基因工程及其在大肠杆菌生产人干扰素中的应用
基因工程大肠杆菌发酵生产重组人胰岛素的研究

《基因工程大肠杆菌发酵生产重组人胰岛素的研究》一、引言基因工程技术的发展为生物医药领域带来了革命性的变革,其中重组DNA 技术作为一种能够改变生物体基因组的技术,为生产重组蛋白素(包括重组人胰岛素)提供了可行性。
本文将从深度和广度两个方面来探讨基因工程大肠杆菌发酵生产重组人胰岛素的研究。
二、基因工程大肠杆菌发酵生产重组人胰岛素的原理在基因工程大肠杆菌发酵生产重组人胰岛素的研究中,首先需要获取重组人胰岛素的基因序列,然后以质粒或病毒为载体将其转染至大肠杆菌的体内,经过培养和发酵,大肠杆菌体内合成重组人胰岛素,并通过纯化后得到最终的产品。
三、基因工程大肠杆菌发酵生产重组人胰岛素的研究进展1. 基因克隆技术的应用基因克隆技术的应用是基因工程大肠杆菌发酵生产重组人胰岛素的关键技术之一。
利用限制酶切剪切 DNA,然后重组连接,将重组的DNA 导入质粒内,再将质粒导入大肠杆菌细胞内,实现外源基因的表达。
2. 基因工程大肠杆菌的选择为了高效地生产重组人胰岛素,研究者需要筛选高产重组蛋白素的大肠杆菌菌株,并进行相关的改造以提高其产量。
3. 发酵工艺的优化发酵工艺的优化对于提高重组人胰岛素的产量至关重要。
包括对培养基成分、厌氧发酵条件、发酵时间等因素的优化。
四、基因工程大肠杆菌发酵生产重组人胰岛素的意义基因工程大肠杆菌发酵生产重组人胰岛素具有重要的生物医药意义。
大肠杆菌是一种广泛存在于自然界中的细菌,其发酵生产成本低、抗污染能力强,适用于大规模工业化生产。
另重组人胰岛素与天然胰岛素具有相同的生物活性,可以作为治疗糖尿病的药物,在临床上有着重要的应用前景。
五、个人观点和理解基因工程大肠杆菌发酵生产重组人胰岛素的研究是基因工程技术的一个重要应用方向,其有着较高的生产效率和较低的成本,为生物医药领域带来了巨大的潜力和机遇。
但是,需要注意的是,基因工程技术在应用过程中也存在一些伦理和社会问题,例如生物安全性、环境影响等方面,需要引起足够的重视。
基因工程在病毒与疾病控制中的应用

基因工程在病毒与疾病控制中的应用现代医学领域中的基因工程技术在病毒与疾病的控制中发挥着至关重要的作用。
基因工程技术能够改变或重组生物基因,从而改变生物的特性并产生特定的效果。
在医学领域中,基因工程技术的应用可用于制造新药、治疗癌症和疾病以及预防和控制病毒的传播。
1. 病毒的基因工程控制基因工程方法在病毒的控制和预防中有着广泛的应用。
例如,通过制造病毒抗体和病毒载体疫苗来预防病毒感染。
这些疫苗是通过向体内注入不活化的病毒抗原来诱导免疫反应来产生的。
此外,利用基因工程技术,科学家们可以在实验室中合成病毒的核酸,并设计并生产病毒复制所必需的蛋白质。
这些技术的应用可以用来研究病毒的传播和感染机制,以及产生广谱的抗病毒疫苗。
另一种基因工程技术是利用RNA干扰治疗病毒感染。
RNA干扰通过小RNA分子与外来RNA靶点作用来抑制病毒复制。
该技术可以通过植入具有shRNA表达的质粒来进行基因治疗,以减少病毒的感染和传播。
此外,利用噬菌体展示技术,可以在噬菌体表面展示病毒抗原,从而诱导机体产生针对该抗原的免疫反应,并阻止病毒进一步传播。
2. 基因工程药物治疗疾病基因工程技术在药物治疗方面也有极为重要的应用。
例如,生物制药工程技术可用于制造储存蛋白和其他大分子药物。
这些药物包括诸如白细胞介素、肿瘤坏死因子、转化生长因子-β等细胞因子,以及重组人类胰岛素、成人生长激素、人类等等制剂。
通过基因工程方法,可以将这些药物原理注入一个能够产生大量目标蛋白的显微生物表达系统中,例如大肠杆菌、酵母菌或昆虫细胞等,从而大规模生产药物原理。
基因工程方法也可用于制造基于抗体和干扰素的药物。
抗体药物可用于治疗许多不同类型的癌症,例如黑色素瘤、乳腺癌、结肠癌等。
