15年数学中考模拟(六)
2015中考数学模拟试卷

第8题第8题 2015年中考数学模拟试卷(考试时间:120分钟,满分:150分)一.选择题(共10小题,每题3分,满分30分)1.中国园林网消息:为建设生态滨海,天津滨海新区将完成城市绿化面积共8210 000m 2,2.方程1)2)(1(+=-+x x x 的解是( ) ..入的单词个数进行统计,两班成绩的平均数相同,(1)班成绩的方差为17.5,(2)班成绩的 =238.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若9.如图,点B 在x 轴上,∠ABO=90°,∠A=30°,OA=4,将△OAB 绕点O 按顺时针方向22,﹣第15题10.给出下列命题及函数y=x 与y=x 2和的图象:①如果>a >a 2,那么0<a <1;②如果a 2>a,那么a >1或﹣1<a <0;③如果>a 2>a ,那么﹣1<a <0;④如果a 2>>a ,那么a <﹣1.则( )11.如图,a ∥b ,∠1=30°,则∠2= .12.已知正比例函数的图象过点(﹣3,5),那么该函数的解析式是 .13.如果9432=-x x ,那么6342+-x x 的值是 .14.已知一个盒子里装有a 个红球,3个白球和10个黄球,这些球除颜色外其余都相同,若从该盒子里任意摸出1个球,是白球的概率为,则a= .15.水仙花是漳州市花,如图,在长为14m ,宽为10m 的长方形展厅,划出三个形状、大小完全一样的小长方形摆放水仙花,则每个小长方形的周长为 m .16.已知二次函数y=x 2+bx+c 的对称轴为直线x=1,且图象与x 轴交于A 、B 两点,AB=2.若关于x 的一元二次方程x 2+bx+c ﹣t=0(t 为实数), 在﹣2<x <的范围内有实数解,则t 的取值范围是 .三.解答题(共10小题,满分96分)17.(7分)计算:()14145sin 8323-⎪⎭⎫⎝⎛--+- π.18.(7分)解不等式组:.19.(8分)先化简,再求值:a a a 24412+∙⎪⎭⎫ ⎝⎛-+,其中32+=a . 20.(8分)如图,在□ABCD 中,延长AB 到点E ,使BE=AB ,连接DE 交BC 于点F .求证:△BEF ≌△CDF .21.(9分)某中学组织网络安全知识竞赛活动,其中七年级6个班组每班参赛人数相同,学校对该年级的获奖人数进行统计,得到每班平均获奖15人,并制作成如图所示不完整的折线统计图.(1)请将折线统计图补充完整,并直接写出该年级获奖人数最多的班级是 班; (2)若二班获奖人数占班级参赛人数的32%,则全年级参赛人数是人; (3)若该年级并列第一名有男、女同学各2名,从中随机选取2名参加市级比赛,求恰好是1男1女的概率是多少.22.(9分)一项工程,甲乙两公司合作,12天可以完成,如果甲乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,求甲乙两公司单独完成这项工程,各需多少天? 23.(10分)如图,AB 为⊙O 的直径,BD 为⊙O 的切线,过点B 的弦BC ⊥OD 交⊙O 于点C ,垂足为M .(1)求证:CD 是⊙O 的切线;(2)当BC=BD ,且BD=6cm 时,求图中阴影部分的面积. 24.(12分)阅读材料,解答问题:命题:如图1,在锐角△ABC 中,BC=a ,CA=b ,AB=c ,△ABC 的外接圆半径为R ,则===2R .证明:连接CO 并延长交⊙O 于点D ,连接DB ,则∠D=∠A . 因为CD 是⊙O 的直径,所以∠DBC=90°, 在Rt △DBC 中,sin ∠D==,所以sinA=,即=2R , 同理:=2R ,=2R ,===2R ,请阅读前面所给的命题和证明后,完成下面(1)(2)两题: (1)前面阅读材料中省略了“=2R ,=2R ”的证明过程,请你把“=2R ”的证明过程补写出来.(2)直接运用阅读材料中命题的结论解题,如图2,锐角△ABC 中,BC=,CA=,∠A=60°,求△ABC 的外接圆半径R 及∠C .25.(13分)如图,在Rt △ABC 中,∠C=90°,BC=2,AC=4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD=∠A .设A 、P 两点的距离为x ,△BEP 的面积为y . (1)求证:AE=2PE ;(2)求y 关于x 的函数解析式,并写出x 的取值范围; (3)当△BEP 与△ABC 相似时,求△BEP 的面积.26.(13分)如图,已知抛物线y=ax 2+bx+c (a ≠0)与x 轴交于A (1,0)、B (4,0)两点,与y 轴交于C (0,2),连接AC 、BC . (1)求抛物线解析式;(2)BC 的垂直平分线交抛物线于D 、E 两点,求直线DE 的解析式;(3)若点P 在抛物线的对称轴上,且∠CPB=∠CAB,求出所有满足条件的P 点坐标.。
2015中考综合练习6

2014年中考xh (二模)九年级数学学科一、选择题:(本大题共6题,每题4分,满分24分) 1. 下列运算正确的是( )(A )236a a a ⋅=; (B )623a a a ÷=; (C )236()a a =; (D )624a a a -=. 2. 一次函数21y x =+的图像不经过的象限是( )(A )第一象限; (B )第二象限; (C )第三象限; (D )第四象限. 3. 如图,AF 是∠BAC 的平分线,EF ∥AC 交AB 于点E . 若∠1=25°,则BAF ∠的度数为( )(A )15°; (B )50°; (C )25°; (D )12.5°4. 在ABC △中,∠A 、∠B 都是锐角,且1sin cos 2A B ==,那么ABC △的形状是( ).(A )钝角三角形; (B )直角三角形; (C )锐角三角形; (D )无法确定.5. “大衣哥”朱之文是从“我是大明星” 这个舞台走出来的民间艺人。
受此影响,卖豆腐的老张也来参加节目的海选,当天共有15位选手参加决逐争取8个晋级名额。
已知他们的分数互不相同,老张要判断自己是否能够晋级,只要知道下列15名选手成绩统计量中的( )(A ) 众数; (B ) 方差; (C ) 中位数; (D )平均数.6. 如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,联结BC ,若∠A=36°,则∠C 等于( )(A )36°; (B )54°;(C )60°; (D )27°. 二、填空题:(本大题共12题,每题4分,满分48分) 7.函数y =的定义域是 . 8. 分解因式:2ab ab -= .9. 如果反比例函数的图像经过点(1,-2),那么这个函数的解析式是 .10. 2014年政府报告中安排财政赤字约为13500亿元,13500亿用科学记数法表示为 亿. 11. 不等式组320622x x ->⎧⎨-≥⎩的解集是 .12. 若关于x 的方程2430ax x -+=有两个相等的实数根,则常数a 的值是 . 13. 掷一个材质均匀的骰子,向上一面的点数是3的倍数的概率是 .14. 如图,在ABC △中,D 是BC 的中点,设AB a =,AC b =,则 BD =. 15. 解放军某部承担一段长1500米的清除公路冰雪任务.为尽快清除冰雪,该部官兵每小时比原计划多清除20米,结果提前24小时完成任务,若设原计划每小时清除公路冰雪x 米,则可列出方程16. 如图,ABC △中,AC 、BC 上的中线交于点O ,且BE ⊥AD .若5BD =,4BO =,则AO 的长为 . 17. 如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为223y x x =--,AB 为半圆的直径,则这个“果圆”被y 轴截得的弦CD 的长为.A B18.如图,已知ABC △中,90B ∠=︒,3BC =,4AB =,D 是边AB 上一点,DE ∥BC 交AC 于点E ,将ADE △沿DE 翻折得到'A DE △,若'A EC △是直角三角形,则AD 长为 . 三、解答题:(本大题共7题,满分78分) 19. 计算:0201411(2(1)2()2----++-.20. 先化简,再求值:21111x x x x ⎛⎫⎛⎫+÷- ⎪ ⎪-+⎝⎭⎝⎭,其中x =.21. 如图,在△ABC 中,AB =AC =10,sin C =35,点D 是BC 上一点,且DC =AC .(1) 求BD 的长; (2) 求tan ∠BAD .22. 春季流感爆发,某校为了解全体学生患流感情况,随机抽取部分班级对患流感人数的进行调查,发现被抽查各班级患流感人数只有1名、2名、3名、4名、5名、6名这六种情况,并制成如下两幅不完整的统计图:(1) 抽查了 个班级,并将该条形统计图补充完整;(2) 扇形图中患流感人数为4名所在扇形的圆心角的度数为 ; (3) 若该校有45个班级,请估计该校此次患流感的人数为 .班123456各种患流感人数情况的班级数 占抽查班级总数的百分比分布图班级个数抽查班级患流感人数条形统计图抽查班级患流感人数条形图已知:如图,在梯形ABCD 中,AD ∥BC ,∠ABC =90°,BC=2AD ,点 E 是BC 的中点、F 是CD 上的点,联结AE 、EF 、AC .(1) 求证:AO OF OC OE ⋅=⋅;(2) 若点F 是DC 的中点,联结BD 交AE 于点G , 求证:四边形EFDG 是菱形.24. (本题满分12分)如图,直线44y x =+与x 轴、y 轴相交于B 、C 两点,抛物线22(0)y ax ax c a =-+≠过点B 、C ,且与x 轴另一个交点为A ,以OC 、OA 为边作矩形OADC ,CD 交抛物线于点G .(1)求抛物线的解析式以及点A 的坐标;(2)已知直线x m =交OA 于点E ,交CD 于点F ,交AC 于点M ,交抛物线(CD 上方部分)于点P ,请用含m 的代数式表示PM 的长;(3)在(2)的条件下,联结PC ,若△PCF 和△AEM 相似,求m 的值.如图,已知∠MON两边分别为OM、ON,sin∠O=35且OA=5,点D为线段OA上的动点(不与O重合),以A为圆心、AD为半径作⊙A,设OD=x.(1)若⊙A交∠O 的边OM于B、C两点,BC y,求y关于x的函数解析式,并写出函数的定义域;(2)将⊙A沿直线OM翻折后得到⊙A′.①若⊙A′与直线OA相切,求x的值;②若⊙A′与以D为圆心、DO为半径的⊙D相切,求x的值.图1 备用图BH2013-2014学年第二学期徐汇区初三年级数学学科学习能力诊断卷参考答案和评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.C ; 2.D ; 3.C ; 4.B ; 5.C ; 6.D . 二.填空题:(本大题共12题,满分48分) 7. 1x ≥-; 8.()1ab b -; 9.2y x=-; 10.41.3510⨯; 11.223x -<≤; 12.43a =;13.13;14.1122a b →→-; 15.150015002420x x -=+; 16.6;17.3 18.78或258. 三、(本大题共7题,满分78分)19.解:原式=21122+-+ …………………………………………………(7分)=2………………………………………………………(3分)20.原式=2211(1)11x x x xx x -++-÷-+……………………………………………………(2分) =22211x x x x+∙- ………………………………………………………(2分) =221(1)(1)x x x x x+∙+-=11x - ……………………………………………(3分) 将x =11x -,1112x ==- ……………………………………(3分) 21.解:(1)过点A 作AH ⊥BC ,垂足为H ,则BH=CH =12BC ………………………(2分) 在Rt △ACD 中,sin C =35AH AC =, ∵AC =10,∴AH=6, ………………………………(2分)∴8HC BH ==== ………………………………(1分)∴BD =BC -CD =6.