)在原动机与螺旋桨之间增加的电器设备,如发电机、变压器、变频器和电动机等,加大了船舶全动力运行时的传输损耗; 3)大量采用电气设备可能引起一些危害,如火灾和电网的谐波干扰等;4)由于船舶安装了多种新型设备,需要制定不同的运行、人员配备及维护策略,提高了对操作人员和维护人员的要求。

110KV变电站一次设计文献综述教学内容

精品文档变电站电气一次系统设计110kV一、选题意义随着国民经济的发展和人民生活水平的提高,用户对供电质量的要求日益提高。国家提出了加快城网和农网建设及改造、拉动内需的发展计划[1]。变电站是电力系统中变换电压、接受和分配电能、控制电力的流向和调整电压的电力设施,它通过其变压器将各级电压的电网联系起来,变电站的建设迅猛发在电力系统中起着至关重要的作用。近年来110kV展。科学的变电站设计方案能够提升配电网的供电能力和适应性,降低配电网损耗和供电成本,减少电力设施占地资源,体现“增容、升压、换代、[2]。同时可以增加系统的可靠性,节约占地面优化通道”的技术改造思路[3]积,使变电站的配置达到最佳,不断提高经济效益和社会效益。 二、变电站建设的国内外现状和发展趋势 为了保障我国经济的高速发展,以及持续的城镇化进程,我国电力系统进入了一个快速发展阶段,电网建设得到进一步完善。由于我国电力建设起步比较晚,目前我国变电站主要现状是老设备向新型设备转变,有人值班向无人值班变电站转变,交流传输向直流输出转变,在城市变电站建设中,户内型变电站大幅增加。国外变电站主要是交流输出向直流输出转变。而数字化智能变电站也是国内外变电站未来发展趋势。 1、无人值守变电站: 同西方发达国家相比,由于我国变电站自动化系统应用起步较晚,

变电站运行管理的理念也有很大差异,使我们的变电站无人值守运行水平与之相比还有很大的差距。在我国,许多220 kV及以下电压等级变电站已经开始由监控中心进行监控,基本上实现了变电站无人值守。但作为国内电网中最高电压等级的500 kV和330 kV变电站,即使采用了变电站自动化系统的,也都是实行有人值守的管理方式。而在欧美发达国家,各个电压等级变电站都能实现变电站无人值守。由此发现,在国内外无人值守变电站 [4]之间、国内外变电站自动化系统之间都还有很大的差异。全面实现变电站无人值守对我国电网建设有非常明显的技术经济效益: 1提高了运行可靠性;2加快了事故处理的速度;3提高了劳动生产率;4降低了建设成本。[5] 2、城市变电站建设 随着城市中心地区的用电负荷迅速增长,形势迫使在城市电网加 快改造和建设的同时,在中心城区要迅速地建设一批高质量的城 市变电站,在精品文档. 精品文档 多种变电站的型式中户内型变电站受到各方面的重视,在这几年 中得到飞[6]。由于户内变电站允许安全净距小且可以分层布置而 使占地面积速发展较小。室内变电站的维修、巡视和操作在室内 进行,可减轻维护工作量,不受气候影响。、数字化智能变电 站3光特别是智能化开关、在变电站自动化领域中,智能化电气 的发展,电式互感器等机电一体化设备的出现,变电站自动化技 术即将进入新阶段[7]。变电站自动化系统是在计算机技术和网络