与单克隆抗体相比,多克隆抗体在生产上更经济实惠。
利用干扰素治疗病毒性肝炎,可以有效控制病毒复制,从而减缓或停止肝脏损伤的进程。
另外,基因工程技术还可以被用于制造基于DNA或RNA的药物,例如合成具有特定序列、形状和功能的RNA和DNA序列,以及利用合成RNA的介导CRISPR/Cas9技术来治疗遗传性疾病等。
基因工程药物的生产原理及其应用

基因工程药物的生产原理及其应用基因工程药物是指通过对生物体基因进行改变和调控,利用重组DNA技术将特定基因引入到宿主细胞中,并使其表达和产生药物或相关物质。
其生产原理主要包括基因克隆、基因转染和表达、纯化和制备等步骤。
基因工程药物在医学和农业等领域有广泛的应用。
基因克隆是指在实验室中将感兴趣的基因从一些生物体中分离出来,并经过PCR扩增放大数量。
首先,需要从组织样本或细胞中提取RNA或DNA,然后使用逆转录酶将RNA转录成cDNA。
接下来,利用PCR技术,可合成DNA片段并扩增目标基因。
目标基因经PCR扩增后,可以经过限制酶切、连接质粒、转化大肠杆菌等步骤,将其插入到表达载体中。
基因转染和表达是将目标基因导入宿主细胞中,并使其能够正确表达目标蛋白。
在此步骤中,可以选择合适的宿主细胞,如大肠杆菌、酵母菌、哺乳动物细胞等。
通过合适的方法,如热激转化、电击转化、病毒载体等,将表达载体转染给宿主细胞。
在转染过程中,可利用启动子、终止子、报告基因和选择标记基因等元件来控制目标蛋白的表达、纯化和定位。
纯化和制备是将目标蛋白从宿主细胞中提取并纯化出来,应用于制备基因工程药物。
首先,需要打破细胞膜,使目标蛋白释放出来。
接着,可利用离心、过滤、层析、电泳等技术手段来纯化出目标蛋白。
最后,对纯化出的蛋白进行浓缩、冻干、质保等处理,以获得高纯度和稳定性的基因工程药物。
首先,在医学领域,基因工程药物可用于治疗遗传性疾病和癌症等重大疾病。
例如,基因工程药物可用于治疗白血病、早产儿视网膜病变等重要疾病。
基因工程药物可以根据患者的个体差异和基因型,定制出个别患者所需的个体化治疗方案,提高疗效和减少副作用。
其次,在农业领域,基因工程药物可应用于农作物的改良和生产。
基因工程药物可将抗虫基因、抗病基因等插入植物基因组中,使农作物具有抗虫害、抗病害、耐逆境等特性。
这样可以减少对农药的使用,提高作物的产量和质量。
此外,在环境领域,基因工程药物也可以应用于生物清洁技术和污染物降解。
基因工程的应用+示范教案

第3节基因工程的应用◆教学目标1.举例说出基因工程在农牧业,医药卫生和食品工业等方面的应用。
2.认同基因工程的应用价值。
3.关注基因工程的进展。
◆教学重难点【教学重点】基因工程在农牧业,医药卫生和食品工业等方面的应用。
【教学难点】乳腺生物反应器。
◆教学过程【新课引入】引导学生复习血糖调节的知识引出胰岛素的生产历史。
(1)糖尿病的治疗需要哪种激素?(胰岛素)(2)这种激素需要口服还是注射?为什么?(注射,口服会被水解为氨基酸,失去药效)(3)胰岛素是如何生产的?(阅读课本87页左上角的内容)传统方法:从猪、牛等动物的胰腺中获取。
一位糖尿病病人使用一年的胰岛素需要上千头牛,生产的成本非常高。
基因工程方法:1978年,科学家将编码人胰岛素的基因导入大肠杆菌细胞中,使大肠杆菌表达重组人胰岛素。
我国拥有自主知识产权的基因工程药物——重组人胰岛素已经研制成功并得到了广泛应用。
【过渡】除了生产胰岛素,基因工程还有哪些应用呢?【新知讲解】一、基因工程在农牧业方面的应用【教师活动】讲述基因工程在农牧业的发展现状。
基因工程在农牧业中的应用发展迅速。
已被广泛用于改良动植物品种、提高作物和畜产品产量等方面。
1.植物方面(1)种植面积(2)经济效益2016年世界范围的统计数据表明,转基因作物的种植使化学杀虫剂施用量减少了8.2%,作物产量增加了66×108 t,增加经济收益近1.3万亿元。