……………………………………………………………………(1分) (2)过点D 作DE ⊥AB ,垂足为E , …………………………………………… (1分)Rt △BED 中,sin B =ED BD 35=,BD = 6,∴185DE =……………………………(1分)∴245BE ==,∴265AE = …………………………………(1分)∴tan ∠BAD =ED AE 913=………………………………………………………(1分) 22. 解:(1)20个班级;条形统计图中,缺少的部分对应纵轴值为2;…………… (4分)(2)︒=⨯︒72204360; ………………………………………………………(2分) (3)45(122233445564)18020⨯+⨯+⨯+⨯+⨯+⨯⨯=.…………… (1分) 23.(1)证明:∵点E 是BC 的中点,∴BC =2EC= 2BE .又∵BC =2AD ,∴EC=AD . ………………………………(1分)//AD EC ,∴四边形AECD 为平行四边形.……………………(1分)∴//AE CD , ………………………………………………………(1分)∴AO OEOC OF=即AO OF OC OE ∙=∙.………………………………(1分) (2)证明:∵E 、F 分别是BC 、CD 的中点,∴//EF BD 且12EF BD =.………………………………………………(1分)又//AE CD ,∴四边形EFDG 为平行四边形.………………… ……(1分)∵AD 平行且等于BE ,∴ 四边形ABED 是平行四边形.………… ……(1分) 又∵∠ABE =90°,∴ 四边形ABED 是矩形.…………………………………(1分) ∴ BD=AE 且12EG AE =12BD =…………………………………………(2分) ∴EG EF =,∴四边形EFDG 是菱形……………………………………(2分)24. 解:(1)直线44y x =+与x 轴、y 轴交于B (-1,0)、C (0,4),……………(1分)∵抛物线22y ax ax c =-+(a ≠ 0)经过点B (-1,0)、C (0,4),∴204a a c c ++=⎧⎨=⎩,解得434a c ⎧=-⎪⎨⎪=⎩,∴抛物线的解析式为248433y x x =-++.……(1分) ∵抛物线22y ax ax c =-+的对称轴为直线1x =,∴A (3,0).……………………(1分) (2)设直线AC 的解析式为y=kx+b (k ≠ 0).∵A (3,0)、点C (0,4).∴304k b b +=⎧⎨=⎩,解得434k b ⎧=-⎪⎨⎪=⎩∴直线AC 的解析式为443y x =-+.…………(1分)∵点M 在AC 上,点P 在抛物线248433y x x =-++上,且点M 的横坐标为m , ∴M (m ,443m -+)、P (m ,248433m m -++),∴ PM=PE -ME =2443m m -+.……………………………………………………(2分)(3)由题意PG= PE -EF= 24833m m -+, CG=m ………………………………(1分)∵//ME CO ,∴所以∆AOC ∽∆AEM .∵∆PCF 和∆AEM 相似,∴∆PCF 和∆AOC 相似 ……………………………(1分)①若∆PFC ∽∆AOC ,则PCF ACO ∠=∠,有3tan tan 4PG PCG ACO CG ∠==∠=,即2483334m m m ⎛⎫-+÷= ⎪⎝⎭;解得2316m =.(2分)②若∆PFC ∽∆ACO ,则PCF AOC ∠=∠, 有3tan tan 4CG CPG ACO PG ∠==∠=,即2484333m m m ⎛⎫-+÷= ⎪⎝⎭,解得1m =.………………………………………(2分) 综上所述,当∆PCF 和∆AEM 相似时,2316m =或1m =25.(1)解:作AF OB ⊥,垂足为点F . 在Rt AOF ∆中,3sin 5AF O OA∠==5OE =,∴3AF =, ∴4OF ==O D x =,∴5AB AD x ==- ∴BF ==,A B A C A F B C =⊥,∴2y BF ==(0x <<(2)解:由题意得点A ′在AF 联结A ′D ,作A H OA '⊥,垂足为点在Rt A HA '∆中424cos 655A H A A FAO ''=⨯∠=⨯=(1分)若⊙A ′与直线O A 相切,则有x -=5524(1`分) ∴51=x ………(1`分)(3)解:57-=-=x AD HA HD 在Rt A HD '∆中,A D '=== ①若⊙'A 与⊙D 外切,则A D DO A B ''=+,有(5)x x +-=,得145x =. ………………………(2`分)②若⊙'A 与⊙D 内切,则A D DO A B ''=-,有(5)x x --=8615x ∴=(舍). ………………………(2分)综上所述,当x =145时两圆相外切。
2015年中考数学试题及答案

2015年中考数学数学试题卷本卷共六大题,24小题,共120分。
考试时间120分钟一、选择题(本大题共6小题,每小题3分,共18分) 1、比-2013小1的数是() A 、-2012B 、2012C 、-2014D 、20142、如图,直线l 1∥l 2,∠1=40°,∠2=75°,则∠3=() 21l 1 l 2A 、70°B 、65°C 、60°D 、55°33、从棱长为a 的正方体零件的一角,挖去一个棱长为0.5a 的小正方体, 得到一个如图所示的零件,则这个零件的左视图是()A 、B 、C 、D 、正面4、某红外线遥控器发出的红外线波长为0.00000094m ,用科学计数法表示这个数是() -77mC 、9.4×10-88mA 、9.4×10mB 、9.4×10mD 、9.4×10 5、下列计算正确的是() A 、(2a -1)2=4a 2-1B 、3a 6÷3a 3=a 2C 、(-ab 2)4=-a 4b 6D 、-2a +(2a -1)=-16、某县盛产枇杷,四星级枇杷的批发价比五星级枇杷的批发价每千克低4元。
某天,一 位零售商分别用去240元,160元来购进四星级与五星级这两种枇杷,其中,四星级枇杷 比五星级枇杷多购进10千克。
假设零售商当天购进四星级枇杷x 千克,则列出关于x 的 方程为()A 、 240 x +4= 160 x -10240 x B 、160 -4= x -10 240 C 、 x -10 160 x +4= 240 D 、 x -10 160 x -4= 二、填空题(本大题共8小题,每小题3分,共24分) 2-x =。
7、因式分解:xy2+x +2k =0的一个根,则它的另一个根是。
8、已知x =1是关于x 的方程x9、已知 2x 3y 1 3 =,则分式 x -2y x +2y 的值为。
2023年黑龙江省哈尔滨市德强中学中考模拟数学试题(六)

2023年黑龙江省哈尔滨市德强中学中考模拟数学试题(六)学校:___________姓名:___________班级:___________考号:___________一、单选题1.7℃比2℃高( )A .5℃B .-5℃C .9℃D .-9℃ 2.下列运算正确的是( )A .3a+2b =5abB .a 2•a 3=a 6C .a•a 4=a 4D .(a 3b )2=a 6b 23.以下四个商标中,是轴对称图形,但不是中心对称图形的是( ) A . B . C . D . 4.下面的几何体中,俯视图为三角形的是( )A .B .C .D . 5.如图,PA .PB 分别与O e 相切于A .B 两点,点C 为O e 上一点,连接AC .BC ,若50P ∠=︒,则ACB ∠的度数为( ).A .60︒;B .75︒;C .70︒;D .65︒.二、多选题三、单选题7.将抛物线2y x =向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )AD AE AG AE BD CE AG CE 四、填空题角形,则BCD ∠的度数为_____.20.如图,在ABC V 中,CD 为中线,BE CD ⊥交AC 于点E ,若5BC CD BE ===,则线段AC 的长为____________.五、解答题(2)通过计算将条形统计图补充完整;(3)该校九年级共有1000人参加了这次考试,请估算该校九年级共有多少名学生的数学成绩达到优秀?24.如图1,在ABC V 中,AB AC =,AD 平分BAC ∠,O 是AC 的中点,连接DO ,过点C 作//CE DA ,交DO 的延长线于点E ,连接AE .(1)求证:四边形ADCE 是矩形;(2)如图2,若F 是CE 上一动点(点F 不与C 、E 重合),连接AF 、DF 、BE ,在不添加任何辅助线的情况下,直接写出图2中与四边形ABDF 面积相等的所有三角形和四边形(四边形ABDF 除外).25.一个电器超市购进A ,B 两种型号的电风扇后进行销售,若一台A 种型号的电风扇进价比一台B 种型号的电风扇进价多30元,用2000元购进A 种型号电风扇的数量是用3400元购进B 种型号电风扇的数量的一半.(1)求每台A 种型号电风扇和B 种型号的电风扇进价分别是多少?(2)该超市A 种型号电风扇每台售价260元,B 种型号电风扇每件售价190元,超市根据市场需求,决定再采购这两种型号的电风扇共30台,若本次购进的两种电风扇全部售出后,总获利不少于1400元,求该超市本次购进A 种型号的电风扇至少是多少台? 26.ABE V 内接于⊙O ,C 在劣弧AB 上,连CO 交AB 于D ,连BO ,COB E ∠=∠.(1)如图1,求证:CO AB ⊥;(2)如图2,BO 平分ABE ∠,求证:AB BE =;7。
辽宁中考数学模拟测试卷(6)

辽宁中考数学模拟测试卷(6)一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2021秋•东台市期末)第24届冬季奥林匹克运动会将于2022年2月4日在北京开幕,下列四个图标分别是四届冬奥会图标中的一部分,其中是轴对称图形的为()A.B.C.D.2.(3分)(2021秋•东港区期末)截至2021年6月10日,31个省(自治区、直辖市)和新疆生产建设兵团累计报告接种新冠病毒疫苗89277万剂次,其中89277万剂次用科学记数法表示为()A.89.277×107剂次B.8.9277×108剂次C.0.89277×109剂次D.8.9277×109剂次3.(3分)(2022•秦淮区校级模拟)的值等于()A.B.﹣C.±D.4.(3分)(2021秋•薛城区期末)数据﹣1,x,3,4,4的平均数是2,则x是()A.﹣1B.0C.3D.45.(3分)(2021秋•方正县期末)若a、b、c为一个三角形的三边,则代数式(a﹣c)2﹣b2的值为()A.一定为正数B.一定为负数C.可能为正数,也可能为负数D.可能为零6.(3分)(2021秋•凉山州期末)下列图形中,不是轴对称图形的是()A.B.C.D.7.(3分)(2022•钟山县校级模拟)下面四个图形中,∠1与∠2是对顶角的图形为()A.B.C.D.8.(3分)(2021秋•咸丰县期末)如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF=S△ABC;④BE+CF=EF.当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合).上述结论中始终正确的有()A.1个B.2个C.3个D.4个9.(3分)(2021秋•宁波期末)一次函数y=﹣4x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.(3分)(2021秋•东港区校级期末)如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=上,且OA⊥OB,tan B=,则k的值为()A.﹣6B.﹣1C.﹣3D.﹣4二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2022春•海陵区校级月考)若分式有意义,则实数x的取值范围是.12.