第十七章-人教版勾股定理教案
人教版八年级下册第十七章勾股定理(第一课时)教学设计

人教版八年级下册第十七章勾股定理(第一课时)教学设计一、教材分析(一)教材的地位与作用勾股定理是数学中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。
它在数学的发展中起着重要的作用,在现实世界中也有着广泛的应用。
学生通过勾股定理的学习,可以在原有的基础上对直角三角形由进一步的认识和理解。
(二)教学目标1. 体验勾股定理的探索过程,了解关于勾股定理的文化背景,通过我国古代研究勾股定理的成就的介绍,培养学生的自豪感。
2.能利用勾股定理解决一些简单问题。
(三)教学重、难点重点:探索和证明勾股定理。
难点:用拼图方法证明勾股定理。
二、学情分析学生对几何图形的观察,几何图形的分析能力已经初步形成。
部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。
每名学生都期待自己探索、发表自我见解和展示自我才华的机会。
三、教学过程教学环节教学内容活动和意图创设情境数学源于生活,生活之中处处有数学。
今天,我们一起穿越,和数学名家一起探讨数学奥秘。
两名学生,分别扮演毕达格拉斯和他的朋友,进行地砖图案对话,引出S A,S B,S C满足一定的数量关系,以及A,B,C所围成的直角三角形的三边的数量关系。
数学源于生活。
穿越似的角色扮演,言简意赅的对话,可以有效的提升学生的好奇心和求知欲,激发学生对数学的兴趣,自然而然的引入课题。
实验探究按照毕达格拉斯的思路,我们需要探究2个问题。
问题1:A、B、C三者的面积关系包含A、B边长相等和不相等两种情况通过公式或割补法计算,得SA+S B= S C问题2:A、B、C所围直角三角形的三边关系由SA= a2,S B = b2 ,S C = c2 ,S A+S B= S C得所围直角三角形的三边关系a2 + b2 = c2勾股定理,也称为毕达哥拉斯定理。
问题是思维的起点,通过层层发问,引导学生发现新知。
渗透从特殊到一般的数学思想,为学生提供参与数学活动的时间和空间。
第十七章勾股定理(教案)-2024学年人教版八年级数学下册

3.勾股数及其性质
a.勾股数的定义
b.勾股数的特点
c.勾股数的应用
4.勾股定理在生活中的应用实例
a.建筑领域
b.艺术设计
c.自然科学等其他领域的应用
5.练习与拓展
a.勾股定理相关练习题
b.拓展勾股定理的相关知识,如勾股数在其他数学领域的应用等
c.创设实际情境,让学生运用勾股定理解决实际问题,提高学生的实际操作能力。
2.教学难点
a.勾股定理的数学证明:对于八年级学生来说,理解并掌握勾股定理的数学证明是难点。教师需要运用直观、生动的教学方法,如动画演示、实际操作等,帮助学生理解证明过程。
b.勾股定理在实际问题中的应用:学生在运用勾股定理解决实际问题时,往往会遇到难以确定直角三角形的情况,需要教师引导学生学会识别直角三角形,并正确应用勾股定理。
1.教学重点示例:
在讲解勾股定理的概念及其证明时,教师可以通过动画演示、实际操作等方式,引导学生观察直角三角形的特性,得出勾股定理的表述。并通过数学证明,让学生理解勾股定理的严谨性。
2.教学难点示例:
在解决实际问题中,教师可以给出以下例子:一根旗杆斜靠在墙上,旗杆与地面的夹角为30°,旗杆与墙面的距离为3米,求旗杆的长度。学生需要识别出这是一个直角三角形问题,并运用勾股定理求解。在这个过程中,教师需要引导学生正确识别直角三角形,并给出具体的解题步骤。
4.培养学生的数学建模素养,通过勾股定理在生活中的应用实例,引导学生发现生活中的数学规律,学会构建简单的数学模型。
5.培养学生的数学抽象与数学关联素养,使学生能够从具体问题中抽象出勾股定理的数学本质,理解数学知识之间的内在联系,提高数学知识的系统性和综合性。
三、教学难点与重点
人教版八年级数学下册第十七章勾股定理单元教学设计

1.关注学生对勾股定理概念的理解,引导他们从几何角度和代数角度去认识、理解勾股定理。
四、教学内容与过程
(一)导入新课
1.教学活动设计:以一个与勾股定理相关的实际问题导入新课,激发学生的兴趣和思考。
-提问:同学们,你们知道如何测量学校旗杆的高度吗?