(3)实例美国:转基因大豆、棉花、玉米等;中国:转基因棉花、番木瓜。
2.动物方面几乎每年都有令人瞩目的研究成果报道,有些成果正进入实用化和商业化开发阶段。
2015年11月第一种用于食用的转基因动物在美国获得批准上市。
(转基因大西洋鲑,俗称“三文鱼”)【学生活动】阅读教材88-89页基因工程在农牧业的应用实例。
能够说出每种实例用到的目的基因和优点。
1.转基因抗虫植物(1)目的基因:Bt抗虫蛋白基因。
(2)方法:从某些生物中分离出具有抗虫功能的基因,导入作物,使其具有抗虫性。
医学中的基因工程及其应用

医学中的基因工程及其应用基因工程是指利用生物技术手段,对生物体的基因进行修改、操作和调控的过程。
近年来,随着生物技术的不断进步和发展,基因工程技术在医学领域中的应用也越来越广泛。
本文将探讨基因工程在医学中的应用,包括基因治疗、基因诊断以及生物药物的生产等方面。
一、基因治疗基因治疗是指通过将正常的基因导入病患体内,从而达到治疗疾病的目的。
比如,某些疾病是由于基因突变所导致,这时候科学家可以通过基因编辑技术来修复这些基因,从而治愈患病的人。
目前,该技术已经应用于多种疾病的治疗中。
例如,基因治疗在癌症的治疗中应用得较为广泛。
科学家们利用基因编辑技术,将治疗相关的基因导入人体,然后通过体内产生的蛋白质与癌细胞进行作用,达到治疗癌症的目的。
此外,基因治疗还可以用于治疗其他一些疾病,如先天性遗传病、免疫缺陷病等。
二、基因诊断基因诊断是指通过检测个体的基因信息,进而进行疾病的预测、诊断、鉴定和治疗的手段。
随着基因测序技术的发展,基因诊断正逐渐成为一种主流的医学诊断手段。
目前,基因诊断在肿瘤、心血管疾病、遗传病等多种疾病的诊断中得到了广泛的应用。
对于肿瘤的诊断而言,基因诊断可以通过检测病人的DNA或RNA得到其具体的肿瘤类型,然后进一步做出更为精确的治疗方案。
同时,基因诊断技术还可以预测肿瘤的发生、转移及复发的风险等。
对于遗传病而言,基因诊断可以辅助医生进行疾病的早期预测和诊断,使患者通过早期知晓疾病早期进行针对性的治疗。
这对于患者及其家族人员,尤其是在家族中具有遗传基础的人群,是非常重要和有益的。
三、生物药物的生产生物药物是指利用生物技术手段生产出来的药物,因为其具有较高的特异性和生物活性,逐渐成为临床医学的重要药物。
基因工程技术在生物药物的生产过程中发挥着至关重要的作用。
通过基因编辑技术将人体需要的蛋白质基因插入到大肠杆菌、酵母等微生物体内,实现对蛋白质的大规模生产。
这种基因工程技术被称为“蛋白质表达系统”。
微生物基因工程在医药领域中的应用

微生物基因工程在医药领域中的应用随着科技的进步,微生物基因工程技术日益成熟,成为医药领域中不可或缺的一种手段。
微生物基因工程技术利用微生物体内基因的自然复制与表达能力,将定义明确的基因片段或片段组合,有针对地导入细胞中,从而实现了对特定基因及其氨基酸序列的定向改造,开启了药物研发新时代。
本文将重点介绍微生物基因工程在医药领域的应用。
一、微生物基因工程在生产抗生素方面的应用抗生素是治疗细菌感染的重要药物。
利用微生物基因工程技术,可以生产抗生素的高效新菌株。
以青霉素为例,改良后的新菌株“根黑菌”及重组大肠杆菌不仅在青霉素的合成途径上具有较高的产量,更从根本上避免了传统耐受性易出现的抗生素污染漏洞。
因此,微生物基因工程技术可以为抗生素的生产过程提供更加严格的控制和更加可靠的保证。
二、微生物基因工程在制造重组蛋白方面的应用重组蛋白具有种类繁多、副作用小等特点,可应用于治疗疾病。
在制造重组蛋白的过程中,微生物基因工程技术发挥了重要作用。
以重组人胰岛素为例,由于人胰岛素非常复杂,传统的抽提方法无法保证纯度和产量。
但通过对胰岛素基因进行改造并转入大肠杆菌、毕赤酵母等寄主,可以实现人胰岛素的高效生产。
三、微生物基因工程在疫苗生产方面的应用疫苗是预防疾病的重要手段。