(3分)(2021秋•东坡区期末)计算:35.1°+40.5°=.(结果用度表示)13.(3分)(2021秋•宁远县期末)若关于x的方程(m﹣2)x|m|﹣2x﹣3=0是一元二次方程,则m=.14.(3分)(2021秋•淮阴区期末)如图,在Rt△ABC中,CD是斜边AB上的中线,若AB =2,则CD=.15.(3分)(2021秋•西湖区期末)如图,AB,BC,CD,DE是四根长度相同的火柴棒,点A、C、E共线.若AC=6,CE=8,CD⊥BC,则一根火柴棒的长度为.16.(3分)(2021秋•桓台县期末)如图,平行四边形ABCD中,对角线AC、BD相交于点O,若AB=2,BC=3,∠ABC=60°,则图中阴影部分的面积是.三.解答题(共2小题,满分20分,每小题10分)17.(10分)(2022•宝山区模拟)计算:|2sin45°﹣tan45°|+.18.(10分)(2022•湘乡市模拟)某市为了解八年级学生视力健康状况,在全市随机抽查了400名八年级学生2021年初的视力数据,并调取该批学生2020年初的视力数据,制成如图统计图(不完整):青少年视力健康标准类别视力健康状况A视力≥5.0视力正常B 4.9轻度视力不良C 4.6≤视力≤4.8中度视力不良D视力≤4.5重度视力不良根据以上信息,请解答;(1)求被抽查的400名学生中2020年初视力正常(类别A)的人数.(2)若2021年初该市有八年级学生2万人,请估计这些学生2021年初视力正常的人数比2020年初增加了多少人?(3)国家卫健委要求,全国初中生视力不良率控制在69%以内,请估计该市八年级学生2021年初视力不良率是否符合要求?并说明理由.四.解答题(共2小题,满分20分,每小题10分)19.(10分)(2021秋•澧县期末)第24届冬奥会将于2022年2月4日在我国首都北京拉开帷幕,大大激起了人们参与体育运动的热情.我们知道,人在运动时的心跳速率通常和人的年龄有关,如果用a表示一个人的年龄,b表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么有b=0.8(220﹣a).(1)正常情况下,在运动时一个15岁的少年所能承受的每分钟心跳的最高次数是多少?(2)一个45岁的人运动时,10秒钟的心跳次数为22次,他有危险吗?20.(10分)(2021秋•晋江市期末)某区大力发展绿色农产品,有一种有机水果A特别受欢迎,某水果批发商以市场价每千克10元的价格收购了6000千克水果A,立即将其冷藏,请根据下列信息解决问题:①水果A的市场价格预计每天每千克上涨0.1元;②这批水果平均每天有10千克损坏,不能出售;③每天的冷藏费用为300元;④该水果最多保存110天;将这批水果A存放x天后按当天市场价一次性出售,(1)x天后这批水果的销售价格为每千克元;(2)若x天后一次性出售所得利润为9600元,求x的值.五.解答题(共2小题,满分22分)21.(10分)(2022•江阳区模拟)如图,一个人骑自行车由A地出发途经B地到C地.已知A地的北偏东45°方向(3+3)km处有一电视塔P.他由A地向正北方向骑行到达B地时发现电视塔P在他北偏东75°方向,然后他由B地向北偏东方向15°骑行了6km到达C地.(1)求A地与B地的距离;(2)求C地与电视塔P的距离.22.(12分)(2022春•华安县校级月考)小明根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完成:(1)函数y=|x﹣1|的自变量x的取值范围是;(2)列表,找出y与x的几组对应值.x…﹣10123…y…b1012…其中,b=;(3)在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;(4)函数y=|x﹣1|的最小值为.23.(12分)(2021秋•滦州市期末)某公司计划生产甲、乙两种产品,甲种产品所获年利润y1(万元)与投入资金n(万元)的平方成正比例;乙种产品所获年利润y2(万元)与投入资金n(万元)成正比例,并得到表格中的数据.设公司计划共投入资金m(万元)(m 为常数且m>0)生产甲、乙两种产品,其中投入甲种产品资金为x(万元)(其中0≤x ≤m),所获全年总利润W(万元)为y1与y2之和.n(万元)2y1(万元)0.1y2(万元)1(1)分别求y1和y2关于n的函数关系式;(2)求W关于x的函数关系式(用含m的式子表示);(3)当m=50时,公司市场部预判公司全年总利润W的最高值与最低值相差恰好是40万元,请你通过计算说明该预判是否正确.七.解答题(共1小题,满分14分,每小题14分)24.(14分)(2022•瓯海区一模)如图,在Rt△ABC中,∠ABC=90°,D是BC上的一点,且∠BAD=∠ACB,DE⊥AC于点F,交BC的平行线AE于点E.(1)求证:AD=DE.(2)若BD=,CD=.①求AC的长.②过点E作EG⊥AD于点G,在射线AC上取一点M与△AEG某一边的两端点,构成以M为顶点的角等于∠ACB,求所有满足条件的AM的长.25.(14分)(2022•四会市一模)如图,已知二次函数y=x2+bx+c经过A,B两点,BC⊥x 轴于点C,且点A(﹣1,0),C(4,0),AC=BC.(1)求抛物线的解析式;(2)点E是线段AB上一动点(不与A,B重合),过点E作x轴的垂线,交抛物线于点F,当线段EF的长度最大时,求点E的坐标及S△ABF;(3)点P是抛物线对称轴上的一个动点,是否存在这样的P点,使△ABP成为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.。
2015年中考数学模拟试题参考答案

2015年中考数学模拟试题参考答案1-10:DADBBDAABB(11)2(12)1.49×810(13 )83(14)1425 (15)8(16)75° 17(1)y=-2x+4 (2)x ≤118(1)略 (2)105°19(1)P P 略P 略略略略PPPP略略P 略PPPPPp 凭PPPPPPp(2)树形图略P=81520(1)(2)略.(3)P(0,1), y=-12x+7421(1)连接BD ,OD ,作OG ⊥CD 于G ,DE ⊥AB 于E.则OG=DE=125,22221127-=2510DG OD OG =-=()()725DC DG ∴==(2)连接BD,由tan ∠BAC=12。
设BC=a,则AC=2a,222=A 2+(=52a)Baa=25 a=5 作DH ⊥BC 于H ,则3cos DCH cos 5BAD ∠=∠=设DC=x,则CH=35x ,45DH x =.由勾股定理得:222435554x x ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭解得5x =,负值舍去。
5DC ∴=.22.(1)设调整价格后的标价是y.元.80757520100100100100160160y -⨯=⨯⨯180y ∴=(2)(x 120)(2x 400)3000--+=12150,170x x ∴==(3)6a ≤<1023.解:⑴当k=2时AB=BC=2CD ,又E 是BC 的中点.∴BC=2BE ,∴BE=CD.又∠ABC=∠BCD.∴△ABE ≌△BCD.∴∠CBD=∠BAE ,∴∠AFB=∠CBD +∠AEB=∠BAE +∠AEB=180°-∠ABC=60°.⑵作BH ⊥AC 于H ,则CH=21AC ,又AG=3GC ,∴AC=4GC. ∴CH=2GC.∴GH=GC ,∵AB=BC ,∠ABC=120°,∴∠ACB=30°.∴∠ACD=120°-30°=90°, ∴BH ∥CD.∴1==GCGHCD BH ,∴BH=CD 设CD=BH=1,则AB=k , 又Rt △ABH 中∠BAH=30°,∴AB=2BH=2,即k=2.⑶由∠ABC=∠BCD=∠APD=120°可证△ABP ∽△PCD ∴CD BP PC AB =设CD=1,PB=x 则AB=BC=k ,PC=k -x.∴1xx k k =- ∴x 2-kx +k =0由点P 的唯一性可知方程有两个相等的实根,∴△=k 2-4k =0,∴k =4.24.解:⑴将A (-t ,0),B (3t ,0),C (0,-3)代入可求321)3)((1222--=-+=x tx t t x t x t y ⑵作DG ⊥x 轴于G ,EH ⊥x 轴于H.由y D =y C =-3得332122-=--x tx t ,∴x=0或x=2t.∴x D =2t.∴AG=3t.设E (x E ,y E ),则y E =21t (x E +t)(x E -3t),易证△AGD ∽△AHE ,∴EHDGAH AG =∴)3)((1332t x t x t t x t E E E -+=+∴x E =4t ,∴AH=5t ,∴5353===t t AH AG AE AD . ⑶t=1时y=x 2―2x ―3,设PM 的解析式为:y=kx +m ,由⎩⎨⎧--=+=322x x y m kx y 得x 2-(k +2)x -m -3=0,△=(k +2)2+4(m +3)=0,∴k +2=±23--m ,设x M >0,x N <0则x m =322--=+m k , y M =―m ―3―233---m ,x N =-3-m ,y N =-m -3+233---m .由x M +x N =0知Q为MN的中点.可得y Q =6)122(21)(21--=--=+m m y y N M ,∴QC=y Q -y C =―m ―6―(―3)=―m ―3.CP =―3―m ,∴CP =CQ.。
2015届中考数学模拟试卷附 答案
2015届中考数学模拟试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列四个数中,最大的数是( )A.3 B.﹣1 C.0 D.2.下列运算正确的是( )A.a3•a2=a6B.a6÷a3=a3C.(a﹣b)2=a2﹣b2D.(﹣a2)3=(﹣a3)2 3.下列四个几何体中,主视图与其它三个不同的是( )A.B.C.D.4.不等式组的解集为( )A.x>3 B.x≤4 C.3<x<4 D.3<x≤45.若一个多边形的内角和等于其外角和,则这个多边形的边数是( )A.6 B.5 C.4 D.36.下列说法中正确的是( )A.“打开电视,正在播放《新闻联播》”是必然事件B.一组数据的波动越大,方差越小C.数据1,1,2,2,3的众数是3D.想了解某种饮料中含色素的情况,宜采用抽样调查7.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径是OA,点P是优弧上的一点,则tan∠APB的值是( )A.1 B.C.D.8.如图,在平面直角坐标系xOy中,Rt△OAC,Rt△OA1C1,Rt△OA2C2,…的斜边都在坐标轴上,∠AOC=∠A1OC1=∠A2OC2=∠A3OC3=…=30°.若点A的坐标为(3,0),OA=OC1,OA1=OC2,OA2=OC3,…则依此规律,点A2015的纵坐标为( )A.0 B.C.D.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.4的算术平方根是__________.10.分解因式:a3﹣9a=__________.11.今年3月底在上海和安徽两地发现的H7N9型禽流感是一种新型禽流感.研究表明,禽流感病毒的颗粒呈球形,杆状或长丝状,其最小直径约为0.00000008m,其最小直径用科学记数法表示约为__________m.12.若在实数范围内有意义,则x的取值范围是__________.13.如图,过∠CDF的一边上DC的点E作直线AB∥DF,若∠AEC=110°,则∠CDF的度数为__________°.14.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5m,水面宽AB为8m,则水的最大深度CD为__________m.15.如图,将一个圆心角为120°,半径为6cm的扇形围成一圆锥侧面(OA、OB重合),则围成的圆锥底面半径是__________cm.16.