-引导学生思考:如果我们知道旗杆底部到某一点的距离和该点到旗杆顶部的垂直距离,能否计算出旗杆的高度?
-揭示:今天我们就来学习一个与直角三角形有关的定理,它可以帮助我们解决这类问题,这就是勾股定理。
-通过课堂提问、课后作业、小测验等方式,了解学生的学习进度和掌握程度;
-给予学生积极的评价,鼓励他们克服困难,不断提高。
6.结合实际情境,开展课外实践活动,让学生在实际操作中感受勾股定理的魅力。
-例如,组织学生测量学校内的直角三角形物体,如楼梯、窗户等,将所学知识应用于实际,提高他们的数学应用能力。
1.勾股定理的理解与运用:学生需从几何和代数两个角度理解勾股定理,并将其应用于解决实际问题。
2.证明方法的掌握:学生需要掌握几何法、代数法等多种证明勾股定理的方法,提高逻辑思维和创新能力。
3.空间想象能力的培养:通过丰富的实例和操作活动,帮助学生建立直角三角形的空间概念。
教学设想:
1.采用情境导入法,以实际问题引入勾股定理,激发学生的学习兴趣和探究欲望。
人教版八年级数学下册第十七章勾股定理单元教学设计
一、教学目标
(一)知识与技能
新人教版第十七章勾股定理教案

第十七章勾股定理第1课时17.1 勾股定理 (1)教学目的:1、学问与技能:驾驭勾股定理的内容,会用面积法证明勾股定理,能说出勾股定理,并能应用其进展简洁的计算和实际运用.2、过程与方法:经验视察—猜测—归纳—验证的数学发觉过程,开展合情推理的实力,体会数形结合和由特别到一般的数学思想.3、情感看法与价值观:在探究勾股定理的过程中,体验获得胜利的欢乐;教学重点:知道勾股定理的结果,并能运用于解题教学难点:进一步开展学生的说理和简洁推理的意识及实力教学打算:彩色粉笔、三角尺、图片、四个全等的直角三角形教学过程:一、课堂导入2019年世界数学家大会在我国北京召开,出示显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联络的信号.今日我们就来一同探索勾股定理。
二、合作探究:让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。
以上这个事实是我国古代3000多年前有一个叫商高的人发觉的,他说:“把一根直尺折成直角,两段连结得始终角三角形,勾广三,股修四,弦隅五。
”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。
再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。
探讨:32+42与52有何关系?52+122和132有何关系?通过计算得到32+42=52,52+122=132,于是有勾2+股2=弦2。
对于随意的直角三角形也有这特性质吗?用四个全等的直角三角形拼成如图所示的图形,其等量关系为:4S △+S 小正=S 大正,即 4×21ab +(b -a )2=c 2,化简可得222c b a =+ 探讨 归纳总结 得出结论命题1:假如直角三角形的两条直角边长分别为a 、b.斜边长为c 。
那么222c b a =+ 三、证明定理勾股定理的证明方法,达300余种。
第十七章-人教版勾股定理教案

第十七章勾股定理(一)教材所处的地位1、教材分析:本章是人教版《数学》八年级下册第17章,本章的主要内容是勾股定理及勾股定理的应用,教材从实践探索入手,给学生创设学习情境,接着研究直角三角形的勾股定理,介绍勾股定理的逆定理(直角三角形的判定方法),最后介绍勾股定理及勾股定理逆定理的广泛应用。
勾股定理是直角三角形的一个很重要的性质,反映了直角三角形三边之间的数量关系。
在理论和实践上都有广泛的应用。
勾股定理逆定理是判定一个三角形是不是直角三角形的一种古老而实用的方法.在“四边形”和“解直角三角形”相关章节中,勾股定理知识将得到更重要的应用.2、教材特点:①在呈现方式上,突出实践性与研究性。
(对勾股定理是通过问题引出加以探索认识的.②突出学数学、用数学的意识与过程,勾股定理的应用尽量和实际问题联系起来。
③对实际问题的选取,注意联系学生的实际生活。
④注意扩大学生的知识面。
(本章安排了两个阅读材料和一个课题学习)⑤注意训练系统的科学性,减少操作性习题,增加探索性问题的比重。
(二)单元教学目标(包括情感目标)知识与技能目标:1、经历由情境引出问题,探索掌握有关数学知识,再运用于实践的过程,培养学数学、用数学的意识与能力。
2、体验勾股定理的探索过程,掌握勾股定理,会运用勾股定理解决相关问题.3、掌握勾股定理的逆定理(直角三角形的判定方法),会运用勾股定理逆定理解决相关问题。