舰船电力系统的发展现状及发展趋势

舰船电力系统的发展现状及发展趋势 摘要 随着国家海洋战略的逐步展开,舰船的大型化,全电力推进发展的同时,舰船电力系统的地位也从辅助系统变成主动力系统。对电力系统的稳定新,可靠性,智能化等提出了更高的要求。为了适应这种发展趋势,一些新技术新思路随之出现。本文详细论述了智能电网在舰船电力系统中应用发展,云计算的舰船电力资源调度系统等领先技术。 关键字:智能电网云计算 0引言 进入21世纪以来,智能化和数据处理技术的优越性引起了各行业的广泛关注,随着国家海洋战略的不断推进,计算机技术被不断的运用到舰船系统的各个方面,尤其在舰船电力系统的在作用越来越重要的情况下,计算机技术对提高舰船电力系统优越性发挥了巨大的作用。1智能电网在舰船电力系统中应用发展 1.1舰船电力系统智能电网 智能电网的概念涵盖了电网的发,输、变、配、用电等各个环节,智能电网正在给全球电力行业带来新的机遇与挑战,是2l 世纪重大科技创新和变革趋势,国内外研究学者纷纷开始关注智能电网的研究和建设,以实现传统电网的升级换代及电网运行控制新思路的改革。随着舰船电力系统规模日益扩大和综合电力系统概念的提出,电力系统配置、网络结构、运行模式和控制策略等方面较传统舰船电力系统都发生了较大的改变,对供电质量、可靠性和生命力提出了更高的指标。从舰船总体角度来说,舰船智能电网是舰船综合电力系统的一个重要组成部分,舰船综合电力系统还包括舰船动力推进、高能武器发射等部分。随着技术的发展,未来舰船综合电力系统在大中型舰艇上将获得绝对的优势地位,带来舰船性能的全面提高。全电力化舰船采用综合电力系统结构形式,更加可靠、高效和灵活,并有较强的战斗力和生命力。可见,舰船电网智能化是实现舰船综合电力系统的需要和发展趋势。 1.2舰船智能电网特征 舰船智能电网的发展目标是利用现代信息技术,通信技术、计算机技术、测量技术、自动化技术等先进技术,抵御各种事故损害,提高舰船电力系统在发电侧、输变配电侧、用电侧的能源转换和传输效率,确保电网运行更安全、更可靠、更灵活、更经济,电网与负载之间能进行实施的交互信息。基于舰船电力系统的独有的特点、发展需求和目标,舰船智能电网特征主要表现为以下几个方面: 1)自愈性。自愈是电网智能化的重要标志。实时掌握电网运行状态,预测电网运行趋势,故障发生时,在没有人工干预下,能够快速隔离故障、自我恢复,避免断电事故的发生。 2)互动性。实现与负载用户的智能互动,按需供给和调节,实现资源的优化配置和集约管理,提供最佳的电能质量和供电可靠性。 3)抵御攻击。舰船独特的任务使命要求舰船电网必须具有“抗攻击”的能力。 1.3 舰船智能电网发展的关键技术 发展舰船智能电网必须结合舰船综合电力系统的发展需求,融合信息、通信、传感和量测、智能设备、自动控制和决策支持等关键技术,以标准化接入为基础,以信息共享、智能决策和综合调控为主要手段,具有多指标自趋优运营能力,适应未来舰船综合电力系统发展的需要,提高电网运行效率,提高能源利用效率,提高供电的安全性和可靠性,减少电网损耗,降低电力设备运行噪声,实现与负载用户间的互动。 2云计算的舰船电力资源调度系统研究 2.1舰船电力系统云平台