在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是__________.17.已知点A(m,n)是一次函数y=﹣x+3和反比例函数的一个交点,则代数式m2+n2的值为__________.18.如图所示,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y 轴的平行线,与反比例函数的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连接OB1、OB2、OB3,若图中三个阴影部分的面积之和为,则k=__________.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)19.计算:|2﹣1|+(﹣1)0﹣()﹣1﹣tan30°.20.先化简,再求值:÷(﹣a﹣2),其中a2+3a﹣1=0.21.某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查.被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动评价.图(1)和图(2)是该小组采集数据后绘制的两幅统计图.经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息,解答下列问题:(1)此次调查的学生人数为__________;(2)条形统计图中存在错误的是__________(填A、B、C中的一个),并在图中加以改正;(3)在图(2)中补画条形统计图中不完整的部分;(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人?22.如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?23.在一个不透明的口袋里装有分别标有数字﹣3、﹣1、0、2的四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀.(1)从中任取一球,求抽取的数字为正数的概率;(2)从中任取一球,将球上的数字记为a,求关于x的一元二次方程ax2﹣2ax+a+3=0有实数根的概率;(3)从中任取一球,将球上的数字作为点的横坐标,记为x(不放回);再任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第二象限内的概率.24.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:=1.73,=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.25.如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于点D,延长AO交⊙O于点E,连接CD,CE,若CE是⊙O的切线,解答下列问题:(1)求证:CD是⊙O的切线;(2)若BC=3,CD=4,求平行四边形OABC的面积.26.某仓储系统有12条输入传送带,12条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图(1),每条输出传送带每小时出库的货物流量如图(2),而该日仓库中原有货物8吨,在0时至5时,仓库中货物存量变化情况如图(3).(1)每条输入传送带每小时进库的货物流量为多少吨?每条输出传送带每小时出库的货物流量为多少吨?(2)在0时至5时内,仓库内货物存量y(吨)与时间x(小时)之间的函数关系式,并写出自变量x的取值范围;(3)在4时至5时有多少条输入传送带和输出传送带在工作?27.【情境阅读】在图1中,点A在边OB上,点D在边OC上,且AD∥BC﹒将这样的图形定义为“A型”﹒将△OAD绕着点O旋转α°(0<α<90)得到新的图形(如图2),将图2中的四边形A′B′C′D′称为“准梯形”,A′D′称为上底,B′C′称为下底﹒【新知学习】(1)若情境阅读中的△OBC是等腰直角三角形,OB=OC,∠BOC=90°,其余条件不变﹒①请说明图2中的△O′A′B′≌△O′D′C′﹒②在图1中,S四边形ABCD=S△OBC﹣S△OAD,请探索图2中的S四边形A′B′C′D′与图1中的S四边的大小关系﹒【变式探究】形ABCD(2)如图3,四边形ABCD是由有一个角是60°的“A型”通过旋转变换得到的“准梯形”,AD 是上底,BC是下底,且AB=5,BC=8,CD=5,DA=2﹒求这个“准梯形”的面积.【迁移拓展】(3)如图4是由具有公共直角顶点的“A型”绕着直角定点旋转α°(0<α<90)得到的“准梯形”,斜边AD为上底,斜边BC为下底,且AB=3,BC=4,CD=6,AD=3.求这个“准梯形”的面积.28.如图,在平面直角坐标系中,四边形ABCD为梯形,AD∥BC,∠C=90°,tan∠ABC=2,点D(﹣8,6),将△AOB沿直线AB翻折,点O落在点E处,直线AE交x轴于点F.(1)求点F的坐标;(2)矩形AOCD以每秒1个单位长度的速度沿x轴向右运动,当点C′与点F重合时停止运动,运动后的矩形A′O′C′D′与△AOF重合部分的面积为S,设运动时间为t秒,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,在矩形A′O′C′D′运动过程中,直线A′O′与射线AB交于G,是否存在时间t,使点A关于直线FG的对称点恰好落在x轴上?若存在,求t的值;若不存在,请说明理由.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列四个数中,最大的数是( )A.3 B.﹣1 C.0 D.考点:实数大小比较.分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解答:解:根据实数比较大小的方法,可得﹣1,所以最大的数是3.故选:A.点评:此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.下列运算正确的是( )A.a3•a2=a6B.a6÷a3=a3C.(a﹣b)2=a2﹣b2D.(﹣a2)3=(﹣a3)2考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.专题:计算题.分析:分别根据同底数幂的乘法、同底数幂的除法、完全平方公式及幂的乘方与积的乘方法则对各选项进行逐一判断即可.解答:解:A、a3•a2=a3+2=a5,故本选项错误;B、a6÷a3=a6﹣3=a3,故本选项正确;C、(a﹣b)2=a2+b2﹣2ab,故本选项错误;D、(﹣a2)3=﹣a6,而(﹣a3)2=a6,故本选项错误.故选B.点评:本题考查的是同底数幂的除法及乘法、幂的乘方与积的乘方法则及完全平方公式,熟知以上知识是解答此题的关键.3.下列四个几何体中,主视图与其它三个不同的是( )A.B.C.D.考点:简单组合体的三视图.分析:根据主视图是从正面看得到的图形,可得答案.解答:解:A、的主视图是第一层两个小正方形,第二层左边一个小正方形,B、的主视图是第一层两个小正方形,第二层左边一个小正方形,C、的主视图是第一层两个小正方形,第二层左边一个小正方形,D、的主视图是第一层两个小正方形,第二层左两个小正方形,故选:D.点评:本题考查了简单组合体的三视图,从正面看得到的视图是主视图.4.不等式组的解集为( )A.x>3 B.x≤4 C.3<x<4 D.3<x≤4考点:解一元一次不等式组.专题:计算题.分析:本题可根据不等式组分别求出x的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交点,则不等式无解.解答:解:依题意得:在数轴上表示为:∴原式的解集为3<x≤4.故选D.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x大于较小的数、小于较大的数,那么解集为x介于两数之间.5.若一个多边形的内角和等于其外角和,则这个多边形的边数是( )A.6 B.5 C.4 D.3考点:多边形内角与外角.分析:任何多边形的外角和是360度,根据n边形的内角和是(n﹣2)•180°,可得方程(n ﹣2)•180=360,解方程就可以求出多边形的边数.解答:解:设多边形的边数为n,根据题意,得(n﹣2)•180=360,解得:n=4,故选C.点评:本题主要考查了多边形的内角和以及外角和,已知多边形的内角和求边数,可以转化为方程的问题来解决.6.下列说法中正确的是( )A.“打开电视,正在播放《新闻联播》”是必然事件B.一组数据的波动越大,方差越小C.数据1,1,2,2,3的众数是3D.想了解某种饮料中含色素的情况,宜采用抽样调查考点:全面调查与抽样调查;众数;方差;随机事件.分析:分别根据必然事件的定义,方差的性质,众数的定义及抽样调查的定义进行判断即可.解答:解:A、“打开电视,正在播放《新闻联播》”是随机事件,故本选项错误;B、一组数据的波动越大,方差越大,故本选项错误;C、数据1,1,2,2,3的众数是1和2,故本选项错误;D、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确.故选D.点评:本题考查了必然事件的定义,方差的性质,众数的定义及抽样调查的定义,知识点较多,但都是基础知识,需牢固掌握.7.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径是OA,点P是优弧上的一点,则tan∠APB的值是( )A.1 B.C.D.考点:圆周角定理;锐角三角函数的定义.专题:压轴题;网格型.分析:由题意可得:∠AOB=90°,然后由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠APB的度数,又由特殊角的三角函数值,求得答案.解答:解:由题意得:∠AOB=90°,∴∠APB=∠AOB=45°,∴tan∠APB=tan45°=1.故选A.点评:此题考查了圆周角定理与特殊角的三角函数值问题.此题难度不大,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.8.如图,在平面直角坐标系xOy中,Rt△OAC,Rt△OA1C1,Rt△OA2C2,…的斜边都在坐标轴上,∠AOC=∠A1OC1=∠A2OC2=∠A3OC3=…=30°.若点A的坐标为(3,0),OA=OC1,OA1=OC2,OA2=OC3,…则依此规律,点A2015的纵坐标为( )A.0 B.C.D.考点:规律型:点的坐标.分析:根据题意确定出A1,A2,A3,A4…纵坐标,归纳总结得到点A2015的纵坐标与A3纵坐标相同,即可得到结果.解答:解:∵点A1的坐标为(3,0),OA1=OC2=3,在Rt△OA2C2中,∠A2OC2=30°,设A2C2=x,则有OA2=2x,根据勾股定理得:x2+9=4x2,解得:x=,即OA2=2,∴A2纵坐标为2,由OA2=OC3=2,在Rt△OA3C3中,∠A3OC3=30°,设A3C3=y,则有OA3=2y,根据勾股定理得:y2+12=4y2,解得:y=2,即OA3=4,∴A3纵坐标为0,∵2015÷4=503…3,∴点A2015的纵坐标与A3纵坐标相同,为0.故选:A.点评:此题考查了规律型:点的坐标,判断出点A2015的纵坐标与A3纵坐标相同是解本题的关键.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.4的算术平方根是2.考点:算术平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:∵22=4,∴4算术平方根为2.故答案为:2.点评:此题主要考查了算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.10.分解因式:a3﹣9a=a(a+3)(a﹣3).考点:提公因式法与公式法的综合运用.分析:本题应先提出公因式a,再运用平方差公式分解.