利用微生物基因工程技术,可以生产疫苗毒株、蛋白分子和多肽类等蛋白分子,对疾病进行有效的预防和治疗。
例如,石蜡油结合剂被用于某些疫苗的调查,但其有致癌性和细胞毒性作用。
在这种情况下,微生物基因工程技术被广泛应用于制造无石蜡油的疫苗。
四、微生物基因工程在抗病毒药物方面的应用在抗病毒药物研发中,微生物基因工程技术也起到了重要作用。
例如,人乙型肝炎病毒的治疗药物依葵鲁定(Entecavir),最初是基于对病毒基因组的研究开发出来的,并结合了微生物基因工程技术的优势。
通过删减病毒基因组和改变特定氨基酸序列等方法,制造出了高选择性的治疗药物。
五、微生物基因工程在预测药效方面的应用预测药效是药物研究开发中必不可少的一环。
(生产管理知识)基因工程及其在大肠杆菌生产人干扰素中的应用

基因工程及其在大肠杆菌生产人干扰素中的应用一、课程设计目的了解工业生产中的新型育种技术并比较不同育种技术的优势;学习理解基因工程育种技术及其操作原理;研究基因工程育种技术在人干扰素生产中的创新。
二、课程设计题目描述与要求本文介绍一种二十世纪七十年代发展起来的一种新型生物技术——基因工程,介绍其在育种中的应用。
文中重点介绍了基因工程育种的一般步骤,以及近年来出现的运用基因工程进行定向育种的主要新技术:基因的定点突变,易错PCR,DAN重排及基因组重排。
之后,应用基因工程育种技术重组大肠杆菌BL21(pBAI)生产人干扰素a2b, 通过优化补料分批培养时葡萄糖的流加策略,提高了hIFNa2b的表达量和表达速率。
不同的葡萄糖流加方式有各自的优点,采用恒速流加葡萄糖的方式,hIFNa2b的表达量达到6 540 mg/L,高于目前已知文献中hIFNa2b的最高表达量5 200 mg/L。
三、课程设计报告内容引言基因工程是二十世纪七十年代发展起来的一种新型生物技术,其发展从根本上改变了生物技术的研究和开发应用模式。
1972年美国的Berg和Jackson等人将猿猴病毒基因组SV 40DNA、λ噬菌体基因以及大肠杆菌半乳糖操纵子在体外重组获得成功。
翌年,美国斯坦佛大学的Cohen和Boyer等人在体外构建出含有四环素和链霉素连个抗性基因的重组质粒分子,将之导入大肠杆菌后,该重组质粒得以稳定复制,并赋予受体细胞相应的抗生素抗性,由此宣告了基因工程的诞生。
在二十世纪八十年代以来,随着大批大批成果的出现及应用,基因工程带来了一场新的革命。
利用这些技术,可以直接地、有针对性地在DNA分子水平上改造生物的遗传性状。
通过转入外源基因,微生物和动、植物细胞可以产生出自身原来没有的蛋白质。
同样,利用重组DNA技术,也可以使一些原来存在量极低但有重要工业或医学用途的小分子(抗生素)或蛋白质之外的大分子物质得以大量生产。
特别是随着重组DNA技术的完善和发展,以基因水平为核心的现代分子定向育种技术越来越受到工业微生物育种学家的关注,并展示了良好的应用前景。
基因工程大肠杆菌发酵生产重组人胰岛素的研究

参考内容
引言
人胰岛素是一种重要的生物药物,对于治疗糖尿病具有显著效果。传统上,人 胰岛素的生产主要通过从人身体中提取胰岛素原,然后进行化学合成和结构改 造。然而,这种方法不仅成本高昂,而且生产周期长,难以满足市场需求。近 年来,随着生物技术的发展,利用重组大肠杆菌生产人胰岛素的方法逐渐得到 广泛应用。本次演示将详细介绍利用重组大肠杆菌生产人胰岛素的方法和相关 技术。
展望未来,基因工程大肠杆菌发酵生产重组人胰岛素的研究有望为糖尿病治疗 提供更加安全、有效的药物。随着科学技术的不断进步和研究的深入,我们相 信未来能够在提高产量、降低成本、优化质量等方面取得更大的突破。加强与 其他领域(如纳米技术、生物信息学等)的跨学科合作,将为该领域的研究和 应用提供更为广阔的前景。
生产流程
利用重组大肠杆菌生产人胰岛素的生产流程包括以下几个步骤:
1、细胞悬浮:将大肠杆菌接种到发酵罐中的无菌培养基中,在适宜的温度和 湿度条件下进行培养。培养过程中需监测细菌生长情况,以确保细菌处于最佳 生长状态。
2、发酵:当细菌生长到一定密度时,向发酵罐中加入适量的诱导剂,以诱导 细菌表达人胰岛素基因。发酵过程中需控制温度、湿度、氧气浓度等参数,以 确保细菌正常表达胰岛素基因。
一、背景介绍
基因工程技术是一种利用微生物或细胞体系生产人类所需蛋白质的技术。在过 去几十年中,基因工程技术得到了广泛应用,并在制药、生物能源、环境保护 等领域发挥了重要作用。重组人胰岛素是一种利用基因工程技术生产的胰岛素, 它与人体产生的胰岛素具有相似的结构和功能。然而,重组人胰岛素的生产过 程比较复杂,需要经过多个步骤,因此生产成本较高。
3、收集:发酵结束后,收集细菌培养液并进行过滤,以去除其中的杂质和细 胞残骸。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基因工程及其在大肠杆菌生产人干扰素中的应用一、课程设计目的了解工业生产中的新型育种技术并比较不同育种技术的优势;学习理解基因工程育种技术及其操作原理;研究基因工程育种技术在人干扰素生产中的创新。
二、课程设计题目描述与要求本文介绍一种二十世纪七十年代发展起来的一种新型生物技术——基因工程,介绍其在育种中的应用。
文中重点介绍了基因工程育种的一般步骤,以及近年来出现的运用基因工程进行定向育种的主要新技术:基因的定点突变,易错PCR,DAN重排及基因组重排。
之后,应用基因工程育种技术重组大肠杆菌BL21(pBAI)生产人干扰素a2b, 通过优化补料分批培养时葡萄糖的流加策略,提高了hIFNa2b的表达量和表达速率。
不同的葡萄糖流加方式有各自的优点,采用恒速流加葡萄糖的方式,hIFNa2b的表达量达到6 540 mg/L,高于目前已知文献中hIFNa2b的最高表达量5 200 mg/L。
三、课程设计报告内容引言基因工程是二十世纪七十年代发展起来的一种新型生物技术,其发展从根本上改变了生物技术的研究和开发应用模式。
1972年美国的Berg和Jackson等人将猿猴病毒基因组SV 40DNA、λ噬菌体基因以及大肠杆菌半乳糖操纵子在体外重组获得成功。
翌年,美国斯坦佛大学的Cohen和Boyer等人在体外构建出含有四环素和链霉素连个抗性基因的重组质粒分子,将之导入大肠杆菌后,该重组质粒得以稳定复制,并赋予受体细胞相应的抗生素抗性,由此宣告了基因工程的诞生。
在二十世纪八十年代以来,随着大批大批成果的出现及应用,基因工程带来了一场新的革命。
利用这些技术,可以直接地、有针对性地在DNA分子水平上改造生物的遗传性状。
通过转入外源基因,微生物和动、植物细胞可以产生出自身原来没有的蛋白质。
同样,利用重组DNA技术,也可以使一些原来存在量极低但有重要工业或医学用途的小分子(抗生素)或蛋白质之外的大分子物质得以大量生产。
特别是随着重组DNA技术的完善和发展,以基因水平为核心的现代分子定向育种技术越来越受到工业微生物育种学家的关注,并展示了良好的应用前景。
1、基因工程育种基因工程育种是在基因水平上,运用人为方法将所需的某一供体生物的遗传物质提取出来,在离体条件下用适当的工具酶进行切割后,与载体连接,然后导入另一细胞,使外源遗传物质在其中进行正常复制和表达引,与前几种育种技术相比,基因工程育种技术是人们在分子生物学指导下的一种自觉的、能像工程一样可预先设计和控制的育种新技术,它可实现超远缘杂交,因而是最新最有前途的一种育种新技术。
基因工程技术的全部过程一般包括目的基因DNA片段的取得、DNA片段与基因载体的体外连接、外源基因转入宿主细胞和目标基因的表达等主要环节。