船舶电力推进系统优势多多

船舶电力推进系统优势多多 随着国际海事组织在船舶排放方面制定越来越严格的标准,加上石油资源逐渐耗尽,内燃机将逐步退出历史舞台,绿色环保的电力推进系统将成为未来船舶动力发展的方向。国外已经开发了多种类型电力推进系统,并在多型船舶上应用。我国在此领域的研究则刚刚起步,应加速对相关技术的研究和开发应用,积极参与到这一领域的国际竞争,在市场上占有一席之地。 “与传统的船舶动力系统相比,电力推进系统具有调速范围广、驱动力大、易于正反转、体积小、布局灵活、安装方便、便于维修、振动和噪音小等优点。电力推进作为船舶的新型推进动力,世界各国都在进行深入的研究”中国工程院院土、中国船舶轮机专家闻雪友表示,作为船舶主动力系统的电力推进系统,由于其高效率、高可靠性、高自动化以及低维护,正成为新世纪大型水面船舶青睐的主推进系统。目前,发达国家新造船舶的30%已采用电力推进系统。船舶电力推进新技术的研发及应用,将大大减轻船舶污染和海洋环境污染,充分体现了“绿色航运”和“绿色船舶”的环保节能理念,这将是今后船舶动力领域的一个发展方向。 “相对于传统的柴油机推进系统,电力推进系统可谓优势多多。”据上海海事大学教授汤天浩介绍,一是电力推进具有良好的经济性。在一艘船上多台中速柴油机用于发电,可根据用电负荷选择发电机运行台数,使机组始终运行于高效工作区,实现最大的经济性。与同功率的船舶相比,采用电力推进要比内燃机推进耗油减少10%左右,减少船体阻力5%-10%,提高运输效率15%,航速可提高0.5节。二是电力推进系统操纵性好。采用电力推进系统后,操纵控制方便,起动加速性好,制动快,正反车速度切换快,可推进电机转速易于调节,在正反转各种转速下都能提供恒定转矩,因此能得到最佳的工作特性,使船舶取得优良的操纵性。二是电力推进系统具有良好的安全性。对于柴油机推进的船舶来说,一旦主机重要部件或舵机、轴系出现故障往往导致瘫船。而电力推进则使用多台原动机,个别机组故障不致丧失动力。电力推进系统多采用两套以上互为备用,同步电动机定子有两组相互独立的绕组,一组出了故障仍可减载运行。四是电力推进系统节省空间。采用传统推进系统的船舶轴系长度往往占到船长的40%左右,采用电力推进系统的船舶省去了传动轴系、减速齿轮箱,改善了机舱布局结构,使动力装置安排更加合理,节省了大量空间。五是电力推进系统噪音低。采用电力推进后,主要振动源——发动机安装在弹性底座上,以恒定转速运行,与轴系和船体也无直接联结,大大减少了振动和噪声,工作区整洁,提高了乘船的舒适程度。六是采用电力推进系统有利于船舶控制环境污染,降低排放。对同一功率船舶而言,电力推进中的中速柴油机可以始终在最佳工作区工作,燃油燃烧质量好,燃烧产物中的氮氧化物含量少,减少了废气排放,使机舱内空气新鲜,环境质量得到改善。 专家表示,船舶采用电力推进系统后,有利于进行计算机网络管理,有助于实现系统的自动控制,全面提升船舶信息化、智能化、自动化水准。因此,船舶电力推进系统应用范围不断扩大,将成为未来绿色船舶前进的动力。

微电网储能技术研究综述

电力系统新技术 专业电力系统及其自动化 班级研1109班 学号1108080392 学生周晓玲 2012 年

电力储能技术 摘要:储能技术在电力系统中具有削峰填谷、一次调频、提高电网稳定性、改善电能质量、提高电网利用率、提高可再生能源的利用率等重要作用。本文主要介绍了抽水储能、飞轮储能、压缩空气储能、钠硫电池储能、液流电池储能以及超导储能、超级电容器储能等典型储能技术以及各自的国内外研究动态,比较了各种储能技术的优缺点,并对储能技术在电力系统中的不同应用进行了综述。 关键词:储能技术,可再生能源发电,消峰填谷,一次调频ABSTRACT:Power storage technology serves to cut the peak and fill valley,regulate the power frequency,improve the stability,and raise the utilization coefficient of the grid in the power system.This paper introduces various types of storage technology such as pumped hydropower,flywheel electricity storage technology,compressed air energy storage,sodium sulfur(NaS)battery,,Flow Battery Technology,super conductive magnetic energy storage and super capacitor storage discusses their advantages and disadvantages.The development trend and the Different applications of storage technology in the power system are also summarized. KEY WORDS:energy storage technology,renewable energy Resources power generation,peak load shifting,primary frequency 1.背景意义 近几十年来,电能存储技术的研究和发展一直受到各国能源、交通、电力、电讯等部门的重视。电能的存储是伴随着电力工业发展一直存在的问题,其实到现在为止也没有一种非常完美的储能技术,但经过几代科学家的努力,一些比较成熟的储能技术在各行各业发挥着重要的作用。储能的优点有很多,节能、环保、经济。比如火电厂要求以额定负荷运行,以维持较高的能源转换效率和品质,但用电量却随时间变化,如果有大容量、高效率的电能存储技术对电力系统进行调峰,对电厂的稳定运行和节能是至关重要的。另外,由于分布式发电在电网中所占的比例越来越高,基于系统稳定性和经济性的考虑,分布式发电系统要存储一定数量的电能,用以应付突发事件。随着电力电子学、材料学等学科的发展,现代储能技术已经得到了一定程度的发展,在分布式发电中已经起到了重要作用。储能已经成为除发、输、变、配、用五大环节的第六大环节。如下图即为储能在电力系统中的应用。

