小电流充电管理IC

小电流充电管理IC
小电流充电管理IC

PF4054

Standalone Linear Li-lon Battery Charger With

Thermal Regulation in ThinSOT

Description

Features

● Programmable Charge Current Up to 800mA. ● No MOSFET,Sense Resistor or Blocking Diode Required. ● Constant-Current/Constant-Voltage Operation with

Thermal

Protection to Maximize Charge Rate without Risk of Overheating. ● Charges Single Cell Li-lon Batteries Directly from USB Port.

● Preset 4.2V Charge Voltage with ±1% Accuracy. ● 25uA Supply Current in Shutdown ● 2.9V Trickle Charge Threshold ● Available Without Trickle Charge ● Soft-Start Limits Inrush Current ● Available in 5-Lead SOT-23 Package Application

● Cellular Telephones. PDA’s,MP3 Players. ● Charging Docks and Cradles PF4054 is a complete constant-current & Constant voltage linear charge for single cellLithium-ion and Lithium-Polymer batteries. Its Make PF4054 ideally suited for portable Applications. Furthermore. The PF4054 is Specifically designed to work within USB Power sprcification. At the same time,PF4054 Can also be used in the standalone lithium - Ion And Lithium-polymer battery charger. No external sense resistor is needed, and No Blocking diode is required due to the Internal MOSFET architecture. Thermal

feedback Regulates the charge current to limit the dieTemperature during high power operation or High ambient temperature. The charge voltage Is fixed at 4.2V, and the charge current can be programmed externally with a single resistor .The PF4054 aut omatically thrminates the charge cycle when the charge current drops to 1/10th the programmed value after the final float voltage is reached.

When the input supply ( wall adapter or USB supply ) is removed. The PF4054 automatically enters a low current stage,dropping the battery drain current to less than 2uA The PF4054 can be put into shutdown mode. Reducing the supply current to 25 uA. Other features include charge current monitor, Undervoltage lockout, automatic recharge and a status Pin to indicate charge termination and the presence of An input voltage.

● Bluetooth Applications Other features include charge current monitor,undervoltage Lockout,automatic recharge and a status pin to indicate

Charge termination and the presenceof an input voltage

1

PF4054

Absolute Maximum Rating

Parameter Symbol Value Units

Input supply Voltage

Vcc 8 V PROG Voltage VPROG VCC+0.3

V BAT Voltage VBAT 7 V CHRG Voltage VCHRG

10 V BAT Short-Circuit Duration

Continuous

BAT Pin Current IBAT 800 mA PROG Pin Current IPROG 800 μA Maximum Junction Temperature

TJ 125 ℃ Storage Temperature

TS -65 to +125

℃ Lead Temperature (Soldering,10 sec)

300

Operating Rating

Parameter Symbol Value Units Supply Input Voltage VIN -0.3 to + 8 V Junction Temperature

TJ

-40 to +85

Electrical Characteristics

V IN =5V;T J =25℃;unless otherwise specified.

Symbol Parameter Conditions

Min Typ Max Unit VCC Input Supply Voltage

4.25 6 V ICC Input Supply Current

Charge Mode,RPROG=10K

190

μA

Standby Mode(Charge Terminated) 85 μA

Shutdown Mode(RPROG Not Connected.VCC

12 μA

VFLOAT Regulated Output (Float)Voltage 0℃≤TJ ≤85℃,IBAT=40mA 4.2 V IBAT

BAT Pin Current

RPROG=10K,Current Mode

110

mA

RPROG=2K,Current Mode 500 mA

Standby Mode,VBAT=4.2V 4 μA

Shutdown Mode(RPROG Not Connected)

±1 μA

Sleep Mode, Vcc=0V ±1 μA ITRIKL Trickle Charge urrent VBAT

Trickle Charge Threshold Voltage

RPROG=10K,VBAT Rising

2.9

V

2

Electrical Characteristics(Continued)

VIN=5V, TJ=25℃,unless otherwise specified

Symbol Parameter Conditions Min Typ Max Unit

VUV Vcc Undervoltage Lockout Threshold From Vcc Low to High 3.4 V VUVHYS Vcc Undervoltage Lockout Hysteresis

170 mV PROG Pin Rising 1.25 V VMSD

Manual Shutdown Threshold Voltage

PROG Pin Falling

1.2 V VASD Vcc-VBAT Lockout Threshold Voltage Vcc from Low to High 100 mV

Vcc from High to Low 30 mV ITERM

C/10 Termination Current Threshold

RPROG=10K

0.1

mA/mA

RPROG=2K 0.1 mA/mA VPROG PROG Pin Voltage

RPROG=10K,Current Mode 1.03 V ICHRG CHRG Pin Weak Pull-Down Current

VCHRG=5V

20

μA

VCHRG CHRG Pin Output Low Voltage ICHRG=5mA 0.35 V △VRGCHRG

Recharge Battery Threshold Voltage

VFLOAT-VRECHRG

100

mV

TLIM Thermal Protection Temperature 120 ℃ tss

Soft-Start Time

IBAT=0 to 1000V/RRPOG 100 μs tRECHARGE Recharge Comparator Filter Time VBAT High to Low

2 ms tTERM Termination Comparator Filter Time IBAT Falling Below ICHG/10 1000 μs IPROG

PROG Pin Pull-up Current

1

μA

Pin Functions

PROG(Pin 5): Charge Current Proguam,Charge Current Monitor and Shutdown Pin.The charge current is pro-grammed by connecting a 1% resistor,R PROG ,to ground.When charging in constant-current mode,this pin servos to 1V. In all modes,the voltage on this pin can be used to

measure the charge current using the folllwing formula:

I BAT = (V PROG /R PROG ) · 1000

The PROG pin can also be used to shut down the charger . Disconnecting the program resistor from ground allows a 3μA current to pull the PROG pin high.When it reaches the 1.21V shutdown threshold voltage the charger enters shutdown mode, charging stops and the input supply current drops to 25μA.This pin is also clamped to approximately 2.4V.Driving this pin to v o lt ag es b e yo n d t h e c l am p v o lt a g e wi l l d r a w CHRG(Pin): Open-Drain Charge Status Output.When the battery is charging,the CHRG pin is pulled low by an internal N-channel MOSFET. When the charge cycle is completed,a weak pull-down of approximately 20 μA is connected to the CHRG pin. Indicating an “AC present”condition.When the PF4054 detects an undervoltage lockout condition. CHRG is forced high impedance.BAT(Pin 2): Ground.

BAT(Pin 3): Charge Current Output.Provides charge Current to the battery and regulates the final float voltage To 4.2V,An internal precision resistor divider from the this Pin sets the float voltage which is disconnected in shutdown mode.

Vcc (Pin 4): Positive Input Supply Voltage. Provides Power to the charger. Vcc can range from 4.25Vt to 6.5V And should be bypassed with at least a 1μF capacitor When Vcc drops to within 30mV of the BAT pin voltage ,the PF4054 enters shutdown mode,dropping I BAT to less than 2μA.

currents as high as 1.5mA.Reconnecting R PROG to

ground will return the charger to normal operation.

