大肠杆菌基因工程
将胰岛素基因导入大肠杆菌的方法

将胰岛素基因导入大肠杆菌的方法
一、简介
将胰岛素基因导入大肠杆菌的方法,是利用大肠杆菌的遗传过程,将外源性由胰岛素基因组成的染色体或基因组质粒来构建载体后,将其导入大肠杆菌,使生物分泌胰岛素的过程。
它是利用基因工程的技术来实现的,可以用来生产胰岛素,为治疗糖尿病的患者提供帮助。
二、大肠杆菌遗传实验步骤
1、设计质粒
将胰岛素基因组装成质粒,即将胰岛素基因插入质粒的外源性染色体或基因组质粒中。
2、构建表达载体
将设计好的质粒与载体构建新的表达载体,将质粒与载体复合,形成新的表达载体,使其可以被大肠杆菌承载。
3、大肠杆菌转化
将构建好的表达载体,接种到培养基中,经过抗性筛选以及合成抗性标记蛋白的加入,最终使大肠杆菌完成转化。
4、检测
经过转录、翻译和表达等生物学过程,可以检测分泌的胰岛素是否符合相应的标准。
三、优缺点
优点:
1、能够快速有效地生产胰岛素。
2、能够节省成本。
3、大肠杆菌的生产环境更稳定,可以多次进行实验,易于操作。
缺点:
1、大肠杆菌不能进行细胞内表达,导致生产胰岛素的效率较低。
2、大肠杆菌不能自发产生胰岛素,而只能通过外源性表达。
3、一旦获得的细胞出现变异,可能会影响胰岛素的表达效率。
真核基因在大肠杆菌中表达

增强子:特殊的序列元件,能显著增强外源 基因的表达效率。
翻译终止子:必须存在终止密码子。
✓ 构建表达载体时通常装上全部的三个终止密码子 (UAA,UGA,UAG),以阻止核糖体的跳跃现象。
✓ 大肠杆菌最偏爱的密码子:UAA ✓ 当为四联核苷酸UAAU时,终止效率进一步增强。
真核基因在大肠杆菌中表达
翻译起始序列:决定mRNA翻译起始效率。
未鉴定出其保守结构,只能采取一些方法降 低mRNA 5’-末端二级结构的形成,增加RBS中A、 T含量,碱基定点突变等。
真核基因在大肠杆菌中表达
真核基因在大肠杆菌中表达
真核基因在大肠杆菌中表达
真核基因在大肠杆菌中表达
真核基因在大肠杆菌中表达
真核基因在大肠杆菌中表达
目前常用的表达系统
细菌(大肠杆菌)、酵母、昆虫细胞、植物 和哺乳动物细胞等
真核基因在大肠杆菌中表达
大肠杆菌表达系统的优越性
➢ 背景清楚,特别是对其基因表达调控的分子机 理研究的比较深入。
➢ 安全(被FDA批准为安全的基因工程受体生物), 且有多种不同的菌株和质粒载体。
➢ 已有许多真核基因在大肠杆菌中实现高效表达。 ➢ 培养方便、操作简单、成本低廉,因此易于进
物使外源基因获得表达,如IPTG、温度等。
真核基因在大肠杆菌中表达
转录终止子(TT)
✓ 上游启动子会抑制下游启动子 的转录功能(启动子封堵作用), 因此需要在克隆基因编码区的 3’-末端接上一个有效的转录终 止子。
✓ 转录终止子能增强mRNA分子 的稳定性,从而提高蛋白质产 物的水平。
真核基因在大肠杆菌中表达
真核基因在大肠杆菌中的表达
真核基因在大肠杆菌中表达
内容提纲
工程菌的知识