4、运用勾股定理及其逆宣解决简单的实际问题.情感与态度目标:5、感受数学文化的价值和中国传统数学的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情。
(三)单元教学重难点教学重点:1、探索勾股定理并掌握勾股定理;2、直角三角形的判定方法(勾股定理的逆定理);3、勾股定理及其逆定理的应用;教学难点:1、从多个角度(代数、几何)探究勾股定理;2、勾股定理逆定理的应用;3、在勾股定理的应用过程中构造适用勾股定理的几何模型。
(四)单元教学策略1、教学步骤:①整个章节的教学可分四步:探索结论-—验证结论——初步应用结论——应用结论解决实际问题。
人教版八年级下册第十七章17.1勾股定理(教案)

其次,在实践活动和小组讨论中,学生们表现出了很高的热情,积极投入到讨论和实验操作中。但我也观察到,有些小组在讨论过程中容易偏离主题,讨论内容与勾股定理的实际应用关系不大。针对这个问题,我需要在今后的教学中加强对学生的引导,确保讨论主题紧扣教学内容,提高课堂效率。
此外,在课堂总结环节,虽然大部分学生能较好地掌握勾股定理的知识点,但仍有少数学生存在疑问。为了帮助这部分学生更好地消化吸收课堂内容,我计划在课后设置答疑时间,鼓励他们提出问题,并及时给予解答。
-对勾股数的理解和应用:学生需要掌握勾股数的概念,并能够找出勾股数,这对于数感和数学直觉有一定要求。
举例解释:
a.在证明过程的难点上,例如,使用面积法证明勾股定理时,学生可能会难以理解如何从一个大正方形中分割出四个相同的直角三角形和一个中间的小正方形,以及如何通过这些图形的面积关系得出勾股定理。
b.在解决复杂问题的难点上,如在一个不规则图形中识别出直角三角形并应用勾股定理,或者在一个实际问题中,如测量旗杆高度时,学生可能不知道如何将问题抽象为直角三角形的模型,并应用勾股定理。
c.在勾股数的应用上,例如,学生可能知道3、4、5是一组勾股数,但不知道如何找出其他勾股数,或不理解勾股数在建筑、工程等领域中的应用。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过直角三角形的情形?”比如,在篮球场地的角落,或是楼梯的形状。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
(二)新课讲授(用时10分钟)
人教版八年级数学下册17.1章勾股定理(教案)
1.培养学生的逻辑推理能力和空间想象力,通过对勾股定理的证明过程,让学生理解数学知识的严谨性和逻辑性;
2.提高学生的数据分析能力,通过解决实际问题,使学生能够运用勾股定理分析问题、解决问题;
3.培养学生的数学抽象和数学建模素养,让学生在探索勾股定理的过程中,学会从实际问题中抽象出数学模型;
五、教学反思
今天我们在课堂上一起探讨了勾股定理,我发现学生们对定理的概念和应用表现出很大的兴趣。在讲授过程中,我尽量用生动的语言和具体的例子来解释抽象的数学概念,希望这样能帮助他们更好地理解。通过让学生们分组讨论和实验操作,我也试图让他们亲身体验数学知识的形成过程,增强他们的实践能力。
课堂上,我注意观察学生的反应,发现大部分同学能够跟随我的讲解思路,但对于定理证明部分,尤其是面积法和相似三角形法的推导,有些同学还是感到困惑。这让我意识到,在今后的教学中,我需要更加细致地讲解这些难点,通过更多的图示和实际操作,帮助他们克服理解上的障碍。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解勾股定理的基本概念。勾股定理是指直角三角形两个直角边的平方和等于斜边的平方。它在几何学中具有重要地位,广泛应用于建筑、工程等领域。
2.案例分析:接下来,我们来看一个具体的案例。通过计算一个直角三角形的边长,展示勾股定理在实际中的应用,以及如何帮助我们解决问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过直角三角形的情况?”(如测量墙角、搭建模型等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
新人教版第十七章勾股定理教案
新人教版第十七章勾股定理教案第十七章勾股定理第1课时勾股定理(1)教学目标:1.知识与技能:掌握勾股定理的内容,会用面积法证明勾股定理,能够应用勾股定理进行简单的计算和实际运用。
2.过程与方法:通过观察、猜想、归纳、验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想。
3.情感态度与价值观:在探索勾股定理的过程中,体验获得成功的快乐。
教学重点:知道勾股定理的结果,并能运用于解题。
教学难点:进一步发展学生的说理和简单推理的意识及能力。