3

OPERATION

Charge Termination

A charge cycle is terminated when the charge current falls to 1/10th the programmed value after the final float voltage is reached. This condition is detected by using an internal.filtered comparator to monitor the PROG pin . When the PROG pin voltage falls below 100mV 1 for longer than t TERM (typically 1ms),charging is terminated,The charge current is latched off and the PF4054 enters standby mode. Where the input supply current drops to 200μA.(Note:C/10 termination is disabled in trickle charging and thermal limiting modes).

When charging,transient loads on the BAT pin can cause the PROG pin to fall below 100mV for short periods of The PF4054 is a single cell lithium-ion battery charger Using a constant-current/constant-voltage algorithm. It can deliver up to 800mA of charge current (using a Good thermal PCB layout)with a final float voltage accuracy of ±1%.The PF4054includes an internal P-channel power MOSFET and thermal regulation circuitry. No blocking diode or external current sense resistor is required , thus , the basic charger ciruit requires only two external com-ponents.Furthermore the PF4054 is capable of operat-ing froma USB source

Normal Charge Cycle

A charge cycle begins when the voltage at the Vcc pin rises above the UVLO threshold level and a 1%program resistor is connected from the PROG pin to ground or when a battery is connected to the charge output. If the

BAT pin is less than 2.9V.the charger enters trickle charge mode.In this mode. The PF4054 supplies approximately 1/10 the progranned charge current to bring the battery volt-age up to a safe level for full current charging, (Note: The PF4054X does not include this trickle charge feature) When the BAT pin voltage rises above 2.9V,the charger enters constant-current mode,where the programmed charge current is supplied to the battery .When the BAT pin approaches the final float voltage(4.2V),the PF4054 enters constant-voltage mode and the charge current begins to decrease. When the charge current drops to 1/10 ot the programmed value,the charge cycle ends. Programming Charge Current

The charge current is programmed using a single resistor from the PROG pin to ground,The battery charge current is 1000 times the current out of the PROG pin .The program resistor and the charge current are calculated using the following equations: R PROG=1000V/ICHG I CHG=1000V/R PROG

The charge current out of the BAT pin can be determined at any time by monitoring the PROG pin voltage using

the following equation:

I BAT =V PROG /R PROG · 1000

time before the DC charge current has dropped to 1/10th the programmed value.The 1mS filter time(t TERM) On

the termination comparator ensures that transient loads

of this nature do not result in premature charge cycle termi-nation.Once the average charge current drops below 1/10th the programmed value.the PF4054 terminates the charge cycle and ceases to provide any current through the BAT pin .In this state,all loads on the BAT pin must be supplied by the battery.

The PF4054 constantly monitors the BAT pin voltage in standby mode.If this voltage drops below the 4.05V recharge threshold (B RECHRG), another charge cycle be gins and current is once again supplied to the battery.To manually restart a charge cycle when in standby mode.the the Input voltage must be removed and reapplied, or the charge must be shut down and restarted using the PROG

pin.Figure 1 shows the state diagram of a typical charge cycle.Charge Status Indicator (CHRG)

The charge status output has three different states:strong pull-down (~10 mA ),weak pull-down (~20μA)and high impedance. The strong pull-down state indicates that the PF4054 is in a charge cycle. Once the charge cycle

has terminated,the pin state is determined by undervoltage.

4

Operation

Manual Shutdown

At any point in the charge cycle.the PF4054 can be put Into shutdown mode by removing R RPOG thus floating the PROG pin .This reduces the battery drain current to less Than 2μA and the supply current to less than 50μA.A new Charge cycle can be initiated by reconnecting the program resistor.

In manual shutdown .the CHRG pin is in a weak pull-down state as long Vcc is high enough to exceed the UVLO conditions.The CHRG pin is in a high impedance state if the PF4054 is in undervoltage lockout mode : either Vcc is within 100mV of the BAT pin voltage or insufficient voltage is applied to Vcc pin.

Automatic Recharge

Lockout conditions.A weak pull-down indicates that Vcc

Meets the UVLO conditions and the PF4054 is ready to Charge.High impedance indicates that the PF4054 is in Undervoltage lockout mode:either Vccis less than 100mV above the BAT pin voltage or insufficient voltage is applied to the Vcc pin.A microprocessor can be used to distin-guish between these three states-this method is dis-cussed in the Applications Information section.Thermal Limiting

An internal thermal feedback loop reduces the programmed Charge current if the die temperature attempts to rise above a preset value of approximately 120℃.This feature protects the PF4054 from excessive Temperature and allows the user to push the limits of the power handling capability of a given circuit board without risk of damaging the PF4054.The charge current can be set according to typical (not worst-case)ambient temperature with the assurance that the charger will

automatically reduce the current in worst-case conditions ThinSOT power consid-erations are discussed frither in The Applications Informa-tion section. Undervoltage Lockout(UVLO)

An internal undervoltage lockout circuit monitors the input Voltage and keeps the charger in shutdown mode untilVcc rises above the undervoltage lockout threshold.The UVLO circuit has a built-in hysteresis of 200mV . Furthermore,to protect against reverse current in the power MOSFET.the UVLO circuit keeps the charge in shutdown mode if Vcc Falls to within 30 mV of the battery voltage. If the UVLO Comparator is tripped , the charger will not come out of Shutdown mode until Vcc rises 100 mV above the battery voltage.

Once the charge cycle is terminated,the PF4054 comtinu-ously monitors the voltage on the BAT pin using a com-

parator with a 2ms filter time(t RECHARGE ) A chare cycle restarts when the battery voltage falls below 4.05V(which

corresponds to approximately 80% to 90% battery capac-ity). This ensures that the battery is kept at or neat a fully charge condition and eliminates the need for periodic charge cycle initiations.CHRG output enters a strong pull-down state during recharge cycle.

5

APPLICATION INFORMATION

USB and Wall Adapter PowerThe PF4054 allows charging from both a wall Adapter and a USB port,Figure 7 shows an example Of how to combine wall adapter and USB Of how to combine wall adapter and USB power inputs.A P-channel MOSFET,MP1,is used to prevent back conducting Into the USB port when a wall adapter is present and a schottky Diode,D1,is used to prevent USB power loss through the 1k Pull-down resistor Typically a wall adapter can supply more current than the 500Ma-Limited USB port.Thereforean-N-channel MOSFET, MN1,and an extra 10k program resistor are used to Increase the charge current to 600mA when the wall Adapter is present.