1.1 基因工程育种的一般步骤是:(1)目的基因的获得:一般通过化学合成法、物理化学法(包括密度梯度离心法、单链酶法、分子杂交法)、鸟枪无性繁殖法、酶促合成法(逆转录法)、Norther杂交分析法、cDNA文库筛选法、杂交筛选法、编码序列富集(磁珠捕获)、产物导向法、Nod连接片段筛选法、外显子捕获法及外显子扩增法、剪接位点筛选法、作图克隆法、杂交细胞克隆法、消减杂交法、相同序列克隆法、差异显示逆转录PCR法、显微克隆与微克隆法和插入诱变法等方法获得目的基因。
(2)载体的选择:基因工程载体主要是质粒和病毒,载体一般为环状DNA,其要求有自我复制能力、分子小、拷贝数多、易连接和易筛选等特点。
(3)重组子体外构建:主要方法有粘性末端连接法、平端连接法、人工接头连接法和同聚物加尾连接法。
(4)重组载体导入受体细胞:其主要途径有转化、转导、显微注射、电穿孔法、快速冷冻法和炭化纤维介导法等。
(5)重组体筛选和鉴定:以合适的筛选方法选择具有最佳性能的突变重组子,重组体筛选和鉴定主要通过表型法、DNA鉴定筛选法,选择性载体筛选法、分子杂交选择法、免疫学方法和mRNA翻译检测法等方法来实现。
1.2 运用基因工程进行定向育种的新技术1.2.1 基因的定点突变定点突变(site—specific mutagenesis或site—directed mutagenesis)是指在目的DNA片断(例如:一个基因)的指定位点引入特定的碱基对的技术,其包括寡核苷酸介导的定点突变、盒式诱变以及以PCR为基础的定点突变。
近十年来,定点突变技术获得了长足的发展,并且在此基础上又发展了很多新技术。
例如:重叠延伸PCR法(Overlap Extension PCR简称EO—PCR)、大引物PCR法(Megaprimer PCR)、一步重叠延伸PCR(One—stepOverlap Extension PCR,简称OOE.PCR)、单管大引物PCR(Single—tube Megaprimer PCR)、快速定点诱变法、多位点环状诱变法TAMS(Targeted Amplification of Mutant Strand)定点诱变技术。
在这些技术中,单管大引物PCRTAMS定点诱变技术最为简单和适用,并得到广泛的应用。
单管大引物PCR Picard等和HKe等分别建立了单管大引物PCR法。
该法省去了传统上以PCR为基础的定点突变中第1轮PCR产物的纯化过程,实现了在同一管中先后进行2轮PCR反应的定点突变目标。
在上述2组研究者建立的方法中,后者提出的方案更加巧妙、简单(图1)。
其只需设计Tm值不同的2个侧引物,在第1轮PCR反应中用Tm值低的侧引物(F1)和诱变引物,在较低的退火温度下进行扩增反应,产生大引物;然后再加入Tm值高的侧引物(F2),在较高的退火温度下进行第2轮反应,扩增出含突变位点的整个DNA产物。
Ke等在此方法中还提出了2条更为细致、有效的改进措施,使PCR产物的最终产量和纯度均有所提高。
这2条改进措施为:(1)在第1轮PCR反应中,诱变引物的浓度仅为侧引物的1%,以减少诱变引物在第2轮PCR中的干扰作用;(2)在第l轮PCR反应后,亦即第2轮PCR反应前,增加5个循环的不对称扩增,这有利于提高其后的扩增效率。
这种单管大引物法的优点是:实现了在同一管中先后进行2轮PCR反应,大幅简化了操作步骤,并且省时、省力。
在对多个样品进行操作时,该方法的优点更为突出。
在以PCR为基础的诱变方法中,该法是引入单位点突变最简单、最经济的方法。
图1 单管大引物PCR过程Figure 1 The process of Single·tube megaprimer PCRTAMS定点诱变技术 2003年,Young等报道了一种有目的地扩增突变链的定点诱变技术(Targeted amplification of mutant strand,TAMS)。
该技术能够一次引入多个位点的突变,并且能够有目的地扩增突变链,从而使突变效率几乎达到100%。