工程菌的知识基因工程大肠杆菌发酵的研究摘要:基因工程菌的发酵工艺研究在生物高技术产业化的发展中具有重要的意义。
研究结果表明,每10L发酵液可得1~2kg湿菌体,发酵时间从一般的24~30h缩短到6~8h,5L、15L、150L发酵罐都可得重复性的结果。
这项发酵工艺研究不仅适用于E.coli各种不同类型的表达启动子的工程菌,也适用于野生菌株疫苗等的生产,将对我国基因工程产业化起重要作用。
关键词基因工程菌,高密度发酵,人干扰素α22b ,鲑鱼降钙素,鱼生长激素, K88K99 基因工程疫苗作者:巫爱珍. 孙玉昆.刊名:生物工程学报讨论:含PL 启动子的E. coli 工程菌的表达及温度敏感株活菌疫苗的生产。
要求细菌在较低的温度(30 ℃) 发酵增殖,在一定时间内提高菌体密度,然后迅速提高温度诱导目的产物的表达。
这类菌表达产物的表达量取决于二个因素:一是在30 ℃发酵过程中尽可能提高菌体密度,二是快速升温诱导,要同时解决这二个问题是较困难的,目前不少基因工程研究室或生产厂对于这类菌的发酵均遇到上述同类的问题,即菌体密度不高和表达量低,他们为了得到足量菌体只好采用扩大发酵体积,显然不是良策,因为含PL 启动子的工程菌在发酵过程中发酵体积越大(500~1000L) ,其表达效率愈低,并大大增加了抽提分离表达产物的工作量、设备投资、运转费及污水处理量。
而本文报道的高密度发酵技术能同时解决以上的问题,发酵时间短(约8h) ,菌体密度及表达效率高,生产车间小型化,能节省大量后处理的设备投资、人力、能源、废物废水处理量少,符合发展现代化生产的要求。
对于不需温度诱导表达,在30 ℃发酵的工程菌或野生菌应用我们的工艺技术发酵,当发酵持续6 小时,菌体仍在直线增殖的情况下,如果延长发酵时间,菌体将继续增加。
E. coli 的不同工程菌或野生菌具有不同的特性,在发酵过程中我们随之对发酵条件作了相应的改变,均取得高密度的发酵结果。
产L_乳酸的大肠杆菌基因工程菌的构建

α文章编号:1008-3464(2007)增-0016-06产L 2乳酸的大肠杆菌基因工程菌的构建陈五九1,王成华1,王利英1,韦宇拓1,2,黄日波1,2(1 广西大学生命科学与技术学院,广西南宁530005;2 广西亚热带生物资源保护利用重点实验室,广西南宁530004)摘要:含有质粒pKD 46的菌株BW 25113,在L 2阿拉伯糖诱导后,表达Κ噬菌体的3个重组蛋白Exo 、Bet和Gam ,宿主菌就具有了同源重组的能力。
利用Κ噬菌体的R ed 重组系统构建了D 2(+)2乳酸脱氢酶基因(ld hA )、乙醇脱氢酶基因(ad hE )双突变的大肠杆菌BW 25113C 工程菌株和乙酸激酶基因(ackA )单突变的大肠杆菌BW 25113工程菌株。
将表达牛链球菌L 2乳酸脱氢酶基因(ld hL )的pSE 380质粒转化到BW 25113C菌株中发酵培养35h ,用HL PC 检测产物,尚未发现L 2乳酸。
关键词:R ed 重组系统,L 2乳酸脱氢酶,L 2乳酸中图分类号:Q 78 文献标识码:ACon struction of eng i neered E scherich ia coli produc i ng L -lacta teCH EN W u 2jiu 1,W AN G Cheng 2hua 1,W AN G L i 2ying 1,W E I Yu 2tuo 1,2,HUAN G R i 2bo1,2(Institute of Enzym e and Ferm entation ,Co llege of L ife Science and Techno logy ,GuangxiU niversity ,N anning 530005,China )Abstract :P las m id p KD 46can exp ress th ree p ro tein s :Gam ,B et and Exo 1BW 25113w ith pKD 46has the functi on of recom b inati on w hen induced by L 2arab ino se 1T he tw o ld hA 、ad hE gene w ere deleted in E scherich ia coli BW 25113C and ackA w as deleted in E 1coli BW 25113u sing hom o logou s recom b inati on 1T he recom b inan t p las m id p SE 3802ld h w h ich exp ressed the L 2(+)2lactate dehydrogenase of S trep tococcus bov is w as tran sfo r m ed in to E 1coli BW 25113C 1T he BW 25113C p SE 3802ld h w as Shake 2flask Fer m en t 2cu ltivati on fo r 35h ,u sing the HL PC to detect the fer m en tati on p roducts ,bu t had no t fonnd the L 2lactate yet 1Key words :red recom b inati on system ;L 2(+)2lactate dehydrogenase ;L 2lactate近年来,利用微生物生产高纯度的L 2乳酸成为国际的研究热点,但是自然界中能生产L 2乳酸的微生物极少。
大肠杆菌dna提取实验报告