5V WALL

TYPICAL APPLICATION

USB/Wall Adapter Power Li-lon Charger

Full Featured Single Cell Li-lon Charger

1uF

800mA Li-lon Charger with External power Dissipation

Reverse Polarity input Protection

5V WELL ADAPTER

Basic Li-lon Charger with

6

PACKAGE DESCRIPTION

7

MP3 手机USB充电器电路与说明(多图)

MP3 手机USB充电器电路与说明(多图) 图中用1欧的电阻F1起到保险丝的作用,用一个二极管D1完成整流作用。接通电源后,C1会有300V左右的直流电压,通过R2给Q1的基极提供电流,Q1的发射极有R1电流检测电阻R1,Q1基极得电后,会经过T1的(3、4)产生集电极电流,并同时在T1的(5、6)(1、2)上产生感应电压,这两个次级绝缘的圈数相同的线圈,其中T1(1、2)输出由D7整流、C5滤波后通过USB座给负载供电;其中T1(5、6)经D6整流、C2滤波后通过IC1(实为4.3V稳压管)、Q2组成取样比较电路,检测输出电压高低;其中T1(5、6)、C3、R4还组成Q1三极管的正反馈电路,让Q1工作在高频振荡,不停的给T1(3、4)开关供电。当负载变轻或者电源电压变高等任何原因导致输出电压升高时,T1(5、6)、IC1取样比较导致Q2导通,Q1基极电流减小,集电极电流减小,负载能力变小,从而导致输出电压降低;当输出电压降低后,Q2取样后又会截止,Q1的负载能力变强,输出电压又会升高;这样起到自动稳压作用。 本电路虽然元件少,但是还设计有过流过载短路保护功能。当负载过载或者短路时,Q1的集电极电流大增,而Q1的发射极电阻R1会产生较高的压降,这个过载或者短路产生的高电压会经过R3让Q2饱和导通,从而让Q1截止停止输出防止过载损坏。因此,改变R1的大小,可以改变负载能力,如果要求输出电流小,例如只需要输出5V100MA,可以将R1阻值改大。当然,如果需要输出 5V500MA的话,就需要将R1适当改小。注意:R1改小会增加烧坏Q1的可能性,如果需要大电流输出,建议更换13003、13007中大功率管。

了解一下锂电池充电IC的选择方案

随着手持设备业务的不断发展,对电池充电器的要求也不断增加。要为完成这项工作而选择正确的集成电路 (IC),我们必须权衡几个因素。在开始设计以前,我们必须考虑诸如解决方案尺寸、USB标准、充电速率和成本等因素。必须将这些因素按照重要程度依次排列,然后选择相应的充电器IC。本文中,我们将介绍不同的充电拓扑结构,并研究电池充电器IC的一些特性。此外,我们还将探讨一个应用和现有的解决方案。 锂离子电池充电周期 锂离子电池要求专门的充电周期,以实现安全充电并最大化电池使用时间。电池充电分两个阶段:恒定电流 (CC) 和恒定电压 (CV)。电池位于完全充满电压以下时,电流经过稳压进入电池。在CC模式下,电流经过稳压达到两个值之一。如果电池电压非常低,则充电电流降低至预充电电平,以适应电池并防止电池损坏。该阈值因电池化学属性而不同,一般取决于电池制造厂商。一旦电池电压升至预充电阈值以上,充电便升至快速充电电流电平。典型电池的最大建议快速充电电流为1C(C=1 小时内耗尽电池所需的电流),但该电流也取决地电池制造厂商。典型充电电流为~0.8C,目的是最大化电池使用时间。对电池充电时,电压上升。一旦电池电压升至稳压电压(一般为4.2V),充电电流逐渐减少,同时对电池电压进行稳压以防止过充电。在这种模式下,电池充电时电流逐渐减少,同时电池阻抗降低。如果电流降至预定电平(一般为快速充电电流的10%),则终止充电。我们一般不对电池浮充电,因为这样会缩短电池使用寿命。图1 以图形方式说明了典型的充电周期。 线性解决方案与开关模式解决方案对比 将适配器电压转降为电池电压并控制不同充电阶段的拓扑结构有两种:线性稳压器和电感开关。这两种拓扑结构在体积、效率、解决方案成本和电磁干扰(EMI) 辐射方面各有优缺点。我们下面介绍这两种拓扑结构的各种优点和一些折中方法。 一般来说,电感开关是获得最高效率的最佳选择。利用电阻器等检测组件,在输出端检测充电电流。充电器在CC 模式下时,电流反馈电路控制占空比。电池电压检测反馈电路控制CV 模式下的占空比。根据特性集的不同,可能会出现其他一些控制环路。我们将在后面详细讨论这些环路。电感开关电路要求开关组件、整流器、电感和输入及输出电容器。就许多应用而言,通过选择一种将开关

手机充电器原理分解和图

USB用电池充电器电路图 如图是USB用电池充电器电路。它是在5.25V/500mA最大额定功率时,使用通用串联总线(USB)以最大电流对锤离子充电的电路。电路中,LM3622为锤离子电池充电控制器。设计的充电电路使USB具有最大功率工作的能力,为了满足USB的技术指标,在正常工作情况下,最大功率工作能力从总线中取出的电流不能大于5OOmA。通过限流电阻R1将其最大充电电流设定为400mA,而剩下的100mA电流供给充电器控制电路等。在系统启动期间,LM3525电源开关使电池充电器与总线保持隔离状态,充电电流不会超过总线提供的最大电流。 在总线输出口经过适当的计算后,USB控制信号将USB电源通过LM3525与充电电路连接起来。在开关通/断工作时,LM3525具有过电流与欠电压防止功能。在设计充电电路时,应认真考虑总线电源与充电电路之间的电压降,因此,VT1和VD1要选用低电压降的器件,使输入电压较低时电路也能有效地对电池进行充电。在优选元件的情况下 LM3525输入与电池正极之目的电压降的典型值为53OmV,或对电池的充电电流大于400mA。最佳充电时间为从以最大电流对电池开始充电直到电池达到满充电电压为止。 对于4.2V锤离子电池,要求充电电路的输入电压典型值为4.7V。USB规格规定的最小输出电压为4.75V,但USB电缆和接线电阻上电压降为35OmV,因此,在最坏情况下,充电电路的输入电压低至4.4V,而在USB规格中充电电路仍然有效。要说清楚的是,要防止USB电压规格下限的系统对电池进行慢充电,或防止对满度电池充电。4.2V电池的最佳充电电压是充电电路的输入电压,其典型值为4.7V。当电路的输入电压低到4.6V以及电池电压接近满充电4.2V时,VT1和VD1的电压降使电路不能有效地提供充电电流。 在VT1和VD1的电压降仅为400mV时,电路为电池提供的充电电流不大于2OOmA。在低输入情况下,充电电流降为50%对电池恒压充电。当输人电压低到4.5V时,电池不能满充电到4.2V。在设计USB电源时,要采用低阻抗电缆和低电阻接线,使充电电路的输入电压足够高,确保不会出现慢充电或不完全充电的情况。