船舶综合电力系统资料讲解

船舶综合电力系统

精品资料 浅析船舶综合电力系统 1.引言 船舶综合电力系统是船舶动力的发展方向,是造船技术发展史上的又一个革命性的跨越,其主要特点是将推进动力与电站动力合二为一。该项技术正在逐步成熟、完善。以美、英、法为代表的发达国家率先引入综合电力系统这一概念,并积极开展研究、试验和应用到船艇。 2.综合电力系统概述 综合电力系统的思想基础是降低未来船舶的总成本,优化船舶总体、系统和设备的组成。其设计理念是突出系统化、集成化和模块化。在船舶平台上的具体实现途径是将全船所需的能源以电力的形式集中提供,统一调度、分配和管理。 美国海军提出的综合电力系统主要包括发电、配电、电力变换、电力控制、平台负载、推进电机、能量储存等七个模块。其中,发电模块将其它形式的能量转化为电能,经全船环形电网向各区域配电系统供电;电力控制模块对配电模块实行电能分配和监控;配电模块将电力输送到电力负荷中心,再分配到各用电设备;电力变换模块将一种形式的配电模块转化为另一种形式的配电模块;推进电机模块用于船舶推进;平台负载模块是一个或多个配电模块的用户;能量储存模块用于储存电能,维持整个供电系统的稳定。 采用综合电力系统的船舶与传统船舶比较,具有的主要优势为: 便于采用分段和模块化建造,使用维护费用低,经济性好;噪音低,可提高船舶的安静性和舒适性,提高舰艇的战斗力和生命力;调速性能好,控制方便,倒车简便、迅速,提高船舶的机动性;布置灵活、设计方便、可靠性高,可维修性好、生命力强;便于实现自动化,减少船员;适用性强,可广泛采用各种电子设备和先进的推进技术,对于舰艇而言,可以使用诸如激光武器、电磁炮等高能武器。 3.综合电力系统的发展现状 近十来年,船舶的电力推进技术已进入应用阶段。目前,不同类型的船舶,如一些科考船、破冰船以及邮轮采用了电力推进系统。推进电机采用直流、交流同步电动机或交流感应电动机。研究报告显示,虽然商船的综合电力推进系统提高了船的建造费用,但其运行和支持费用,及其生命周期里的整个费用却降低了。上世纪九十年代,一些商船业公司,如ALSTOM、ABB、SIEMENS等,已形成了企业内部的商船业电力推进标准。有人统计,八十年代后期建造的1000吨以上的商船中采用柴-电推进的约占25%,到九十年代中期,此类船舶中有35%以上采用电力推进,且该比例正在呈逐年上升的趋势。据统计,到2000年,全世界商船电力推进的装机总容量约为4200MW。 美国海军于1980年建立了综合电力驱动计划,希望通过将船舶日用电力系统和推进电力系统合而为一,进一步提高战船的性能。1990年后,美国海军将注意力转到提高船舶的能购性上,研究计划转为综合电力系统(IPS:Integrated Power System)项目。针对当时水面战斗舰艇(SC-21,现转型为DD(X))的概念设计,美海军完成了费用和效能评估。2002年4月29日,美国海军宣布英格尔斯造船公司、诺斯罗普格鲁曼船舶系统公司为DD(X)的设计主承包商,设计承包合同总价款为28亿多美元,执行期至2005财政年度。DD(X)设计合同的签署意味着美国海军水面舰艇革命性变革的开始。综合电力系统强调的主要技术目标为增加可操作性和支持柔性设计。美海军计划2003年开始,用3年多时间完成11个工程 仅供学习与交流,如有侵权请联系网站删除谢谢2

控制工程文献综述

工程控制基础文献综述 院系: 班级: 姓名: 学号:

一、引言 本学期初步学习了工程控制基础,为了更好地了解和学习该门课程,我通过网络渠道搜集了十篇有关工程控制的期刊文献。深入阅读后,我进行了总结,并对工程控制有了一定深度的理解。本文是对搜集和阅读的文献的综述,旨在简要的介绍工程控制的发展和应用。我所搜集的期刊均来自中国知网,其中包括工程控制的发展史和在车辆、电力及机器人方面应用的文献。 二、文献综述 1.智能控制工程研究的进展 自1985年在纽约召开第一届智能控制学术会议至今,智能控制已经被广泛研究应用于工业、农业、服务业、军事航空等各个领域。近年来,随着人工智能技术和其他信息处理技术,尤其是信息论、系统论和控制论的发展,智能控制在控制机理和应用实践方面均取得了突破性的进展。遗传算法与模糊逻辑、神经网络相互融合,通过模拟人类思维方式和结构来设计用于解决复杂的各种非线性问题的控制策略,并已在各种实际工程项目中得到应用,取得了良好的效果。分布式人工智能中的Agent和Multi Agent System已成为研究的热点,构建基于Agent 的集散递阶结构的智能控制系统为智能控制注入了新的活力。 在理论研究取得进步的同时,国内外的研究者均意识到智能控制的研究不能只停留在计算仿真的层次上,智能控制应该直接面向传统控制难以或无法解决的复杂的非线性系统,面向实际工程应用。 2.车间运输小车的智能控制 工厂运输是协调生产的重要环节和工厂设施的重要组成部分,它的效率直接影响生产成本及生产率。目前,加工中小产品机械加工车间运输系统主要有空间运输和地面运输两种。空间运输主要是小吨位桥式起重机和电动葫芦,其控制方式多为下拉线式,这种方式有以下缺点:1)设备复杂,功率消耗大,投资高。2)操作不方便,运输效率低。3)只适应车间内部运输。 地面运输主要采用叉车及手推运料小车,叉车需专人驾驶且无固定轨道,在车间内运行极不安全,手推运料小车需人为动力,劳动强度大,运输效率低。本设计的有轨运料小车,利用了 PLC 的编程简单,工作可靠,硬件组合灵活,不增加外部控制电器即可实现任意复杂逻辑控制等特点,实现了运料小车的智能控制。 小车应具有两种控制方式,即:呼叫自动响应控制和手动点动控制,正常情况下应使用前一种控制方式。两种控制方式必须实现互锁。呼叫自动响应控制:每个机床处各设一个呼叫按钮。由于意外或故障导致小车在非呼叫工位处停车时,不响应任一工位处的呼叫信号,只能采用手动控制进行纠正。

储能系统的能量调度文献综述

关于储能系统的能量调度的文献综述 摘要:储能系统具有双向充放电的运行特性,既可以吸收电能,也 可以释放电能。鉴于此种性能,其在电力系统中通常有如下三种作用:电力系统采用储能装置可节约系统综合用电成本,在低成本时 吸收电能,在高峰时释放,获得峰谷电价差带来的经济利益。 ⑴储能系统用在发电端,可有效克服可再生能源发电系统的波动性,吸收不平衡功率流,从而提高发电机的稳定运行能力,起到平滑可 再生能源发电系统输出波动的作用。 ⑵储能系统用于输配电时,可灵活配置能源供应,可以肖峰填谷, 在用电低潮,吸收功率,将电能储藏起来,在用电高峰期,释放电能,弥补供电不足,从而提高电力供应质量,提供电压和频率保障,减少线损,提高整个输配电系统的稳定性,起到了能量调度的作用。 (3)储能系统用于用户端时,可提高电路的质量,减少峰值。本文主 要论述了储能系统的第二种功能,即储能系统能有效改善微网的电 能质量并提高系统稳定性,具有能量调度的作用。 关键词:储能系统;微电网;能量调度;电能质量 正文: 文献一:风电储能系统能量调度策略研究 由于风能具有随机性和间歇性,在其并网时由于风电能波动会 影响电网电能质量,此文献提出基于铅酸蓄电池储能系统、结合负 荷用电预测信息,利用模糊理论“最大-最小”合成理论,合理调 度储能系统充放电的电量,从而改善并网后的电网品质。 风电储能系统能量调度主要包括:电网负载用电量的预测、储 能系统 ( 铅酸蓄电池组成 ) 、风力发电机组(此处不做详述) 和调度控系统制器4大部分。 1、电网负载用电量的预测:根据气象条件与用电负荷的关系,把用 电负荷分为以下3类: 1 ) 照明、普通家电、电炊具等这类负