教学准备:彩色粉笔、三角尺、图片、四个全等的直角三角形。
教学过程:一、课堂导入2002年世界数学家大会在我国北京召开,出示了本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号。
今天我们就来一同探索勾股定理。
二、合作探究让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。
这个事实是我国古代3000多年前有一个叫XXX的人发现的。
他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话的意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。
讨论:32+42与52有何关系?52+122和132有何关系?通过计算得到32+42=52,52+122=132,于是有勾2+股2=弦2.那么对于任意的直角三角形也有这个性质吗?用四个全等的直角三角形拼成如图所示的图形,其等量关系为:4S△+S小正=S大正,即4×ab+(b-a)2=c2,化简可得a2+b2=c2.三、证明定理勾股定理的证明方法达300余种。
下面这个古老的精彩的证法出自我国古代无名数学家之手。
已知:如图,在△ABC 中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
第17章勾股定理巧解几何图形折叠问题(教案)
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理巧解几何图形折叠问题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过折叠纸片或盒子的情况?”(如折纸艺术、包装盒的设计等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理在折叠问题中的奥秘。
重点难点解析:在讲授过程中,我会特别强调勾股定理的公式及其适用条件这两个重点。对于难点部分,如将复杂折叠问题简化为勾股定理适用的直角三角形,我会通过图示和实际操作来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题,如折叠不同形状的纸片来验证定理。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“勾股定理在建筑设计中的应用”。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
第17章勾股定理巧解几何图形折叠问题(教案)
一、教学内容
第17章勾股定理巧解几何图形折叠问题
1.探究勾股定理在实际问题中的应用;
2.学会利用勾股定理解决折叠问题,如:正方形、长方形、等腰直角三角形等;
3.通过实例分析,掌握勾股定理在几何图形折叠中的解题思路和方法;
4.完成教材P123-125的相关练习题,巩固勾股定理的应用。
课堂上,我注意到有些学生在理解勾股定理的应用上还存在一些困难,尤其是在将复杂的折叠问题简化为直角三角形的过程中。这提示我,在未来的教学中,需要更加注重对难点内容的讲解和示范,通过更多的实际例题和直观图示来帮助他们理解。
第十七章-人教版勾股定理教案
第十七章勾股定理(一)教材所处得地位1、教材分析:本章就是人教版《数学》八年级下册第17章,本章得主要内容就是勾股定理及勾股定理得应用,教材从实践探索入手,给学生创设学习情境,接着研究直角三角形得勾股定理,介绍勾股定理得逆定理(直角三角形得判定方法),最后介绍勾股定理及勾股定理逆定理得广泛应用。
勾股定理就是直角三角形得一个很重要得性质,反映了直角三角形三边之间得数量关系。
在理论与实践上都有广泛得应用。
勾股定理逆定理就是判定一个三角形就是不就是直角三角形得一种古老而实用得方法。
在“四边形”与“解直角三角形”相关章节中,勾股定理知识将得到更重要得应用。
2、教材特点:①在呈现方式上,突出实践性与研究性。
(对勾股定理就是通过问题引出加以探索认识得。
②突出学数学、用数学得意识与过程,勾股定理得应用尽量与实际问题联系起来。
③对实际问题得选取,注意联系学生得实际生活。
④注意扩大学生得知识面。
(本章安排了两个阅读材料与一个课题学习)⑤注意训练系统得科学性,减少操作性习题,增加探索性问题得比重。
(二)单元教学目标(包括情感目标)知识与技能目标:1、经历由情境引出问题,探索掌握有关数学知识,再运用于实践得过程,培养学数学、用数学得意识与能力。
2、体验勾股定理得探索过程,掌握勾股定理,会运用勾股定理解决相关问题。
3、掌握勾股定理得逆定理(直角三角形得判定方法),会运用勾股定理逆定理解决相关问题。