手机充电器原理与维修

手机通用充电器及诺基亚手机充电器原理与维修 图片: 这是一种脉宽调制型充电电路,220V交流电压经R1限流,D1~D4桥式整流,C1滤波得到300V 左右的直流电压,此电压经主绕组L1给开关管V1集电极供电,经R4给V1偏置。刚加电压时V1开始导通,L1产生感生电动势,反馈绕组L2的感生电动势经反馈回路C4、R6加到开关管V1的基极,构成正反馈,从而使V1迅速进入饱和导通状态。此时V1的发射极电流很大,电阻R2上压降很大,此电压经R3 加到控制管V2的基极,使其导通,V1基极电压降低,集电极电流减小,L2感生与前反向的负电压经C4、R6加到V1基极,使开关管V1迅速进入截止状态。就这样,开关管不断导通截止,变压器B次级绕组L3就可获得脉冲电压。改变R6、C4的值可改变脉冲宽度从而达到调节充电电流的目的。不充电时,无负载,没有电流经过R20,V6截止,变色发光二极管D8不亮。当接上负载时,绕组L3的电压经D13、D15整流,C7滤波给负载供电,R20产生左负右正的电压,使V6导通,发光管D8导通发红光,

指示开始充电,随着充电的进行,充电电流越来越小,当充满电时,流过R20的电流变小,其上压降变小,V6 导通程度降低,流过D8电流变小,发绿光,表示充满电。其常见故障为开关管因功率过载而损坏和限流电阻R1损坏。 图1为一款诺基亚手机通用充电器实绘电路。AC220V电压经D3半波整流、C1滤波后得到约+300V电压,一路经开关变压器T初级绕组L1加到开关管Q2 c极,另一路经启动电阻R3加到Q2 b极,Q2进入微导通状态,L1中产生上正下负的感应电动势,则L2中产生上负下正的感应电动势。L2中的感应电动势经R8、C2正反馈至Q2 b极,Q2迅速进入饱和状态。在Q2饱和期间,由于L1中电流近似线性增加,则L2中产生稳定的感应电动势。此电动势经R8、R6、Q2的b-e结给C2 充电,随着C2的充电,Q2 b极电压逐渐下降,当下降至某值时,Q2退出饱和状态,流过L1中的电流减小,L1、L2中感应电动势极性反转,在R8、C2的正反馈作用下,Q2迅速由饱和状态退至截止状态。这时,+300V 电压经R3、R8、L2、R16对C2反向充电,C2右端电位逐渐上升,当升

充电管理IC详细中文说明

引脚说明 (1) PWM控制器 (1) 温度限制 (2) 电池预充电 (3) 电池充电电流 (3) 电池电压稳压 (3) 充电终止与重新充电 (4) 睡眠模式 (4) 充电状态输出 (5) PG\输出 (5) CE\输入(充电使能) (5) 定时器错误恢复 (5) 输出过压保护(所有型号适用) (6) 预充电和快速放电控制 (6) 充电终止和安全定时器 (6) 电感,电容,和感应电阻选型指南 (6) 电池检测 (6) 电池检测示例 (8) BqSWITCHER 系统设计举例 (10) 应用信息 (13) 使用bq24105向Li FePO4电池充电 (14) 温度考虑 (15) PCB LAYOUT考虑 (15)

引脚说明 ◆该IC的输入电压为POWER_9V,经两个电容去耦接入IC电源输入端。 ◆电池电压感应通过BAT引脚输入。通过CE\引脚可以控制IC工作模式。 ◆CE\为低电平是,IC处于充电模式;CE\为高电平时,IC处于延迟充电或睡眠模式。 ◆CELLS接高电平表示外接双节电池。 ◆FB为输出电压模拟反馈调节的输入端。 ◆ISET1通过电阻接地可以调节快速充电的电流大小。 ◆ISET2通过电阻接地可以调节预充电和终止充电的电流大小。 ◆OUT1和OUT2为充电电流输出端,通过电感与电池连接。PG\端为低电平时表示电源正 常。 ◆PGND为电源地输入端。 ◆SNS为充电电流感应输入端。 ◆STAT1和STAT2组合表示电池的不同状态。具体状态见表1。 表1 ◆TS为温度感应输入端,通过内部阈值决定充电是否被允许来控制自身电压。通过NTC 热敏电阻和VTBS的分压来确定TS端的电压。 ◆TTC为定时器和充电终止控制端,当TTC为低电平时,充电终止。 ◆VCC为模拟器件输入。 ◆VSS为模拟地输入。 ◆VTSB为TS的内部偏置校准电压。 PWM控制器 Bq241xx提供一个有前向反馈功能来调节充电电流或电压的集成的1MHz频率的电压模式控制器。这种类型的控制器用来改善瞬态线性响应,因此简化了同时用于持续和非持续电流传输的补偿网络电路。该电压和电流回路有内部补偿以TYPE-III补偿方案——为了稳定的操作提供足够的升压相位,允许使用具有非常小的ESR的小陶瓷电容。在P WM边沿底部有0.5V 的偏压,允许该器件在10%到90%的工作周期工作。 内部PWM栅极驱动可以直接控制内部的PMOS和NMOS电源MOSFET。高边栅极电压在V CC-V CC-6v(当工作时期V CC大于6V)变化,通过给栅极增加一个标准5V电压之外的额外电压来降低转换的传输损失。低边栅极电压从6V开始摆动变化,来打开NMOS管,下拉到PGND 来关掉NMOS管。Bq241xx在高边有两个背靠背的共漏极P-MOSFET。其中一个输入P-MOSFET 用来阻止在IN电压低于BAT电压时电池放电。另一个P-MOSFET作为控制FET的开关,免去引导程序电容的使用。 每个周期的电流限制通过高边感应FET来感应。阈值设置为3.6A的漏电流。低边FET同样

手机充电器电路原理图分析

专门找了几个例子,让大家看看。自己也一边学习。 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。 不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。 变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,

IC卡自助充电管理系统

IC卡自助充电管理系统 一.功能简介 系统采用预付费电表管理,将每个充电设备都经过一个预付费电表供电管理,可根据实际数量,将十几甚至几十个预付费电表集中安装在一个表箱内,可以一个车棚放置几个表箱,一台智能IC 卡付费机管理一个表箱内的电表,以485方式相连。当持卡者需要进行充电操作时,选择一个充电插座,在管理该插座的付费机上刷IC卡,选择插座编号,可以选择计次或者扣费方式,用于支付充电费用。付费机收到扣费信息后开启对应电表供电,电动车开始充电。当付费的相应电量使用完毕,则电表自动断开电源的供电。单次充电的电量和单价均可以按软件设置。 而付费机的数据信息,可以利用TCP/IP方式实时上传,也可以在需要的情况下利用GPRS方式远程上传。而挂失信息同样可以利用TCP/IP方式或GPRS方式下传。 页脚内容1