微电网技术及其发展现状研究

2011年·06月·下期 学术·理论 现代现代企业教育 MODERN ENTERPRISE EDUCATION 企业 教育 25 微电网技术及其发展现状研究 吴 萍 尤向阳 (三门峡职业技术学院 河南 三门峡 472000) 摘 要:微电网充分发挥了分布式发电的价值和效益,可作为大型电网的有益补充,解决大规模电力系统的诸多潜在问题。本文介绍了微电网产生的背景,并阐释了其概念和结构特点,最后,对国内外微电网发展现状进行了对比研究。关键词:微电网 分布式发电 供电可靠性 引言 近年来,世界能源紧缺、环境污染、温室效应等问题越来越严重,分布式发电技术以具有低污染、高能源利用效率、可节约电网投资、提高大电网供电可靠性等优点得到重视。但是分布式电源(DG)单机接入成本高、控制困难,大量接入可能会对电网造成冲击,影响电能质量和系统的安全稳定。为协调大电网与分布式电源的矛盾,充分挖掘DG的价值和效益,在本世纪初,学者们提出了一个解决方法,即将DG及负荷一起作为公共配网的一个单一可控的子系统——微电网(Microgrid)。 一、微电网的概念 目前,国际上主要有美国、日本、欧盟等国家和地区给出了微电网定义。 美国电力可靠性技术解决方案协会(CERTS)认为:微电网由负荷和微型电源共同组成、可实现热电联供,微电源主要由电力电子器件进行能量转换和控制。当微电网与大电网相连时,微电网可视为单一的受控单元。 日本三菱公司按规模大小将微电网分为小规模(发电容量10MW,燃料为可再生能源,主要应用于小型区域电网、住宅楼、岛屿和偏远地区)、中规模(发电容量100MW,燃料为石油或煤、可再生能源,主要应用于工业园)和大规模(发电容量1000MW,燃料为石油或煤,主要应用于工业区)3类。它将以传统电源供电的独立电力系统也纳入微电网系统,扩展了研究范畴。 欧盟定义的微电网具有以下特点:1、利用一次能源;2、使用微型电源; 3、可实现冷热电三联供;4、含储能环节;5、含电力电子设备; 6、分为不可控、部分可控和全控三种类型。 综合来讲:微电网就是采用大量的现代电力技术,将微电源,负荷,储能设备及控制装置等结合在一起,直接接在用户侧,可同时向用户供给电能和热能的小规模分散独立系统。 二、微电网的结构 与传统的输配电网相比,微电网的结构比较灵活,其具体结构根据负荷情况会有所不同,但基本单元一般包括微型电源、储能元件、能量管理及控制系统、负荷等。 表演动作,这样能帮助学生理解和记忆歌词,并在理解、记忆歌词的基础上,以形象生动,优美的歌舞动作进行演唱,使演唱更富有情感的表达性。歌曲选择方面可根据我们的教学进度和学生的学习程度要求学生自行选择歌曲,可以大量的上网搜索选择自己喜欢的也都适合的歌曲,并应用所学的方法进行演唱,阶段性的开展班级音乐会,激发学生的学习热情,让他们爱学、喜欢学。 四、自我体验学习声乐 声乐是幼教专业学生学习的重要技能之一,它是培养学生的演唱技能和道德情感的主要阵地。声乐在教学过程中比较枯燥,培养学生的自主学习尤为重要,变“要我学”为“我要学”,使他们真正成为学习的主人。 声乐的学习过程是很抽象的,我在讲解声乐理论时一般采取体验法,让学生自己感觉自己体验,比如:要讲打开喉咙就要学生体验咬苹果的感觉,要讲吸气就要让学生体验闻花香的感觉等等。如:区别音的高低、长短、强弱等时,教师启发学生比较大公鸡的啼声和母鸡啄食的“咯咯”声,大部分学生对鸡是熟悉的,就让他们自己去模仿这些叫声,通过学生的亲身模仿,很快就辨出哪个是高音,哪个是低音,通过类似的方法,又能辨别出飞机在跑道上起飞的马达声震耳,是强音,而飞机上高空我们听到的声音是弱音。进而上升到理性认识,这样做会培养学生善于动脑,善于捕捉音乐的能力。在这些教学当中我都尽量融入学生 的自主学习的观念,做到“做中学”。 在枯燥的发声练习过程中我会让学生动起来,在发声前要先活动开,或小跑,或做运动操,根据练声曲的节奏让学生踏步或者小跑着发声,这样可以让学生更加放松自然。也可以编成游戏的形式,如用问答的形式,一半学生问do re mi fa so ,另一半的学生答so fa mi re do ,这样可以提高学生的兴奋度,让练声得到更好的效果。也可以围成圈相互看,或站成面对面发声,相互评价相互学习。 五、结语 如今,知识的更新日新月异,高科技的发展日趋迅猛,面对教育的新形式,学生为中心的思想已深入人心,旧的体制和模式受到极大的冲击。作为幼教专业的音乐教师更应及时转变教学观念,只有教会学生自主学习,使学生掌握学习的方法,才能达到“今天的教是为了明天的不教”的目的,在课堂上努力创设学生自主学习的环境,发挥学生的自主意识,也只有学生学会自主学习,他们才能主动地去研究,去探索,去创造。以培养有创造力、有创新思维能力的新一代幼儿教师。 参考文献: [1]张天宝著.试论主体性教育的基本理论. [2]周明星,张柏清著.创新教育模式全书.北京教学出版社 .□