解答:解:a3﹣9a=a(a2﹣32)=a(a+3)(a﹣3).点评:本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.11.今年3月底在上海和安徽两地发现的H7N9型禽流感是一种新型禽流感.研究表明,禽流感病毒的颗粒呈球形,杆状或长丝状,其最小直径约为0.00000008m,其最小直径用科学记数法表示约为8×10﹣8m.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.00000008m=8×10﹣8;故答案为:8×10﹣8.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.若在实数范围内有意义,则x的取值范围是x≤.考点:二次根式有意义的条件.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,1﹣2x≥0,解得x≤.故答案为:x≤.点评:本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.13.如图,过∠CDF的一边上DC的点E作直线AB∥DF,若∠AEC=110°,则∠CDF的度数为70°.考点:平行线的性质.专题:探究型.分析:先根据平角的定义求出∠CEB的度数,再由平行线的性质即可得出结论.解答:解:∵∠AEC=110°,∠AEC+∠CEB=180°,∴∠CEB=180°﹣110°=70°,∵AB∥DF,∴∠CDF=∠CEB=70°.故答案为:70.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.14.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5m,水面宽AB为8m,则水的最大深度CD为2m.考点:垂径定理的应用;勾股定理.分析:根据题意可得出AO=5cm,AC=4cm,由勾股定理得出CO的长,则CD=OD﹣OC=AO ﹣OC.解答:解:如图所示:∵输水管的半径为5m,水面宽AB为8m,水的最大深度为CD,∴DO⊥AB,∴AO=5m,AC=4m,∴CO==3(m),∴水的最大深度CD为:CD=OD﹣OC=AO﹣OC=2m.故答案是:2.点评:本题考查的是垂径定理的应用及勾股定理,根据题意构造出直角三角形是解答此题的关键.15.如图,将一个圆心角为120°,半径为6cm的扇形围成一圆锥侧面(OA、OB重合),则围成的圆锥底面半径是2cm.考点:圆锥的计算.专题:计算题.分析:把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.解答:解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,r=2cm.故答案为2.点评:主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.16.在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是10.考点:利用频率估计概率.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.解答:解:由题意可得,=0.2,解得,n=10.故估计n大约有10个.故答案为:10.点评:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.17.已知点A(m,n)是一次函数y=﹣x+3和反比例函数的一个交点,则代数式m2+n2的值为7.考点:反比例函数与一次函数的交点问题.分析:先解两函数式组成的方程组,得出一个一元二次方程,根据根与系数的关系得出m+n=3,mn=1,再根据完全平方公式变形后代入求出即可.解答:解:方程组得:=﹣x+3,即x2﹣3x+1=0,∵点A(m,n)是一次函数y=﹣x+3和反比例函数的一个交点,∴m+n=3,mn=1,∴m2+n2=(m+n)2﹣2mn=32﹣2×1=7,故答案为:7.点评:本题考查了反比例函数和一次函数的交点问题,一元二次方程的根与系数的关系,完全平方公式的应用,主要考查学生的理解能力和计算能力.18.如图所示,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y 轴的平行线,与反比例函数的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连接OB1、OB2、OB3,若图中三个阴影部分的面积之和为,则k=8.考点:反比例函数综合题.分析:先根据反比例函数比例系数k的几何意义得到S△OB1C1=S△OB2C2=S△OB3C3=|k|=k,再根据相似三角形的面积比等于相似比的平方,得到用含k的代数式表示3个阴影部分的面积之和,然后根据三个阴影部分的面积之和为,列出方程,解方程即可求出k的值.解答:解:根据题意可知,S△OB1C1=S△OB2C2=S△OB3C3=|k|=k,∵OA1=A1A2=A2A3,A1B1∥A2B2∥A3B3∥y轴,设图中阴影部分的面积从左向右依次为s1,s2,s3则s1=k,∵OA1=A1A2=A2A3,∴s2:S△OB2C2=1:4,s3:S△OB3C3=1:9,∴s2=k,s3=k,∴k+k+k=,解得k=8.故答案为:8.点评:此题综合考查了反比例函数的性质,此题难度稍大,综合性比较强,注意反比例函数上的点向x轴与y轴引垂线形成的矩形面积等于反比例函数的比例系数|k|.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)19.计算:|2﹣1|+(﹣1)0﹣()﹣1﹣tan30°.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用负整数指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=2﹣1+1﹣﹣=.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:÷(﹣a﹣2),其中a2+3a﹣1=0.考点:分式的化简求值.专题:计算题.分析:先把括号内通分,再把分子分母因式分解,接着把除法运算化为乘法运算,则约分后得到原式=﹣,然后把a2+3a﹣1=0变形得到a2+3a=1,再利用整体代入的方法计算.解答:解:原式=÷=•=﹣=﹣,∵a2+3a﹣1=0,∴a2+3a=1,∴原式=﹣=﹣.点评:分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.21.某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查.被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动评价.图(1)和图(2)是该小组采集数据后绘制的两幅统计图.经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息,解答下列问题:(1)此次调查的学生人数为200;(2)条形统计图中存在错误的是C(填A、B、C中的一个),并在图中加以改正;(3)在图(2)中补画条形统计图中不完整的部分;(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据A、B的人数和所占的百分比求出抽取的学生人数,并判断出条形统计图A、B长方形是正确的;(2)根据(1)的计算判断出C的条形高度错误,用调查的学生人数乘以C所占的百分比计算即可得解;(3)求出D的人数,然后补全统计图即可;(4)用总人数乘以A、B所占的百分比计算即可得解.解答:解:(1)∵40÷20%=200,80÷40%=200,∴此次调查的学生人数为200;(2)由(1)可知C条形高度错误,应为:200×(1﹣20%﹣40%﹣15%)=200×25%=50,即C的条形高度改为50;故答案为:200;C;(3)D的人数为:200×15%=30;(4)600×=360(人).答:该校对此活动“非常喜欢”和“比较喜欢”的学生有360人.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBF E是平行四边形;(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?考点:三角形中位线定理;平行四边形的判定;菱形的判定.专题:几何图形问题.分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;(2)根据邻边相等的平行四边形是菱形证明.解答:(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;(2)解:当AB=BC时,四边形DBFE是菱形.理由如下:∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,∴DE=BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.23.在一个不透明的口袋里装有分别标有数字﹣3、﹣1、0、2的四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀.(1)从中任取一球,求抽取的数字为正数的概率;(2)从中任取一球,将球上的数字记为a,求关于x的一元二次方程ax2﹣2ax+a+3=0有实数根的概率;(3)从中任取一球,将球上的数字作为点的横坐标,记为x(不放回);再任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第二象限内的概率.考点:列表法与树状图法;根的判别式;点的坐标;概率公式.专题:计算题.分析:(1)四个数字中正数有一个,求出所求概率即可;(2)表示出已知方程根的判别式,根据方程有实数根求出a的范围,即可求出所求概率;(3)列表得出所有等可能的情况数,找出点(x,y)落在第二象限内的情况数,即可求出所求的概率.解答:解:(1)根据题意得:抽取的数字为正数的情况有1个,则P=;(2)∵方程ax2﹣2ax+a+3=0有实数根,∴△=4a2﹣4a(a+3)=﹣12a≥0,且a≠0,解得:a<0,则关于x的一元二次方程ax2﹣2ax+a+3=0有实数根的概率为;(3)列表如下:﹣3 ﹣1 0 2﹣3 ﹣﹣﹣(﹣1,﹣3)(0,﹣3)(2,﹣3)﹣1 (﹣3,﹣1)﹣﹣﹣(0,﹣1)(2,﹣1)0 (﹣3,0)(﹣1,0)﹣﹣﹣(2,0)2 (﹣3,2)(﹣1,2)(0,2)﹣﹣﹣所有等可能的情况有12种,其中点(x,y)落在第二象限内的情况有2种,则P==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.24.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:=1.73,=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.考点:解直角三角形的应用.分析:(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.解答:解:(1)由題意得,在Rt△ADC中,AD==≈36.33(米),…2分在Rt△BDC中,BD=≈12.11(米),…4分则AB=AD﹣BD=36.33﹣12.11=24.22≈24.2(米)…6分(2)超速.理由:∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1×3600=43560(米/时),∴该车速度为43.56千米/小时,…9分∵大于40千米/小时,∴此校车在AB路段超速.…10分点评:此题考查了解直角三角形的应用问题.此题难度适中,解题的关键是把实际问题转化为数学问题求解,注意数形结合思想的应用.25.如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于点D,延长AO交⊙O于点E,连接CD,CE,若CE是⊙O的切线,解答下列问题:(1)求证:CD是⊙O的切线;(2)若BC=3,CD=4,求平行四边形OABC的面积.考点:切线的判定与性质;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:(1)连接OD,求出∠EOC=∠DOC,根据SAS推出△EOC≌△DOC,推出∠ODC=∠OEC=90°,根据切线的判定推出即可;(2)根据全等三角形的性质求出CE=CD=4,根据平行四边形性质求出OA=3,根据平行四边形的面积公式求出即可.解答:(1)证明:连接OD,∵OD=OA,∴∠ODA=∠A,∵四边形OABC是平行四边形,。