二. 三.设备参数 四.预算清单 郑州IC卡电动自行车自助充电站预算表 序名称 型号单数金额备 页脚内容2

页脚内容3

第一章概述 1.概述: 物业管理公司或管理人员为了能对辖区内各种电动车充电进行更有效、更安全的管理,有效的控制滥用电源、不规范用电、浪费电等现象,可以通过采用对电源的合理控制实现这种功能需求。SD3030是专门用于控制充电电源的控制器系统。通过采用SD3030对电源的控制,所有使用充电电源的持卡人,都必须先经过系统管理员授权。使用电源时,先刷一下IC卡,在按一下所在充电插座的按钮即可。未经授权的IC卡,无法进行取电。控制器不管是脱机运行还是联机控制,都可记录大量的交易数据,使得充电的所有数据记录都有据可寻。 通过IC卡管理充电电源,可将无卡人员滥用电源外;同时,又起到了省电省空耗的作用;因为充电电源具有时间限制,这样减少了出现电池充电饱和之后继续充电的情况,延长了电池使用寿命;多个电源点在分布广的情况下,容易发生起火等不安全因素,通过IC卡管理的充电电源,平时插座是没有电压的,有效的加强了传统安全管理系统中管理的薄弱的一面;提高了物业的安全等级。 本系统具有IC卡消费功能,可按次、按日期、按消费金额进行卡管理。 页脚内容4

手机万能充电器电路原理与维修

由于各型号手机所附带的充电器插口不同,以造成各手机充电器之间不能通用。当用户手机充电器损坏或丢失后,无法修复或购不到同型号充电器,使手机无法使用。万能充电器厂家看到这样的商机,就开发生产出手机万能充电器,该充电器由于其体积小、携带方便,操作简单,价格便宜,适合机型多,深受用户的欢迎。下面以深圳亚力通实业有限公司生产的四海通S538型万能充电器为例,介绍其工作原理和维修方法。该充电器在市场上占有率较高,又没有随机附带电路图,给维修带来一定的难度,本文根据实物测绘出其工作原理图,见附图,供维修时参考。 四海通S538型万能充电器在外观设计上比较独特,面板上采用透明塑料制作的半椭圆形夹子,透明塑料面板上固定有两个距离可调节的不锈钢簧片作为充电电极。面板的尾部并排有1个测试开关(极性转换开关)和4个状态指示灯,用户根据需要可以调节充电器电极距离和输出电压极性,并通过状态指示灯可方便看出电池的充电情况。 一、工作原理 该充电器电路主要由振荡电路、充电电路、稳压保护电路等组成,其输入电压AC220V、50/60Hz、40mA,输出电压DC4.2V、输出电流在150mA~180mA。在充电之前,先接上待充电池,看充电器面板上的测试指示灯是否亮?若亮,表示极性正确,可以接通电源充电;否则,说明电池的极性和充电器输出电压的极性是相反的,这时需要按一下极性转换开关AN1(测试键)才行。具体电路原理如下。 1.振荡电路 该电路主要由三极管VT2及开关变压器T1等组成。接通电源后,交流220V经二极管VD2半波整流,形成100V 左右的直流电压。该电压经开关变压器T的卜1初级绕组加到了三极管VT2的c极,同时该电压经启动电阻R4为VT2的b极提供一个正向偏置电压,使VT2导通。此时,三极管VT2和开关变压器T1组成的间歇振荡电路开始工作,开关变压器T的1-1初级绕组中有电流通过。由于正反馈作用,在变压器T的1-2绕组感应的电压通过反馈电阻R1和电容C1加到VT2的b极,使三极管VT2的b极导通电流加大,迅速进人饱和区。随着电容C1两端电压不断升高,VT1的b极电压逐渐降低,使三极管VT2逐渐退出饱和区,其集电极电流开始减少,变压器T 的1-1初级绕组中产生的磁通量也开始减少。在变压器T的1-2绕组感应的负反馈电压,使VT2迅速截止,完成一个振荡周期。在VT2进入截止期间,变压器T的1-3绕组就感应出一个5.5V左右的交流电压,作为后级的充 电电压。 2.充电电路 该电路主要由一块软塑封集成块IC1(YLT539)和三极管VT3等组成。从变压器T的1-3绕组感应出的交流电压5.5V经二极管VD3整流、电容C3滤波后,输出一个直流8.5V左右电压(空载时),该电压一部分加到三极管VT3的e极;另一部分送到软塑封集成块IC1(YLT539)的1脚,为其提供工作电源。集成块IC1有了工作电源后开始启动工作,在其8脚输出低电平充电脉冲,使三极管VT3导通,直流8.5V电压开始向电池E充电。 当待充电池E电压低于4.2V时,该电压经取样电阻R11、R12分压后,加到集成块IC1的6脚上,该电压低于集成块IC1内部参考电压越多,集成块IC1的8脚输出的电平越低,三极管VT3的b极电位也越低,其导通量越大,直流电压(8.5V)经极性转换开关S1向电池E快速充电。由于集成块IC1的2、3、4脚和电容C4共同组成振荡谐振电路,其2脚输出的振荡脉冲经电阻R16送至充电指示灯LED1(绿)的正极,其负极接到集成块IC1的8脚。在电池刚接人电路时,集成块IC1的8脚输出的电平越低,充电指示灯LED1闪烁发光强。随着充电时间延长,电池所充的电压慢慢升高,集成块IC1的8脚输出电压慢慢升高,充电指示灯LED1闪烁发光逐渐变弱。 当电池E慢慢充到4.2V左右时,集成块IC1的6脚电位也达到其内部的参考电压1.8V。此时,集成块IC1内部电路动作,使其8脚电压输出高电平,三极管VT3截止,充电指示灯LED1不再闪烁发光而熄灭,充满指示 灯LED2(绿)由灭变亮。 3.稳压保护电路 该电路主要由三极管VT1、稳压二极管VDZ1等组成。

模电课程设计—手机充电器

郑州科技学院 《模拟电子技术》课程设计 题目手机充电器 学生姓名 x x x 专业班级电气工程及其自动化班 学号2012470xx 院(系)电气工程学院 指导教师 xx 完成时间 2014年月日

前言 随着科学技术的发展,手机逐渐成为人们交流的主要工具,在人类社会中扮演着重要的角色。但是也有不利的一方面,消费者每当更换一个手机就必须更换原配充电器,或者是原配充电器遗失或损坏后找不到与之相匹配的充电器,所以必须抛弃手机或者寻找原配充电器,但是花很多的钱。手机配件的不完善逐渐成为国产手机被消费者厌恶最多的问题之一,致使国内手机的销量下降。 在2003年,深圳市海陆通电子有限公司研发推出了历史上第一款通用型手机充电器——万能充,让海陆通公司始料不及的是,这个看似简单但外观独特的充电器却获得市场的热销。“第一次推出的几十万批量试单,三天内全部售完,完全出乎在我们的预料。”没有想不到只有做不到,至此万能充电器逐渐成为人们充手机的主要工具,方便快捷。 以前一个手机要对一个原装充电器,因为手机的更新换代速度很快,有的人半年就换一台手机,一个老百姓平均使用的充电器十个八个,对社会的有限资源是极大的浪费。但是万能充发明出来后,一个充电器基本可以满足全家人使用。所以说对节约社会资源,减少资源浪费做出了一定的贡献,在这个行业来说也是一个创新性的里程碑式的产品,有效地推动了充电器标准化的进程。一个小小充电器不仅改变了海陆通公司的命运,也改变了数以千万中国手机用户换手机一定要换充电器的束缚,给手机用户带来了极大的便利。