新型舰船综合电力系统的运行分析及发展_闫飞飞

总第228期 2013年第6期 舰船电子工程 Ship Electronic Engineering Vol.33No.6 14   新型舰船综合电力系统的运行分析及发展* 闫飞飞 陈圣东 刘亚丽 (海军蚌埠士官学校机电系 蚌埠 233012) 摘 要 综述了舰船综合电力系统技术的国内外研究现状和重要意义,以英国45型驱逐舰为例对机组运行进行了分析,讨论了关键设备和技术的发展趋势。 关键词 综合电力系统;舰船电力推进;能量管理系统 中图分类号 TM732 Trend and Analysis of Ship Integrated Power Systems YAN Feifei CHEN Shengdong LIU Yali (Bengbu Naval Petty Officer Academy,Bengbu 233012) Abstract The domestic and foreign research present situation and significance of the ship integrated power system technology are sum-marized.The British type 45destroyer is analyzed on the unit operation,then discusses the development trend of the key equipment and tech-nology. Key Words IPS,electric propulsion,PMS Class Number TM732 1 引言 上世纪90年代,业界提出综合电力系统(IntegratedPower System,IPS)的概念,其显著特点是集成化,将发配电、调度与监控以及推进和高能负荷都集成在一起。在舰船上,电能最初只是作为辅助能源,随着电力推进技术的发展,以及传统上由动力系统提供能量的设备的电力化,电力系统承担了更多的任务,舰船综合电力系统得以出现。上世纪90年代以来,新建造的客轮和破冰船等有超过30%左右均采用了电力推进;在军事领域如英国研发了混合电力推进23型护卫舰和2008年下水的世界上第一艘采用综合电力系统的战斗舰艇45型驱逐舰“果敢”号,美国历时近20年研制的全电力DDG1000新型驱逐舰预计2013年下水[1]。舰船综合电力系统的机组运行方式与传统舰船电力系统相比有着巨大的差异,具有良好的机动性、静音性,节约了机舱空间,目前国内外的发展态势来看,代表了未来的发展方向,我国也高度重视其研究。 2 发展动因和重要意义 舰船采用电力推进技术是综合电力系统技术发展的推动因素,电力推进相比传动的机械推进具备更好的调速特性、机动性、经济性、静音性,如破冰船要求推进系统具备相当强的堵转特性、客轮要求有良好的操纵性、运输船要求有低速航行的经济性、反潜护卫舰等需要推行时有较小的噪音。 传统的舰船中,推进是由大型主机完成而供电系统只 是起到一个辅助的作用,舰船设计时采用电力推进将主动力和供电系统合并,减少了各种原动机的数量,节约了机舱空间,提高续航力以及战斗力;同时可以发挥电能更容易集成、灵活控制的特点,全电力系统高效运行,提高舰船信息化程度;同时省去了传动轴和齿轮箱等,从而切断了舰船向外界传播噪声的途径,提高了舰船的适航性、隐蔽性和生存力。 舰船综合电力系统的典型拓扑结构是环形网络,采用环形电网加上区域配电的供电模式,可以更加合理地分配电能、显著提高舰船生存能力;先进的大功率探测设备以及高能武器具备探测距离远、精度高等更优越的性能,比如飞机电磁弹射和拦阻装置这些先进装备所需电能巨大,唯有采取综合电力系统方案才能解决推进时所需充足动力以及战斗状态下高能电力的矛盾[2]。 舰船综合电力系统技术对舰船设计将产生革命性的影响,代表了未来的发展方向,其重要意义完全可以与从帆船时代进入蒸汽机时代以及核动力舰船的诞生相提并论[3]。 3 机组运行分析 舰船综合电力系统将推进以及日用负载供电等能量进行综合调配,战斗、巡航、进出港及锚泊等不同工况下的电站投入容量差别非常巨大,比如锚泊工况下的负载远远小小战斗工况下的负载。以英国皇家海军45型驱逐舰“果敢”号为例,对其机组运行方式进行分析。 3.1 机组配置 “果敢”号共有两台20MW燃气轮机发电机作为“大机 *收稿日期:2012年12月6日,修回日期:2013年1月17日作者简介:闫飞飞,男,硕士,研究方向:船舶电力系统和电气工程。