该方法主要分3步(图2):(1)线性单链DNA模板的制备:通过线性PCR 制备单链DNA模板;(2)突变链的合成:该步骤需用2个锚锭引物(即Anchor5和Anchor3)和多个诱变引物(Mut1和Mut2)。
(3)有目的地扩增突变链:设计扩增引物(PCR5和PCR3),使其3′端碱基分别与锚锭引物引入的突变碱基配对,扩增引物只能退火到突变链而不是亲本链。
在多位点的突变试验中,TAMS诱变技术应该是首选方法。
定点突变技术已在蛋白质的结构和功能改造上取得了很大成功。
例如,利用定点突变改变酪氨酰-tRNA合成酶的活性中心,从而使酶活力提高了50倍;此外,在T4溶菌酶中加入二硫键,显著提高了该酶的稳定性。
图2 TAMS定点诱变技术原理和操作过程Figure 2 The principle and operation process of TAMS1.2.2 易错PCRDNA聚合酶在进行扩增目的DNA时会以一定的频率发生碱基错配,这一现象恰好提供了一种对特定基因进行随机诱变的可能方法。
利用PCR过程中出现的碱基错配进行特定基因随机诱变的技术就称为易错PCR(Error_prone PCR,简称EP—PCR)。
此方法的原理与操作如图3,其操作过程是在Taq DNA聚合酶催化的PCR反应体系中,利用Mn替代天然的辅助因子Mg,使Taq DNA聚合酶缺乏校对活性,同时使反应体系中各种dNTP的比例失衡,因此导致碱基的错配率大大增加,通常约为0.1%。
另外,还可以在该反应体系中加入dITP等三磷酸脱氧核苷类似物来控制错配水平。
这种方法可以将错配率最大提高至20%。
孔荣等利用易错PCR使D-海因酶对底物的水解活性提高了2.4倍;黄瑛等用易错PCR使短小芽孢杆菌YZ02脂肪酶活性提高了1.31倍,Km值由8.24mmol/L降低至7.717mmol/L,在pH>8.0时的稳定性也较野生型脂肪酶有所提高。
图3 易错PCR示意图Figure 3 Sketch of error-prone PCR1.2.3 DAN重排DNA重排(DNA shufling)技术是一种利用重组文库的体外定向进化技术,Stemmer 于1993年首先提出。
DNA重排的基本原理是首先将同源基因(单一基因的突变体或基因家族)切成随机大小的DAN片段,然后进行PCR重聚。
那些带有同源性和核苷酸序列差异的随机DAN片段在每一轮循环中互为引物和模板,经过多次PCR循环后能迅速产生大量的重组DNA,从而创造出新基因。
其操作的原理和步骤如图4。
图4 DNA重排的原理及操作步骤Figure 4 The principle and operation process of DNA shuffling Zhao等在此基础上发明了一种更加简化交叉延伸程序( STEP)(图5)。
此技术是在一个PCR反应体系中以2个以上相关的DNA片段为模板进行PCR反应。
引物先在一个模板链上延伸,随之进行多轮变性、短暂复性(延伸)过程。
在每一轮PCR循环中,那些部分延伸的片段可以随机地与含不同突变的模板进行杂交,使延伸继续,并由于模板转换而实现不同模板间的重组,这样重复进行直到获得全长基因片段,重组的程度可以通过调整时间和温度来控制。
此方法省去了将DNA酶切成片段这一步,致使DNA重排方法进一步简化。
图5 交叉延伸程序的基本过程Figure 5 Basic procedure of staggered extension process 近几年来,提高DNA重排技术捕获变异的能力一直是研究人员努力的方向。
Ostermie等以核酸外切酶Ⅱ代替DNaseI对靶序列进行消化,发明了递减法建立杂交酶技术(ITCHY),使得非同源性序列间也能发生重排,扩大了该技术的用途。
Hiraga等开发的SISDC技术在组件内部引入了限制性内切酶识别标记,用相应的限制性内切酶代替DNase I产生重排片段。