目录 1设计的目的 (1) 2设计的任务与要求 (1) 2.1设计的任务 (1) 2.2设计的要求 (1) 3设计方案与论证 (1) 3.1 设计的方案 (1) 3.2万能充的原理方框图 (2) 4设计原理及功能说明 (3) 4.1元器件的选用原理 (3) 4.2总体电路图 (5) 5单元电路 (7) 5.1变压器 (7) 5.2二极管 (8) 6硬件的安装与调试 (9) 6.1硬件的安装 (9) 6.2硬件的调试 (9) 7总结 (10) 参考文献 (10) 附录1:总体电路原理图 (11) 附录2:元器件清单 (11)

充电管理芯片BQ2057及其应用

先进的锂电池线性充电管理芯片BQ2057及其应用 2007年03月07日星期三 11:09 摘要:本文介绍美国TI公司生产的先进锂电池充电管理芯片BQ2057,利用BQ2057系列芯片及简单外围电路可设计低成本的单/双节锂电池充电器,非常适用于便携式电子仪器的紧凑设计。本文将在介绍BQ2057芯片的特点、功能的基础上,给出典型充电电路的设计方法及应用该充电芯片设计便携式仪器的体会。 关键词:锂电池充电器 BQ2057 1.引言 BQ2057系列是美国TI公司生产的先进锂电池充电管理芯片,BQ2057系列芯片适合单节(4.1V或4.2V)或双节(8.2V或8.4V)锂离子(Li-Ion)和锂聚合物 (Li-Pol)电池的充电需要,同时根据不同的应用提供了MSOP、TSSOP和SOIC的可选封装形式,利用该芯片设计的充电器外围电路及其简单,非常适合便携式电子产品的紧凑设计需要。BQ2057可以动态补偿锂电池组的内阻以减少充电时间,带有可选的电池温度监测,利用电池组温度传感器连续检测电池温度,当电池温度超出设定范围时BQ2057关闭对电池充电。内部集成的恒压恒流器带有高/低边电流感测和可编程充电电流,充电状态识别可由输出的LED指示灯或与主控器接口实现,具有自动重新充电、最小电流终止充电、低功耗睡眠等特性。 2.功能及特性 2.1 器件封装及型号选择 BQ2057系列充电芯片为满足设计需要,提供了多种可选封装及型号,其封装形式如图2-1所示,有MSOP、TSSOP和SOIC三种封装形式。其型号如表2-1所示,有BQ2057、BQ2057C、BQ2057T和BQ2057W四种信号,分别适合4.1V、4.2V、8.2V和8.4V的充电需要。

动力电池 BMS IC介绍

BMS IC 方案介绍

动力电池/储能电池BMS 芯片主 要 方案 ◆ADI ◆ATMEL ◆Infineon ◆Intersil ◆Linear ◆Maxim ◆O2 ◆TI

ADI BMS Solution ?Voltage measurement device-monitors and balances the cells(AD7280)?Current measurement device-monitors the cell stack’s current(ADuC703x or AD821x) ?Isolator-brings the measurement signals across the high-voltage barrier to the battery management unit(ADuM140x or ADuM540x) ?Safety monitor-enables creation of a fail-safe circuit and safe environment to the user(AD8280) ?Battery management unit–controls and manages battery functions to optimize operation(Blackfin ADSP-50x) 注:ad7280尚未推向市场,单颗芯片可以管理6个电芯 ad8280为电压阈值监控芯片,最多可检测6个电池电压和2个温度

ATMEL BMS Solution 6个cell,最多可级联16 颗芯片。配合外围电路可 实现主动式或被动式电池 均衡。 ?ATA6871每颗芯片可监测4- 6个cell,最多可级联16颗 芯片。 ?微控制器检测电池组电压, 电流等,管理相关mos及 通讯指示功能。

手机万能充电器电路原理与维修

手机万能充电器电路原 理与维修 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

手机万能充电器电路原理与维修 由于各型号手机所附带的充电器插口不同,以造成各手机充电器之间不能通用。当用户手机充电器损坏或丢失后,无法修复或购不到同型号充电器,使手机无法使用。万能充电器厂家看到这样的商机,就开发生产出手机万能充电器,该充电器由于其体积小、携带方便,操作简单,价格便宜,适合机型多,深受用户的欢迎。下面以深圳亚力通实业有限公司生产的四海通S538型万能充电器为例,介绍其工作原理和维修方法。该充电器在市场上占有率较高,又没有随机附带电路图,给维修带来一定的难度,本文根据实物测绘出其工作原理图,见附图,供维 修时参考。 四海通S538型万能充电器在外观设计上比较独特,面板上采用透明塑料制作的半椭圆形夹子,透明塑料面板上固定有两个距离可调节的不锈钢簧片作为充电电极。面板的尾部并排有1个测试开关(极性转换开关)和4个状态指示灯,用户根据需要可以调节充电器电极距离和输出电压极性,并通过状态指示灯可方便看出电池的充电情况。 一、工作原理 该充电器电路主要由振荡电路、充电电路、稳压保护电路等组成,其输入电压AC220V、50/60Hz、40mA,输出电压DC4.2V、输出电流在150mA~180mA。在充电之前,先接上待充电池,看充电器面板上的测试指示灯是否亮若亮,表示极性正确,可以接通电源充电;否则,说明电池的极性和充电器输出电压的极性是相反的,这时需要按一下极性转换开关AN1(测试键) 才行。具体电路原理如下。 1.振荡电路 该电路主要由三极管VT2及开关变压器T1等组成。接通电源后,交流220V经二极管VD2半波整流,形成100V左右的直流电压。该电压经开关变压器T的1-1初级绕组加到了三极管VT2的c极,同时该电压经启动电阻R4为VT2的b极提供一个正向偏置电压,使VT2导通。此时,三极管VT2和开关变压器T1组成的间歇振荡电路开始工作,开关变压器T的1-1初级绕组中有电流通过。由于正反馈作用,在变压器T的1-2绕组感应的电压通过反馈电阻R1和电容C1加到VT2的b极,使三极管VT2的b极导通电流加大,迅速进人饱和区。随着电容C1两端电压不断升高,VT1的b极电压逐渐降低,使三极管VT2逐渐退出饱和区,其集电极电流开始减少,变压器T的1-1初级绕组中产生的磁通量也开始减少。在变压器T的1-2绕组感应的负反馈电压,使VT2迅速截止,完成一个振荡周期。在VT2进入截止期间,变压器T的1-3绕组就感应出一个5.5V左右的交流电压,作为后级的充电电压。 2.充电电路