大肠杆菌DNA提取实验报告一、引言DNA(脱氧核糖核酸)是构成生物体遗传信息的重要分子,通过提取DNA,可以进行一系列的遗传学研究和实验。
大肠杆菌(Escherichia coli)是常见的一种细菌,它在基因工程和生物技术中具有重要的应用价值。
本实验旨在通过提取大肠杆菌的DNA,了解提取过程及其在实验中的应用。
二、理论基础2.1 DNA提取的原理DNA提取是通过物理、化学等方法将生物样品中的DNA分离出来的过程。
DNA提取的基本步骤包括细胞破碎、蛋白质和RNA去除以及DNA沉淀等。
2.2 大肠杆菌DNA结构大肠杆菌的DNA为环状双链结构,由四种碱基组成:腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)。
DNA分子具有一定的长度和序列,不同的DNA分子序列决定了不同的遗传特征。
三、实验材料与方法3.1 实验材料•大肠杆菌菌液•细胞裂解液•蛋白酶K•异丙醇•氯仿•氯化钠溶液•等温离心管•离心机•丙酮3.2 实验方法1.取适量的大肠杆菌菌液。
2.向细胞裂解液中加入适量的蛋白酶K。
3.在60摄氏度水浴中孵育30分钟。
4.加入等体积的氯仿,并充分混合。
5.离心分离水相和有机相。
6.将上清转移至新的离心管中。
7.加入等体积的异丙醇,并充分混合。
8.离心分离水相和有机相。
9.除去上清,加入氯化钠溶液,混匀。
10.加入等体积的冷异丙醇,混合后离心。
11.除去上清,加入丙酮洗涤。
12.最后离心去除丙酮。
四、实验结果与分析4.1 DNA提取过程观察在实验过程中,观察到细胞裂解液与大肠杆菌菌液接触后,出现了白色混浊的现象。
随着实验进程的推进,通过离心可以看到分离出的水相和有机相,其中水相呈现透明状,而有机相则呈现为混浊的白色液体。
4.2 DNA纯度检测通过使用紫外-可见分光光度计对提取得到的DNA进行检测,测得的吸光度比值(A260/A280)为1.8,表明DNA的纯度较高。
4.3 DNA浓度测定利用光度法对提取得到的DNA溶液进行浓度测定,测得DNA浓度为50 ng/μL。
简述基因工程菌的培养方式

简述基因工程菌的培养方式基因工程菌是指通过基因工程技术将目标基因导入到细菌中,使其表达目标蛋白或产生目标物质的菌株。
基因工程菌的培养是进行基因工程研究和应用的重要环节之一。
下面将从菌株的选择、培养基的配制、培养条件的控制等方面简述基因工程菌的培养方式。
一、菌株的选择菌株的选择是基因工程菌培养的第一步。
常用的基因工程菌株包括大肠杆菌(Escherichia coli)、酵母菌(Saccharomyces cerevisiae)等。
选择菌株时需要考虑其生长速度、基因导入效率、表达目标蛋白的能力等因素。
一般情况下,大肠杆菌是最常用的基因工程菌株,因为其生长速度快、易于培养和转化。
二、培养基的配制培养基是基因工程菌培养的基础,其组成要能满足菌株生长和表达目标蛋白的需要。
一般的培养基包括基础培养基和选择性培养基。
基础培养基是提供菌株生长所需的营养物质,如碳源、氮源、矿物质等。
选择性培养基则是通过添加特定的抗生素或抗性基因使得只有带有目标基因的菌株能够生长和繁殖。
培养基的配制需要根据具体实验的需要和菌株的特性进行调整。
三、培养条件的控制培养条件的控制对于基因工程菌的培养至关重要。
其中包括温度、pH值、气体环境、培养时间等因素的控制。
一般情况下,基因工程菌株的适宜生长温度为37℃,pH值为6.5-7.5。
气体环境方面,大肠杆菌一般需要在含氧的条件下培养,而酵母菌则需要在缺氧条件下培养。
此外,培养时间也需要根据菌株的生长速度和目标蛋白的表达时间进行调整。
四、培养方式的选择基因工程菌的培养方式主要包括液体培养和固体培养两种。
液体培养适用于大规模培养和蛋白表达,可以通过摇瓶培养或发酵罐培养进行。
固体培养适用于筛选和分离菌株,常用的固体培养基有琼脂和琼脂糖。
同时,还可以根据实验需要选择特定的培养方式,如表达载体的选择、诱导剂的添加等。
五、培养监测和收获在培养过程中,需要定期监测菌株的生长情况和目标蛋白的表达情况。
常用的监测手段包括测定菌液的光密度(OD值)、蛋白含量的测定、酶活性的检测等。
大肠杆菌中的基因启动和调控机制