4、运用勾股定理及其逆宣解决简单得实际问题。
情感与态度目标:5、感受数学文化得价值与中国传统数学得成就,激发学生热爱祖国与热爱祖国悠久文化得思想感情。
(三)单元教学重难点教学重点:1、探索勾股定理并掌握勾股定理;2、直角三角形得判定方法(勾股定理得逆定理);3、勾股定理及其逆定理得应用;教学难点:1、从多个角度(代数、几何)探究勾股定理;2、勾股定理逆定理得应用;3、在勾股定理得应用过程中构造适用勾股定理得几何模型。
(四)单元教学策略1、教学步骤:①整个章节得教学可分四步:探索结论——验证结论——初步应用结论——应用结论解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十七章勾股定理(一)教材所处的地位教材分析:本章是人教版《数学》八年级下册第17章,本章的主要内容是勾股定理及勾股定理的应用,教材从实践探索入手,给学生创设学习情境,接着研究直角三角形的勾股定理,介绍勾股定理的逆定理(直角三角形的判定方法),最后介绍勾股定理及勾股定理逆定理的广泛应用。
勾股定理是直角三角形的一个很重要的性质,反映了直角三角形三边之间的数量关系。
在理论和实践上都有广泛的应用。
勾股定理逆定理是判定一个三角形是不是直角三角形的一种古老而实用的方法。
在“四边形”和“解直角三角形”相关章节中,勾股定理知识将得到更重要的应用。
(二)单元教学目标(包括情感目标)知识与技能目标:1、经历由情境引出问题,探索掌握有关数学知识,再运用于实践的过程,培养学数学、用数学的意识与能力。
2、体验勾股定理的探索过程,掌握勾股定理,会运用勾股定理解决相关问题。
3、掌握勾股定理的逆定理(直角三角形的判定方法),会运用勾股定理逆定理解决相关问题。
4、运用勾股定理及其逆宣解决简单的实际问题。
情感与态度目标:5、感受数学文化的价值和中国传统数学的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情。
(三)单元教学重难点教学重点:1、探索勾股定理并掌握勾股定理;2、直角三角形的判定方法(勾股定理的逆定理);3、勾股定理及其逆定理的应用;教学难点:1、从多个角度(代数、几何)探究勾股定理;2、勾股定理逆定理的应用;3、在勾股定理的应用过程中构造适用勾股定理的几何模型。
(四)单元教学策略1、学时安排全章教学时间为9课时,建议分配如下:§17.1 勾股定理--------------------3课时§14.2 勾股定理的逆定理--------------3课时复习-------------------------------2课时2、教学步骤:①整个章节的教学可分四步:探索结论——验证结论——初步应用结论——应用结论解决实际问题。
②在探索结论阶段,应调动学生的积极性,让学生充分参与。
③初步应用结论阶段的重点是让学生明确:在直角三角形中,知道两边,可以求第三边。
④应用结论解决实际问题分两类:探索性问题和应用性问题。
3、实施建议①注重使经历探索勾股定理等过程本章从实践探索入手,创设学习情境,研究直角三角形的勾股定理及它的逆定理,并运用于解决一些简单的数学问题与实际问题。
在整个学习过程中应注意培养学生的自主探索精神,提高合作交流能力和解决实际问题的能力。
②注重创设丰富现实情境体现勾股定理及其逆定理广泛应用;本章从勾股定理的探索就来源于生活,而本章勾股定理的应用又直接应用于生活。
因此,在探索、验证、应用等各阶段都应更多地设置与生活密切联系的现实情境,使学生能根据生活经验和情境类比较好地进行勾股定理应用的建模过程。
教学时可更多地利用多媒体辅助教学手段以丰富课堂教学。
③尽可能地介绍有关勾股定理体现其价值与勾股定理有关的背景知识丰富,在教学中,应注意展现与勾股定理有关的背景知识,使学生对勾股定理的发展过程有所了解,感受勾股定理的丰富文化内涵,激发学生的学习兴趣。
17.1 勾股定理 (1)年级:八年级科目:数学主备人:王珊琴课型:新授课授课时间:累计课时:教学目标:知识与技能:了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理,能说出勾股定理,并能应用其进行简单的计算和实际运用.过程与方法:经历观察—猜想—归纳—验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想.情感态度与价值观:通过对勾股定理历史的了解和实例应用,体会勾股定理的文化价值;通过获得成功的经验和克服困难的经历,增进数学学习的信心.激发学生的民族自豪感,和爱国情怀。