锂电池线性充电管理芯片LTC4065及其应用

锂电池线性充电管理芯片LTC4065及其应用 摘要锂电池具有体积小、能量密度高、无记忆效应、循环寿命高、高电压电池和自放电率低等优点,近年来已经成为微型移动终端设备的首选电源。本文介绍了基于LTC4065芯片的线性充电管理方案,仅需要非常少的外围元件配合,就可以实现低成本、超小尺寸的单节锂电池充电管理。 关键词锂电池充电管理LTC4065 SG2003 随着移动计算技术和无线通信技术的发展,微型移动终端设备在移动数据采集、传输、处理及个人信息服务等领域得到越来越多的应用。锂电池因其体积小、能量密度高、无记忆效应、循环寿命高、高电压电池和自放电率低等优点,近年来已经成为微型移动终端设备的首选电源。锂电池的特性以及应用环境的需求,对微型移动终端设备充电方案的设计提出了更高的要求。因此在充电方案的设计中需要综合考虑成本、体积、噪声、效率等因素。 LTC4065是一款用于单节锂电池的完整恒定电流/恒定电压线性充电管理芯片,可提供高达750 mA且准确度为5%的可设置的充电电流,并支持直接使用USB端口对单节锂电池进行充电。同时其热反馈功能可调节充电电流,以便在大功率工作或高环境温度条件下对芯片温度加以限制,确保安全工作。由于采用了内部MOSFET架构,因此无需使用外部检测电阻器或隔离二极管。很少的外部元件数目加上其2 mm×2 mm DFN封装,使得LTC4065尤其适合无线PDA、蜂窝电话、无线传感器终端等应用。功能齐全的LTC4065还包括自动再充电、低电池电量充电调节、软启动等丰富功能。 1 LTC4065的引脚功能 LTC4065采用了热处理能力较强的6引脚小外形封装(DFN),且实现产品无铅化,底部采用裸露衬垫,直接焊接至PCB以实现电接触和额定散热性能。引脚排列如图1所示。 各引脚功能如下: 引脚1,GND,接地端。 引脚2,CHRG,漏极开路充电状态输出。充电状态指示引脚具有三种状态:下拉、2 Hz 脉动和高阻抗状态。该输出可以被用作一个逻辑接口或一个LED驱动器。对电池进行充电时,有一个内部N沟道MOSFET将GHRG引脚拉至低电平。当充电电流降至全标度电流的10%时,CHRG引脚被强制为高阻抗状态。如果电池电压处于2.9 V以下的持续时间达到充电时间的1/4,则认为电池失效,而且CHRG引脚将以2 Hz的频率脉动。 引脚3,BA T,充电电流输出。该引脚向电池供应充电电流,并将最终浮动电压调节至4.2 V。该引脚上的一个内部精确电阻分压器负责设定此浮动电压,并在停机模式时断接。 引脚4,VCC,正输入电源。该引脚向充电器供电。VCC的变化范围是3.75~5.5 V。该引脚应通过一个最小1μF的电容器进行旁路。当VCC处于BA T引脚电压的32 mV以内时,LTC4065进入停机模式,从而使IBA T降至约1μA。 引脚5,EN,使能输入引脚。把该引脚拉至手动停机门限(一般为O.82 V)以上,将把LTC4065置于停机模式。在停机模式中,LTC4065的电源电流低于20μA。使能为缺省状态,但不用时应将该引脚连至GND。 引脚6,PROG,充电电流设置和充电电流监视引脚。充电电流是通过连接一个精度为1%的接地电阻器RPROG来设置的。 2 工作原理 LTC4065主要是为实现对单节电池充电而设计的线性电池充电管理芯片。该芯片利用其内部功率MOSFET对电池进行恒流和恒压充电。充电电流可利用外部电阻编程设定,最大

手机充电电路

手机充电电路因不同的机型,芯片组,不同的设计理念其实际电路有所 不同,比如: 1.MT,展讯等杂牌机的充电电路不算复杂,基本上在电路板上都能找到相应的元器件。如图(一)所示 ffl (— 5 MT系列充电莹元 2.诺基亚手机的充电电路看起来最容易,外围电路设计得相当简单,复 杂的充电电路基本上都已经集成到电源中。外面只能看到保护和限流部 分了。如图(二)所示

图(二J N7610充电单元 3.摩托罗拉的充电电路历来则是最复杂的,外围充电电路的元器件有几十个,故障点相当多,维修起来相比很罗嗦,不过也有一定的思路可循。如图(三)所示 图(三〉V丑充电单元 虽然充电电路在具体维修时分量不是很重,但涉及漏电,不开机时还是要修 的。同时也是因为一直以来单独介绍这方面的文章很少,维 修师傅和学员又很需要掌握这方面的知识。基于此,我们有必要根据维修经验,以及

掌握的原理知识来分析充电电路的原理,维修思路。因为它们的工作原理基本一致,为了大家都能容易理解,我们就以杂牌机MT 系列为主来研究,相信大家对其它机型也会举一反三的。 一、手机充电部分组成,它包括充电电路及其保护电路两大部分: (一)充电基本部分: 1.充电检测部分:检测充电器是否插入手机,告知CPU充电器已经插入,可以充电了,该电路出问题会出现充电时无反应等。 2.充电控制部分:控制外电向手机充电或不充电,告知电源和充电模块电池已经低电,准备受控,快充还是慢充,该电路出问题会造成不充电,充不满电,过充电,始终充电的现象。 3.电量检测部分:检测充电电量的多少,当充满电后,向CPU发出信号,告知已充满 电量,否则该电路出问题会出现始终充电,或显示充电但充不进去电的现象。 二)充电保护部分: 1. 过压保护部分:过压保护一般是当充电时候交流端电压的不稳定,防止损毁电源

手机充电器电路原理和检修方法

手机充电器电路原理和检修方法 ?一、电路原理 ?在早期的手机通用充电器电路设计时,由于考虑到锂电池与镍氢电池充电特点的不同(锂电池充电电压为4.2V-4.4V,镍氢电池充电电压为4.3V-4.5V,且在给镍氢电池充电前,应先放电,以防止出现记忆效应)因此充电器电路比较复杂,一般由开关电源、基准电压、充电控制、放电控制和充电指示等电路组成,且基准电压、充电指示及充、放电控制电路多由运算放大器控制。近年来,由于绝大多数手机采用锂电池,加之出于制造成本考虑,通用型手机充电器的电路已非常简单,实为一简单的自激式开关电源电路。图1为一款诺基亚手机通用充电器实绘电路。AC220V电压经D3半波整流、C1滤波后得到约+300V电压,一路经开关变压器T初级绕组L1加到开关管Q2 c极,另一路经启动电阻R3加到Q2 b极,Q2进入微导通状态,L1中产生上正下负的感应电动势,则L2中产生上负下正的感应电动势。L2中的感应电动势经R8、C2正反馈至Q2 b极,Q2迅速进入饱和状态。 在Q2饱和期间,由于L1中电流近似线性增加,则L2中产生稳定的感应电动势。 此电动势经R8、R6、Q2的b-e结给C2充电,随着C2的充电,Q2 b极电压逐渐下降,当下降至某值时,Q2退出饱和状态,流过L1中的电流减小,L1、L2中感应电动势极性反转,在R8、C2的正反馈作用下,Q2迅速由饱和状态退至截止状态。 这时,+300V 电压经R3、R8、L2、R16对C2反向充电,C2右端电位逐渐上升,当升至一定值时,在R3的作用下,Q2再次导通,重复上述过程,如此周而复始,形成