智能电网文献综述

智能电网综述 摘要:智能电网是当今世界电力系统发展变革的最新动向,并被认为是21世纪电力系统的重大科技创新和发展趋势。目前,以美国、英国、法国、德国为代表的欧美国家,己经纷纷加入到研究和发展智能电网的行列中来,将智能电网(Smart Grid )作为末来电网发展的远景目标之一,建立一个高效能、低投资、安全可靠、灵活应变的电力系统。具有对用户可靠、经济、清洁、互动的电力供应和增值服务的智能电网是未来电网的发展方向。本文阐述了智能电网的内涵和特点,分析了国内外智能电网的研究进展和我国发展智能电网的条件,对一些现有的研究行进了分析和讨论。 关键词:智能电网;智能化;信息化;节能减排; 1 智能电网的概念 随着一些国家对电网的环境影响、可靠性和服务质量的关注,电网朝着更经济、稳定、安全和灵活的方向发展,因此提出了“智能电网”的概念。智能电网是以通信网络为基础,通过传感和测量技术、电力电子技术、控制方法以及决策支持系统技术,实现电网的可靠、安全、经济、高效、环境友好和高服务质量的目标,其主要特征包括自愈、引导用户、抵御攻击、提供满足用户需求的电能质量、容许各种不同发电形式的接入、电力市场以及资产的优化高效运行。 目前,全世界智能电网的发展还处在起步阶段,没有一个共同的精确定义。对于智能电网,各个国家的定义有所不同。美国能源部在《Grid 2030》中将智能电网定义为:一个完全自动化的电力传输网络,能够监视和控制每个用户和电网节点,保证从电厂到终端用户整个输配电过程中所有节点之间的信息和电能的双向流动。中国物联网校企联盟将智能电网更具体的定义为:智能电网由:智能配电网、智能电能表、智能发电系统、新型储能等系统组成。欧洲技术论坛把智能电网定义为:一个可整合所有连接到电网用户所有行为的电力传输网络,以有效提供持续、经济和安全的电力。而国家电网中国电力科学研究院将智能电网定义为:以物理电网为基础(中国的智能电网是以特高压电网为骨干网架、各电压等级电网协调发展的坚强电网为基础),将现代先进的传感测量技术、通讯技术、信息技术、计算机技术和控制技术与物理电网高度集成而形成的新型电网。它以充

相关文档
最新文档