全套2015年初中数学中考模拟试卷+答案+答题卡
2015年中考模拟试卷 数学卷考生须知:1. 本试卷分试题卷和答题卷两部分。
满分120分,考试时间100分钟。
2. 答题时,应该在答题卷指定位置内写明校名,姓名和准考证号。
3. 所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应。
4. 考试结束后,上交试题卷和答题卷。
一.仔细选一选(本小题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个正确的,请把正确选项前的字母填在答题卷中相应的格子内,注意可以用多种不同的方法来选取正确答案。
1. 下列计算正确的是( )A .-2+∣-2∣=0 B. 02÷3=0 C. 248= D.2÷3×13=2 2.抛掷三枚均匀的硬帀,三枚都是同一面朝上的概率是 ( )(原创) A.12 B. 23 C. 14 D. 133. 64的算术平方根与2的相反数的倒数的积是( )(原创) A .4- B. 16- C. 2- D. 22-4.化简22x y y x x y+--的结果( )(原创) A. x y -- B. y x - C. x y - D. x y +5. Rt △ABC 中,斜边AB =4,∠B =060,将△ABC 绕点B 旋转060,顶点C 运动的路线长是( ) A.3πB. πC. 23πD. 43π6.在△ABC 中,若2sin 2B -+∣1cos 2C -∣=0,且∠B ,∠C 都是锐角,则∠A 的度数是 ( )(改编自05年中考第10题)A. 015 B. 060 C. 075 D. 0307.点P 在第三象限内,P 到X 轴的距离与到y 轴的距离之比为2:1,到原点的距离为5,则点P 的坐标为 ( )(改编自08年中考第3题)A .(1,2)- B. (2,1)-- C. (1,2)-- D. (1,2)-8.要在边长为16米的正方形草坪上安装喷水龙头,使整个草坪都能喷洒到水,假设每个喷水龙头的喷洒范围都是半径为6米的圆面,则需要安装这种喷水龙头的个数最少是 ( )A.3B.4C.5D.69.已知方程32530a a a -+=三个根分别为1a ,2a ,3a ,则计算123()a a a ++213()a a a ++312()a a a +的值( )(原创)A .5- B.6 C. 6- D.310.如图,钝角等腰三角形AOB ,EFG 的顶点O ,B ,E 在x 轴上,A ,F 在函数43(0)y x =〉图像上,且AE 垂直X 轴于点E ,∠ABO =∠FGE =0120,则F 点的坐标为 ( )(原创) A. 5151(,)22+- B. (153,51)+- C. 31553(,)22++ D. 513(,)22-二.认真填一填(本题有6个小题,每小题4分,共24分) 11.因式分解:2(2)8a b ab +- =____12平坦的草地上有A ,B ,C 三个小球,若已知A 球与B 球相距3米,A 球与C 球相距1米,则B 球与C 球的距离可能的范围为____ 13. 函数12xy -=的自变量x 的取值范围____14. 如图,正三角形ABC 内接于圆O ,AD ⊥BC 于点D 交圆于点E ,动点P 在优 弧BAC 上,且不与点B ,点C 重合,则∠BPE 等于 ____(原创)15. 已知如图,平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点C ,点D 的坐标分别为 (0,4),(5,0),12OC OA =,点P 在BC 边上运动(不与B ,C 重合),当△ODP 是腰长为5的等腰三角形时,点P 的坐标为____ (改编自09年片月考卷第18题)16. 点P (a,-a )在曲线y 上,则点P 叫做曲线y 上的一个不动点,那么若曲线25y x x k =++不存在这样的不动点,则k 的取值范围是___(原创) 三.全面答一答(本题有8小题,共66分)17.(本小题满分6分)若关于x 的方程2233x m x x -=--无解,求m 的值 18. (本小题满分6分) 学校操场上有一块如图所示三角形空地,量得AB =AC =10米,∠B =022.5,学校打算种上草皮,并预定 53.610⨯平方厘米草皮,请你通过计算说明草皮是否够用。
江西中考数学模拟试卷(06)
江西中考数学模拟试卷(06)一.选择题(共6小题,满分18分,每小题3分)1.(3分)(2021秋•岳麓区校级期末)化简的结果是()A.B.C.D.2.(3分)(2022春•滕州市校级月考)如图,∠1和∠2是内错角的是()A.B.C.D.3.(3分)(2021秋•宜城市期末)计算的结果为()A.1B.﹣1C.D.4.(3分)(2021秋•黔江区期末)如图是根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是()A.扇形统计图能反映各部分在总体中所占的百分比B.每天阅读30分钟以上的居民家庭孩子超过50%C.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°D.每天阅读1小时以上的居民家庭孩子占20%5.(3分)(2021秋•潼南区期末)若二次函数y=ax2+bx+c的图象如图所示,则一次函数y =bx﹣c的图象大致是()A.B.C.D.6.(3分)(2021秋•定远县校级期末)如图,正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)7.(3分)(2022•重庆模拟)据中国电影数据信息网消息,截止到2021年12月7日,诠释伟大抗美援朝精神的电影《长津湖》累计票房已达57.43亿元.将57.43亿元用科学记数法表示元.8.(3分)(2022•香坊区校级开学)多项式(3x+2y)2﹣(2x+3y)2分解因式的结果是.9.(3分)(2021秋•高州市期末)已知关于x的一元二次方程x2﹣3x+1=0有两个不相等的实数根x1,x2,则x12+x22的值是.10.(3分)(2021秋•金水区校级期末)将正整数从1开始按如图所示的规律排成一个数阵.其中,2在第一个拐弯处,3在第二个拐弯处,5在第三个拐弯处,7在第四个拐弯处,…,则第50个拐弯处的数是.11.(3分)(2022春•秀英区校级月考)如图,在▱ABCD中,AB=5,AD=6,∠B=50°,点E在BC上,将▱ABCD沿AE折叠,点B恰好与点C重合,则∠ACD=°,cos ∠BAE的值为.12.(3分)(2017秋•苏州期末)如图,已知△ABC是等边三角形,D是BC边上的一个动点(异于点B、C),过点D作DE⊥AB,垂足为E,DE的垂直平分线分别交AC、BC于点F、G,连接FD,FE.当点D在BC边上移动时,有下列三个结论:①△DEF一定为等腰三角形,②△CFG一定为等边三角形,③△FDC可能为等腰三角形.其中正确的是.(填写序号)三.解答题(共5小题,满分30分,每小题6分)13.(6分)(2021秋•澄城县期末)计算:(﹣1)﹣1+(﹣5)2022•(﹣)2021.14.(6分)(2022•临清市一模)解不等式组,并利用数轴确定不等式组的解集.15.(6分)(2021秋•冷水滩区期末)先化简,再求值.已知a,b,c为△ABC的三边长,化简|a﹣b﹣c|﹣|b﹣c+a|,当a=2、c=3时,求出代数式的值.16.(6分)(2022•庐阳区一模)在平面直角坐标系中,△ABC的顶点位置如图所示.(1)作出△ABC关于x轴对称的图形△A1B1C1,若△ABC内部一点P的坐标为(a,b),则点P的对应点P1的坐标是;(2)将△ABC绕原点逆时针旋转90°得到△A2B2C2,画出△A2B2C2.17.(6分)(2021秋•渭滨区期末)已知A(﹣3,4),B(n,﹣2)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线AB与x轴交于点C.(1)求反比例函数和一次函数的关系式;(2)连接OB,求△AOB的面积.四.解答题(共3小题,满分24分,每小题8分)18.(8分)(2021秋•阿城区期末)晶莹计划购买A、B两种饮料,若购买8瓶A种饮料和5瓶B种饮料需用220元;若购买4瓶A种饮料和6瓶B种饮料需用152元.(1)求每瓶A种饮料和B种饮料各多少元;(2)晶莹决定购买A种饮料和B种饮料共15瓶,总费用不超过260元,那么最多可以购买多少瓶A种饮料?19.(8分)(2021秋•长安区期末)下列表格是刘小明一学期数学成绩的记录,根据表格提供的信息回答下面的问题:(注:每次考试满分都是100分)考试类别平时成绩期中考试期末考试第四章第五章第六章第七章成绩889290869096(1)刘小明6次成绩的众数与中位数之差是;(2)计算刘小明平时成绩的平均分;(3)计算刘小明平时成绩的方差;(4)按照学校规定,本学期的综合成绩的权重如扇形图所示,请你求出刘小明本学期的综合成绩,要写出解题过程.注:可能用到的公式.20.(8分)(2019春•江州区期中)如图所示,在月港有甲、乙两艘渔船,若甲渔船沿北偏东60°方向以每小时8海里的速度前进,乙渔船沿南偏东30°方向以每小时15海里的速度前进,两小时后,甲船到达M岛,乙船到达P岛.求P岛与M岛之间的距离.五.解答题(共2小题,满分18分,每小题9分)21.(9分)(2021秋•芙蓉区校级期末)我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点.如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N.点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y).(1)如图2,ω=45°,矩形OABC中的一边OA在x轴上,BC与y轴交于点D,OA =2,OC=1.①点A、B在此斜坐标系内的坐标分别为A、B;②设点P(x,y)在经过O、B两点的直线上,直接写出y与x之间满足的关系为;(2)若ω=120°,O为坐标原点.①如图3,圆M与y轴相切于原点O,被x轴截得的弦长OA=4,求圆M的半径及圆心M的斜坐标;②如图4,圆M的圆心斜坐标为M(2,2),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围.22.(9分)若二次函数设C1:y=a1(x﹣h1)2+k1(a1≠0)与二次函数C2:y=a2(x﹣h2)2+k2(a2≠0)满足条件:a1+a2=0,h1﹣h2=0,则我们称这两个函数是对称函数.根据对称函数的定义,解决下列问题:(1)若二次函数C1与C2是关于直线y=t的对称函数,则k1,k2与t之间的关系为;(2)已知二次函数C1与二次函数C2:y=﹣2x2+4x+3是关于直线y=0的对称函数,求二次函数C1的解析式;(3)抛物线C1的对称轴为直线x=﹣1,且抛物线C1是抛物线C2:y=tx2+x+关于直线y=2的对称函数,D为抛物线C2的顶点,直线y=﹣x+b与直线y=2相交于点A,与x轴相交于点B.①若直线y=﹣x+b与抛物线C1有唯一一个公共点,求b的值;②已知b=4,且抛物线C2沿直线OD平移后得到的抛物线y=a(x﹣h)2+k与线段AB有公共点,求h的取值范围.六.解答题(共1小题,满分12分,每小题12分)23.(12分)(2020•锦州一模)[阅读理解]构造“平行八字型”全等三角形模型是证明线段相等的一种方法,我们常用这种方法证明线段的中点问题.例如:如图,D是△ABC边AB上一点,E是AC的中点,过点C作CF∥AB,交DE的延长线于点F,则易证E是线段DF的中点.[经验运用]请运用上述阅读材料中所积累的经验和方法解决下列问题.(1)如图1,在正方形ABCD中,点E在AB上,点F在BC的延长线上,且满足AE=CF,连接EF交AC于点G.求证:①G是EF的中点;②CG=BE;[拓展延伸](2)如图2,在矩形ABCD中,AB=2BC,点E在AB上,点F在BC的延长线上,且满足AE=2CF,连接EF交AC于点G.探究BE和CG之间的数量关系,并说明理由;(3)如图3,若点E在BA的延长线上,点F在线段BC上,DF交AC于点H,BF=2,CF=1,(2)中的其它条件不变,请直接写出GH的长.。