自激振荡。在Q2导通期间,L3中的感应电动势极性为上负下正,D7截止;在Q2截止期间,L3中的感应电动势极性为上正下负,D7导通,向外供电。图1中,VD1、Q1等元件组成稳压电压。若输出电压过高,则L2绕组的感应电压也将升高,D1整流、C4滤波所得电压升高。由于VD1两端始终保持5.6V的稳压值,则Q1 b 极电压升高,Q1导通程序加深,即对Q2 b极电流的分流作用增强,Q2提前截止,输出电压下降若输出电压降低,其稳压控制过程与上述相反。另外,R6、R4、Q1组成过流保护电路。若流过Q2的电流过大时,R6上的压降增加,Q1导通,Q2截止,以防止Q2过流损坏。 ?二、常见故障检修 ?在该类充电器中,初级电路故障率较高,其常见故障现象为:次级无输出,R1烧焦。从实修情况看,R1烧焦、开路常系Q2击穿所致,并伴有R6开路损坏。

一款锂电池充电管理芯片的研究与设计

一款锂电池充电管理芯片的研究与设计 林超 【摘要】:锂离子电池是目前便携式电子产品中使用最为广泛的可充电电池。而且随着电池容量的不断提高,锂离子电池将成为21世纪电动汽车的主要动力电源之一,并将在人造卫星、航空航天和储能方面得到应用。由于锂离子电池本身电学特性的原因,几乎每一块锂离子电池都需要一个充电管理芯片来提供充放电保护以延长其使用寿命。本文设计并实现一款成本较低、应用广泛,性能优良的锂电池充电管理芯片。采用全定制设计思想,完成了从底层电路开始到整个芯片电路的正向设计,实现了过放电保护、过充电保护、短路保护、过温保护以及涓流充电、恒流充电、恒压充电等控制功能。芯片内部用来驱动充电晶体管的MOS管耐压高达30V以上,在不外加扩展电路的情况下,可设计成多节串联电池的充电电路。低压线性稳压器集成在芯片内部,提高了集成度,使芯片具有较小的面积,降低了成本。芯片的外围电路既可以设计成线性控制也可采用PFM控制,应用电路简单。 此外,改变芯片应用电路的外围电阻就可以调节芯片的恒流充电电流、预充电(涓流充电)截止电压、恒压充电电压和电池充满判断电流。这使得芯片具有很强的适用性,能够应用在很多不同的场合。芯片采用CSMC0.5um DPTM Mixed Signal工艺,使用Cadence工具完成电路设计、仿真、版图设计和验证。仿真结果表明,在电池温度端检测电压大于4.51 V时,充电终止,表明此时电池没有接入;当电池温度检测端电压大于0.05V且小于0.5V 时,充电电流为24mV/Rs;当电池温度检测端电压大于0.5V且小于4.51V时,芯片系统正常工作,此时涓流充电电流为24mv/Rs,预充电结束判断电压为0.61V,恒流充电电流为240mv/Rs,恒压充电判断电压为1.21V,充饱判断电流为24mV/Rs,这些参数均符合设计指标,并且电池充电曲线也符合设计预期。仿真成功后进行版图设计和验证,最终导出GDS文件去foundry流片。 【关键词】:锂电池锂电池充电管理芯片三阶段充电法锂电池充放电保护过温保护【学位授予单位】:西安电子科技大学 【学位级别】:硕士 【学位授予年份】:2012 【分类号】:TM912 【目录】: ?摘要3-4 ?ABSTRACT4-8 ?第一章绪论8-14 ? 1.1 课题研究背景及意义8-10 ? 1.2 锂电池充电管理芯片的研究现状及发展趋势10-11 ? 1.3 本文的主要工作及内容安排11-14 ?第二章锂电池充电管理芯片设计基础14-24 ? 2.1 锂电池工作原理14-15 ? 2.2 锂电池的电学性能及其充电保护要求15-17

手机充电器电路原理图及充电器安全生产

手机充电器电路原理图及充电器的安全标准 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。 不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。 变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。 而下方的1KΩ电阻跟串联的2700pF电容,则是正反馈支路,从取样绕组中取出感应电压,加到开关管的基极上,以维持振荡。右边的次级绕组就没有太多好说的了,经二极管RF93整流,220uF电容滤波后输出6V的电压。没找到二极管RF93的资料,估计是一个快速回复管,例如肖特基二极管等,因为开关电源的工作频率较高,所以需要工作频率的二极管。这里可以用常见的1N5816、1N5817等肖特基二极管代替。 同样因为频率高的原因,变压器也必须使用高频开关变压器,铁心一般为高频铁氧体磁芯,具有高的电阻率,以减小涡流。 1 移动通信手持机锂电池的安全要求和试验方法 1.1 一般要求 本标准对电池的电路和结构设计提出了一些建议,希望生产厂家在电池的设计环节能充分考虑到电池的安全性。 1.1.1 绝缘与配线 常见的电池外壳都是非金属的,但有的电池也采用金属外壳,后种情况下电池的电极终端与电池的金属外壳之间的绝缘电阻在500V直流电压下测量应大于5M&O1527;,除非电池的电极终端与电池的金属外壳有连通。 手机电池并非电池芯的简单组合,电池芯之外还有保护电路和控制电路,其内部配线及绝缘应充分满足预计的最大电流、电压和温度的要求,配线的排布应保证端子之间有足够的间隙和绝缘穿透距离,内部连接的整体性能应充分满足可能发生误操作时的安全要求。

手机充电器电路图讲解(DOC)

手机充电器电路图讲解 时间:2012-12-18 来源:作者: 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。 不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。 变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容

滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关 13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能 量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。 而下方的1KΩ电阻跟串联的2700pF电容,则是正反馈支路,从取样绕组中取出感应电压,加到开关管的基极上,以维持振荡。右边的次级绕组就没有太多好说的了,经二极管RF93整流,220uF电容滤波后输出6V的电压。没找到二极管RF93 的资料,估计是一个快速回复管,例如肖特基二极管等,因为开关电源的工作频率较高,所以需要工作频率的二极管。这里可以用常见的1N5816、1N5817等肖特基二极管代替。 同样因为频率高的原因,变压器也必须使用高频开关变压器,铁心一般为高频铁氧体磁芯,具有高的电阻率,以减小涡流。 霓虹灯灯管要求很高的启动电压,需用一个漏磁变压器作启动和整流用。漏磁变压器的空载二次电压不小于15kV、容量为450V·A、电流为24mA、短路电流为30mA。这样的漏磁变压器能点亮管径为12mm、展开长度约为12m的灯管。霓虹灯控制电路:

相关文档
最新文档