大肠杆菌中的基因启动和调控机制大肠杆菌是一种常见的细菌,常见于人体肠道、土壤和水中。
这种细菌的基因启动和调控机制对于我们理解基因转录和表达过程具有重要意义。
在本文中,我们将探讨大肠杆菌中的基因启动和调控机制。
1. 基因启动机制基因启动是指RNA聚合酶从DNA模板上开始合成mRNA的过程。
RNA聚合酶结合核酸模板的位置称为启动点。
大肠杆菌中基因启动主要分为两种机制:σ因子依赖和σ因子无依赖。
σ(sigma)因子是大肠杆菌中的一种蛋白质,能够识别启动点,并找到RNA聚合酶的正确位置,从而促进转录。
在σ因子依赖的机制中,不同的σ因子选择启动点的方式和基因表达的调控方式也不同。
例如,在正常生长条件下,大肠杆菌中常见的σ70因子是主导转录的,它能够在正常生长条件下识别大多数启动点。
而在应对压力等条件下,大肠杆菌会产生其他的σ因子来实现特定基因的表达。
σ因子无依赖的机制也被称为内部启动子,它不需要σ因子的参与。
这种机制一般存在于启动子序列的片段中,并能够形成一种细胞内元件,来实现基因表达的调控。
在这种机制下,启动子的序列和位置对于基因的表达调控也非常重要。
2. 基因调控机制基因调控是指细胞对基因表达的控制,包括启动子的选择、激活、抑制等过程。
在大肠杆菌中,基因调控主要通过两种机制实现:转录因子介导和RNA分子介导。
转录因子是一种特殊的蛋白质,能够结合到启动子上,并与RNA聚合酶相互作用,以调控基因表达。
大肠杆菌中的转录因子主要包括活性调控因子和抑制因子。
活性调控因子能够激活基因表达,而抑制因子则会抑制基因表达。
这种机制能够快速地对环境变化做出反应,是大肠杆菌生存所必需的。
RNA分子介导机制是相对较新的一种调控方式。
在这种机制下,RNA分子作为转录产物,能够直接与转录因子或mRNA相互作用,来实现基因表达的调控。
这种机制比传统的转录因子介导机制更为灵活,能够在细胞内产生多种不同的表达模式。
3. 基因启动和调控机制的应用对大肠杆菌中基因启动和调控机制的研究,对于人类健康、工业应用等领域都有着重要的意义。
大肠杆菌表达系统课件

THANKS
感谢观看
3
使用表达优化后的载体,提高表达效率
改进方案提出与实施效果评估
01
02
03
优化培养条件和诱导策 略
调整诱导剂浓度、诱导 时间和温度等参数
使用分阶段诱导策略, 降低蛋白表达速度,促
进正确折叠
改进方案提出与实施效果评估
01
引入伴侣蛋白和辅助因子
02
共表达伴侣蛋白,促进蛋白正确折叠和组装
03
添加辅助因子,提高蛋白稳定性和溶解度
大肠杆菌表达系统实例分析
成功案例展示及经验分享
案例一:高效表达目 标蛋白
优化诱导条件和培养 参数
选择强启动子和合适 载体
成功案例展示及经验分享
目标蛋白表达量高,纯度高 案例二:实现复杂蛋白表达
利用伴侣蛋白和辅助因子
成功案例展示及经验分享
调整诱导时间和温度 成功表达具有生物活性的复杂蛋白
失败案例剖析及原因探讨
学Hale Waihona Puke 实践操作指点实验前准备指点学生熟悉实验器材、 试剂和操作方法,确保实 验顺利进行。
实践操作注意事项
强调实验过程中的安全、 卫生和规范操作,避免误 操作导致实验失败或影响 实验结果。
数据记录与分析
指点学生记录实验数据, 学会分析和解读实验结果 ,培养科学思维和实验技 能。
问题解答与互动讨论
实验原理解答
优化培养温度和时间
降低培养温度、延长培养时间有助于蛋白正确折叠。
改进纯化流程提高效率
选择合适纯化方法
根据蛋白性质选择亲和层析、离子交换层析、凝胶过滤层析等方 法组合使用。
优化纯化条件
调整洗脱液成分、pH值及盐浓度等条件,提高纯化效果。