2015年数学中考模拟试卷(扬州地区)
2015年数学中考模拟试卷(满分:150分 考试时间:120分钟)第Ⅰ卷(选择题共24分)一、选择题(本大题共8题,每题3分,共24分,每题的四个选项中,只有一个选项符合要求.) 1.(原创题)下列计算正确的是( ▲ ) A .325()a a = B .236x x x ⋅= C .633x x x ÷= D .22264a a -=-2.(原创题)2015 “扬州烟花三月旅游节”期间,市气象局测得瘦西湖景点某周的日最高气温统计如下表:则这七天中日最高气温的众数和中位数分别是( ▲ )A .4;4B .5;4C .4;3D 3.一次函数32y x =-的图象不经过( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限4.左图是由八个相同小正方体组合而成的几何体,则其俯视图是( ▲ )5.如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点,要使四边形EFGH 是菱形,则四边形ABCD 只需要满足一个条件,是( ▲ ) A .四边形ABCD 是梯形 B .四边形ABCD 是菱形 C .对角线AC =BD D .AD =BC6.如图,OP 平分MON ∠,ON PA ⊥于点A ,点Q 是射线OM 上一个动点,若3=PA ,则PQ 的最小值为( ▲ )A .3B .2C .3D .327.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是( ▲ ) A .点(0,3)B .点(2,3)C .点(5,1)D .点(6,1)日期 21 22 23 24 25 26 27 最高气温(℃)2453467A PM NQO(第6题)(第5题)(第7题)8.(改编题)四个小朋友站成一排,老师按图中所示的规则数数,数到2015时对应的小朋友可得一朵红花.那么得红花的小朋友是A .小沈B .小叶C .小李D .小王第Ⅱ卷(非选择题共126分)二、填空题(本大题共10题,每题3分,共30分.把答案填在题中的横线上.)9.(原创题)为迎接2015年扬州建城2500周年,政府举办的第十届扬州鉴真国际半程马拉松赛共有35000人参加,其中35000用科学计数法表示为 ▲ . 10.如果实数x 、y 满足方程组221,4,x y x y -=⎧⎨+=⎩ 那么22x y -= ▲ .11.如图,AB 、CD 是水平放置的轮盘(俯视图)上两条互相垂直的直径,一个小钢球在轮盘上自由滚动,该小钢球最终停在阴影区域的概率为 ▲ .12.如图,四边形ABCD 中,∠A +∠B =200°,∠ADC 、∠DCB 的平分线相交于点O ,则∠COD 的度数是 ▲ .13.如图,在△ABC 中,DE ∥BC ,12AD DB =,DE =4,则BC 的长是 ▲ . 14.如图 ,一个扇形铁皮OAB . 已知cm OA 60=,︒=∠120AOB ,小明将OA 、OB 合拢制成了一个圆锥形烟囱帽(接缝忽略不计),则烟囱帽的底面圆的半径为 ▲ .15.(改编题)如图,在平面直角坐标系中,点B 的坐标是(1,0),若点A 的坐标为(a ,b ),将线段BA 绕点B 顺时针旋转90°得到线段BA ′,则点A ′的坐标是 ▲ .16.将量角器按如图所示的方式放置在三角形纸片上,使点C 在半圆圆心(第11题) (第13题) ED C B AA BD O C (第12题) (第8题)小沈 小叶 小李 小yA上,点B 在半圆上,边AB 、AC 分别交半圆于点E 、F ,点B 、E 、F 对应的读数分别为160°、70°、50°,则∠A 的度数为 ▲ . 17.已知点A 是双曲线3y x=在第一象限上的一动点,连接AO 并延长交另一分支于点B ,以AB 为一边作等边三角形ABC ,点 C 在第四象限,随着点A 的运动,点C 的位置也不断的变化,但 始终在一函数图象上运动,则这个函数的解析式为 ___ ▲__ .18.(改编题)如图18-1,有一张矩形纸片ABCD ,其中AD =6cm ,以AD 为直径的半圆,正好与对边BC 相切,将矩形纸片ABCD 沿DE 折叠,使点A 落在BC 上,则图18-2中阴影部分的面积为 ▲ .三、解答题 (本题共10个小题,共96分,解答时应写出文字说明、证明过程或演算步骤.) 19.(原创题)(本题满分8分)计算:27︒-30tan 32)21(--.20.(改编题)(本题满分8分) 先化简再求值:122)111(2+--÷--x x x x ,其中x 是不等式组3(2)2,4251x x x x --≥⎧⎨-<-⎩的一个整数解. 21.(本题满分8分)班主任老师让同学们为班会活动设计一个抽奖方案,拟使中奖概率为60%.(1)小明的设计方案:在一个不透明的盒子中,放入10个球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到黄球则表示中奖,否则不中奖.如果小明的设计符合老师要求,则盒子中黄球应有 ▲ 个,白球应有 ▲ 个;(2)小兵的设计方案:在一个不透明的盒子中,放入4个黄球和1个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球则表示中奖,否则不中奖.该设计方案是否符合老师的要求?试说明理由.22.(原创题)(本题满分8分)某学校为了进一步丰富学生的体育活动,加大“阳光体育”进校园的力度,欲增购一些体育器材,为此对该校一部分学生进行了一次“你最喜欢的体育活动”的问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):23.(原创题)(本题满分10分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到,参考数据:=1.73,=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.24.(本题满分10分)如图,在△ABC中,CD是AB边上的中线,E是CD的中点,过点C作AB的平行线交AE的延长线于F,连结BF.(1)求证:CF=BD;(2)若CA=CB,∠ACB=90°,试判断四边形CDBF的形状,并证明你的结论.25.(本题满分10分) 如图,在△ABC ,AB =AC ,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且CBF CAB ∠=∠2.(1)试判断直线BF 与⊙O 的位置关系,并说明理由; (2)若AB =6,BF =8,求CBF ∠tan .26.(改编题)(本题满分10分)长青农化研发了一种新型环保除草剂,五月份以前属于推广阶段,每天的产量与销售量均为500箱,进入五月份后,每天的产量保持不变,市场需求量不断增加.如图是五月前后一段时期库存量y (箱)与生产时间t (月份)之间的函数图象.(五月份以30天计算)(1)该厂 ▲ 月份开始出现供不应求的现象.五月份的平均日销售量为 ▲ 箱;(2)为满足市场需求,该厂打算在投资不超过220万元的情况下,购买8台新设备,使扩大生产规模后的日产量不低于五月份的平均日销售量.现有A 、B 两种型号的设备可供选择,其价格与两种设备的日产量如下表:型 号 A B 价格(万元/台) 28 25 日产量(箱/台)5040请设计一种购买设备的方案,使得日产量最大;(3)在(2)的条件下(市场日平均需求量与5月份相同),若安装设备需5天(6月6日新设备开始生产),指出何时开始该厂有库存?27.(本题满分12分)操作与证明:如图1,把一个含45°角的直角三角板ECF 和一个正方形ABCD 摆放在一起,使三角板的直角顶点和正方形的顶点C 重合,点E 、F 分别在正方形的边CB 、CD 上,连接AF .取AF 中点M ,EF 的中点N ,连接MD 、MN .(1)连接AE ,求证:△AEF 是等腰三角形; 猜想与发现:(2)在(1)的条件下,请判断MD 、MN 的数量关系和位置关系,得出结论. 结论1:DM 、MN 的数量关系是 ▲ ;结论2:DM 、MN 的位置关系是 ▲ ; 拓展与探究:(3)如图2,将图1中的直角三角板ECF 绕点C 顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.28.(原创题)(本题满分12分)平面直角坐标系下,一组有规律的点:A 1(0,1)、A 2(1,0)、A 3(2,1)、A 4(3,0)、A 5(4,1)、A 6(5,0)……注:当n 为奇数时,A n (n -1,1),n 为偶数时A n (n -1,0).抛物线C 1经过A 1,A 2,A 3三点,抛物线C 2经过A 2,A 3,A 4三点,抛物线C 3经过A 3,A 4,A 5三点,抛物线C 4经过A 4,A 5,A 6三点,……抛物线C n 经过A n ,A n +1,A n +2.(1)直接写出抛物线C 1,C 4的解析式;(2)若点E (e ,f 1)、F (e ,f 2)分别在抛物线C 27、C 28上,当e =29时,求证:△A 28EF 是直角三角形;(3)若直线x =m 分别交x 轴、抛物线C 2013、C 2014于点P 、M 、N ,作直线A 2014M 、A 2014N ,当∠P A 2014M =45°时,求sin ∠P A 2014N 的值.参考答案一、选择题(每题3分,共24分.)1.C . 2.A . 3.C. 4.A . 5.D . 6.C . 7.C . 8.C . 二、填空题(每题3分,共30分.) 9.4105.3⨯. 10.2. 11.41. 12.︒100. 13.12. 14.cm 20. 15.()1,1b a +-. 16.︒25. 17.9y x=-. 18.439-3∏.三、解答题19.(1)原式= 23 —4 ……………………………… 8分 20.20.原式=122122+--÷--x x x x x ……………………………………2分 =1+-x ……………………………………………………4分解不等式组得 12x -<≤, …………………………………………6分 符合不等式解集的整数是0,1,2. ……………………7分 当0x =时,原式2= ……………………………………………………8分 21.解:(1)黄球6个,白球4个 ……………………………… 2分 (2)设黄球分别为黄1、黄2、黄3、黄4列表如下白 黄1 黄2 黄3 黄4 白 / 黄1白 黄2白 黄3白 黄4白 黄1 白黄1 / 黄2黄1黄3黄1 黄4黄1 黄2 白黄2 黄1黄2 / 黄3黄2黄4黄2 黄3 白黄3 黄1黄3 黄2黄3 / 黄4黄3黄4白黄4黄1黄4黄2黄4黄3黄4/以上共有20种结果,它们都是等可能的,其中2个都为黄色(记为事件A )的结果有12种,……………………………… 6分∴P (A )=1220=35,所以该设计方案符合老师的要求. ……………………………… 8分 22.解:(1)200 ……………………………… 2分 (2)……每个1分,共3分(3)54……………………………… 1分(4) 1860×40%=744(人)答:全校学生中,最喜欢“球类”活动的学生约有744人 ………………………… 2分100 90 80 70 60 50 40 30 20 10 0 球类跳绳踢毽其它304080人数图11图10 球类 40%跳绳25%其它 20% 踢毽 15% 5024.(1)证明:∵AB∥CF,∴∠DAE=∠EFC,∵E是CD的中点,∴DE=CE,∵在△ADE和△FCE中,,∴△ADE≌△FCE(AAS)……………………4分∴AD=CF,∵AD=BD∴CF=BD;……………………5分(2)四边形CDBF是正方形,理由如下:证明:∵CF∥BD,CF=BD,∴四边形CDBF是平行四边形,∵∠ACB=90°,AD=BD,CD∴CD=AB=BD,AB∴四边形CDBF是正方形;……………………10分25.(1)证明:连接AE ………………………………………………………1分∵AB为⊙O的直径,∴∠AEB=90°∴∠BAE+∠ABE=90°…………………2分∵AB =AC ,AE ⊥BC ∴AE 平分∠BAC ∴CBF BAC BAE ∠=∠=∠21………3分 ∴︒=∠+∠90ABE CBF ∴AB ⊥BF∴BF 为⊙O 的切线 ………………………………………………………5分 (2)过点C 作CG ⊥BF , ………………………………………………………6分在Rt △ABF 中1022=+=BF AB AF∵AC =6 ∴CF =4 ………………7分 ∵CG ⊥BF ,AB ⊥BF ∴CG ∥AB∴△CFG ∽△AFB ………………8分∴ABCGBF GF AF CF == ∴512516==CG CF ,∴5245168=-=-=GF BF BG ………………………………9分 在Rt △BCG 中21tan ==∠BG CG CBF ………………………………………………10分26.解:(1)该厂 6月份开始出现供不应求的现象; 五月份的平均日销售量==830箱; ……………………………2分(2)设A 型x 台,则B 型为()x -8台, 由题意得:()()⎩⎨⎧≥-++≤-+83084050500,22082528x x x x ……………………………4分解之,得:3201≤≤x ∵x 为整数,∴1=x 或2或3或4或5或6, ……………………………5分 日产量()8201084050500+=-++=x x x W ∵010>=k ,∴W 随x 的增大而增大,当6=x 时,W 最大为880箱. …………………………7分 (3)设6月6日开始的x 天后该厂开始有库存,由题意得:()05008305830880>-⨯--x x ……………………………9分 解之,得:33>x ,故7月9日开始该厂有库存. ……………………………10分 27.(1)证明:∵四边形ABCD 是正方形, ∴AB=AD=BC=CD ,∠B=∠ADF=90°, ∵△CEF 是等腰直角三角形,∠C=90°,G∴CE=CF,∴BC﹣CE=CD=CF,即BE=DF,SAS,……………………………3分∴△ABE≌△ADF().∴AE=AF,∴△AEF是等腰三角形;……………………………4分(2)解:相等,垂直;……………………………各1分,共2分(3)(2)中的两个结论还成立,……………………………7分证明:连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=AE,……………………………8分由(1)同理可证,=90,CE=CF,AB=AD=BC=CD,∠B=∠ADF︒又∵BC+CE=CD+CF,即BE=DF,SAS∴△ABE≌△ADF().∴AE=AF,……………………………9分在Rt△ADF中,∵点M为AF的中点,∴DM=AF,∴DM=MN,……………………………10分∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AN,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,……………………………11分∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM ⊥MN . ……………………………12分28.(1)据顶点式容易求出C 1,C 4的解析式分别为:y 1=(x -1)2, y 4=-(x -4)2+1. ………………………………(4分)(2)由特殊出发,可以发现这组抛物线解析式的特点:y 1=(x -1)2y 3=(x -3)2 ……y 2=-(x -2)2+1y 4=-(x -4)2+1 ……∴抛物线C 27、C 28的解析式应该为:y 27=(x -27)2,y 28=-(x -28)2+1.…………(6分)如图,此时点E (e ,f 1)、F (e ,f 2)分别为点E (29,4)、F (29,0);而△A 28的坐标是(27,0),显然△A 28EF 是直角三角形.………………(8分)(3)由(2)中发现的规律可知,抛物线C 2013、C 2014解析式分别为:y 2013=(x -2013)2,y 2014=-(x -2014)2+1.点A 2014坐标为(2013,0).顺便指向,由(2)的研究经验发现,可以退回简单的抛物线C 3、C 4的情况来研究.分以下两种情况,如图在A 2014(2013,0)点左侧,当m =2012时,M (2012,1)此时有∠P A 2014M =45°,N (2012,-3),相应的sin ∠P A 2014N 的值为31010; ……(10分) 在A 2014(2013,0)点右侧,当m =2014时,M (2014,1)此时有∠P A 2014M =45°,N (2014,1),相应2的sin∠P A2014N的值为2. …………(12分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
2015年中考模拟卷(六)
一、选择题(每小题3分,共30分)
1.六月份某登山队在山顶测得温度为零下32度,此时山脚下的温度为零上12度,则山顶的温度比山脚下
的温度低( )
(A)44℃ (B)-20℃ (C)20℃ (D)-44℃
2.上海世博会的中国馆利用太阳能发电,年发电量可达2 840 000度,2 840 000用科学
记数法可表示为( )
(A)2.84×107 (B)2.84×106 (C)2.84×105 (D)28.4×106
3.下列计算正确的是( )
(A)4x-2x=2 (B)x+x=x2 (C)(-x2)3=-x6 (D)2x·x=4x2
4.下列图形中,是中心对称的图形是( )
(A) (B) (C) (D)
5.三角形在正方形网格纸中的位置如图所示,则cosα的值是( )
(A)43 (B)34 (C)53 (D)54
6.在平面直角坐标系中,点O是坐标原点,点A是x轴正半轴上的一个动点,过A
点作y轴的平行线交反比例函数 y=x2 (x>0)的图象于B点,当点A的横坐标逐渐增
大时,△OAB的面积将会( ).
(A)逐渐增大 (B)逐渐减小 (C)不变 (D)先增大后减小
7.如图是由七个相同的小正方体堆成的物体,这个物体的俯视图是( )
8.抛物线y=2x2+1的顶点在( )
(A)原点 (B)y轴上 (C)x轴上 (D)第二象限
9.如图,△ABC绕点A顺时针旋转80°得到△AEF,若∠B=100°,
∠F=50°,则∠CAE的度数是( )
(A)40 (B)50° (C)60° (D) 70°
10.一辆货车与客车都从A地出发经过B地再到C地,总路程200千米,货车到B地卸货后再去C地,客
车到B地部分旅客下车后再到C地,货车比客车晚出发10分钟,则以下4中说法:①货车与客车同时到达
B地;②货车在卸货前后速度不变;③客车到B地之前的速度为20千米/时;④货车比客车早5分钟到达C
地;4种说法中正确的个数是( )
(A)1个 (B)2个 (C)3个 (D)4个
第9题图
C
A
B
E
F
α
(A) (B) (C) (D)
α
第5题图
2
二、填空题(每小题3分,共30分)
11. 计算:16÷2 = .
12.函数31xyx中,自变量x的取值范围是 .
13.因式分解:322aaa .
14. 不等式组133432xxx的解集为 .
15.如图,已知AB是⊙O的直径,BC为弦,∠ABC=30°过圆心O作OD⊥BC交弧BC于点D,连接DC,
则∠DCB= °.
16.方程:223xx的解为 .
17.“五一”节期间,某商场开展购物抽奖活动.抽奖箱内有标号分别为1、2、3、4、5、6、7、8、9、10
十个质地、大小相同的小球,顾客从中任意摸出一个球,如果摸出的球的标号不小于6就得奖,那么顾客
得奖概率是 .
18.用直角边分别为3和4的两个直角三角形拼成一个平行四边形(非矩形),所得的平行四边形的周长
是 .
19.如图,四边形ABCD和AEFG都是正方形,FH⊥BD,若AB=2,则FH的长为__________.
20.已知△ABC,AB=AC,∠BAC=90°,点F在AC上,BF⊥AD垂足为E,若DE=2,∠AFB=∠CFD,
则△ADF的面积为 .
80
200
805030
80
200
85
4540
x/分
x/分
y/千米
客车路程与时间图象
货车路程与时间图象
0
0
y/千米
(第20题图)
E
F
D
C
A
B
O
B
D
C
A
第15题图
(第19题图)
3
三、解答题(其中21-22题各7分,23-25题各8分,26题10分,27题12分,共60分)
21.(本题7分)先化简,再求值:xxxxx1)11(,其中45sin2x°+30tan3°
22.(本题7分)
图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1. 点A和点B在小
正方形的顶点上.
(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);
(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可);
(图1) (图2)
23.(本题8分)
为了响应国家提出的“每天锻炼1小时”的号召,某校积极开展了形式多样的“阳
光体育”运动,小明对该班同学参加锻炼的情况进行了统计,(每人只能选其中一项)并绘制了下面的
图1和图2,请根据图中提供的信息解答下列问题:
(1)小明这次一共调查了多少名学生?
(2)若该校有2000名学生,请估计该校喜欢足球的学生约有多少人?
24. (本题8分)如图,我国一艘核潜艇在海面下500米A点处测得俯角为30°正前方的海底有黑匣子信号
发出,继续在同一深度直线航行4000米后再次在B点处测得俯角为60°正前方的海底有黑匣子信号发出,
(1)求海底黑匣子C点处距离海面的深度;
(2)若核潜艇的速度为2000米/时,核潜艇在B点处继续前行,求核潜艇再前行多长时间与黑匣子最近. (结
果保留根号)
30°
60°
B
A
D
C
海面
第24题图
4
F
E
D
O
B
A
C
25. (本题8分)某工厂计划招聘A、B两个工种的工人共120人,A、B两个工种的工人月工资分别为800元
和1000元.
(1)若该工厂每月支付的工人工资为ll0 00O元,那么A、B两个工种的工人各招聘多少人?
(2)若要求该工厂每月支付的工人工资不超过ll2 40O元,那么该工厂招聘A工种的工人至少多少人?
26.(本题10分)如图,AB为半圆O的直径,点C在半圆O上,过点O作OD∥BC交圆的切线AD于点D,
交弦AC于点E,交半圆于点F.(1)求证:点E为线段AC的中点;(2)若DF=2EF=233,求AB的长
5
27.(本题12分)已知:如图,抛物线y=ax2-3x+c与x轴交于A、B,与y轴交于C,抛物线的顶点为D,
D点的横坐标为3,C点的坐标为(0,4),
(1)求抛物线的解析式;
(2)P点从C点出发沿y轴负方向运动,Q点从B点出发沿x轴正方向运动,P、Q两点同时出发,速度
均为每秒1个单位长度,过P点作x轴的平行线交抛物线于E,设运动时间为t(秒),当t为何值时,
P、A、Q、E四点构成平行四边形;
(3)将抛物线向上平移2个单位长度,平移后的抛物线的顶点为F,交y轴于N,在平移后的抛物线上是
否存在点M,使S△MNC=2S△MFD,若存在求出M点的坐标;若不存在,请说明理由.