教学重点::知道勾股定理的结果,并能运用于解题教学难点:体会数形结合的思想,并能迁移教学方法:创设情景---观察思考----分析讨论---归纳总结----得出结论教学手段:多媒体、三角尺教学过程:一、课堂导入:问题1、同学们,知道勾股定理的内容吗?会用面积法证明勾股定理吗?能说出勾股定理,并能应用其进行简单的计算和实际运用吗?.看书、讨论归纳总结得出结论二、合作探究:1、议一议:画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB 的长。
当学生量出AB的长为5cm 时提问:为什么呢?看书、讨论归纳总结得出结论2、例1已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
求证:a2+b2=c2。
分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。
⑵拼成如图所示,其等量关系为:4S△+S小正=S大正cb aD CA B4×21ab +(b -a )2=c 2,化简可证。
⑶发挥学生的想象能力拼出不同的图形,进行证明小结: 命题1:如果直角三角形的两条直角边长分别为a 、b.斜边长为c 。
那么222c b a =+三、交流展示:勾股定理的证明方法,达300余种。
这个古老的精彩的证法,出自我国古代无名数学家之手。
、同学们,试一试?3、例2已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:a 2+b 2=c 2。
分析:左右两边的正方形边长相等,则两个正方形的面积相等。
左边S=4×21ab +c 2 右边S=(a+b )2 左边和右边面积相等,即 4×21ab +c 2=(a+b )2 化简可证。
这样就证明了命题1的正确性我国把它叫勾股定理四、归纳小结:什么叫勾股定理?怎样证明?五、作业布置:P 28 1、2、3板书设计: 17.1 勾股定理 (1)例1 例2 命题1: 小结:教学反思:b b b bc ccc a a a a bb b b a ac c a a A C B D17.1勾股定理(2)年级:八年级科目:数学主备人:王珊琴课型:新授课授课时间:累计课时:教学目标:知识与技能:1、掌握勾股定理的内容,会用面积法证明勾股定理,2、能说出勾股定理,并能应用其进行简单的计算和实际运用. 过程与方法:1、经历观察—猜想—归纳—验证的数学发现过程,2、发展合情推理的能力,体会数形结合和由特殊到一般的数学思想.树立数形结合的思想、分类讨论思想情感态度与价值观:通过对勾股定理历史的了解和实例应用,体会勾股定理的文化价值;通过获得成功的经验和克服困难的经历,增进数学学习的信心.激发学生的民族自豪感,和爱国情怀。
教学重点:勾股定理的简单计算。
教学难点:勾股定理的灵活运用。
教学方法:创设情景---观察思考----分析讨论---归纳总结----得出结论教学过程:一课堂导入:问题1、什么叫勾股定理?怎样证明?二、合作探究:1、议一议:看书、讨论归纳解题方法:怎样用勾股定理来求 Rt△的边呢?小组讨论、分组发言、订正或举例说明三、交流展示:例1(补充)在Rt△ABC,∠C=90°⑴已知a=b=5,求c。
⑵已知a=1,c=2, 求b。
⑶已知c=17,b=8, 求a。
⑷已知a:b=1:2,c=5, 求a。
⑸已知b=15,∠A=30°,求a,c。
分析:刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。
⑴已知两直角边,求斜边直接用勾股定理。
⑵⑶已知斜边和一直角边,求另一直角边,用勾股定理的便形式。
⑷⑸已知一边和两边比,求未知边。
通过前三题让学生明确在直角三角形中,已知任意两边都可以求出第三边。
后两题让学生明确已知一边和两边关系,也可以求出未知边,学会见比设参的数学方法,体会由角转化为边的关系的转化思想。
例2(补充)已知直角三角形的两边长分别为5和12,求第三边。
分析:已知两边中较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进形计算。
让学生知道考虑问题要全面,体会分类讨论思想。
例3(补充)已知:如图,等边△ABC 的边长是6cm 。
⑴求等边△ABC 的高。
⑵求S △ABC 。
分析:勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。
欲求高CD ,可将其置身于Rt △ADC 或Rt △BDC 中,但只有一边已知,根据等腰三角形三线合一性质,可求AD=CD=21AB=3cm ,则此题可解。
四、归纳小结:用勾股定理计算时,要先画好图形,并标好图形,理清边之间的关系,之后灵活运用勾股定理计算。
五、作业布置:P 28 5、 7板书设计: 17.1勾股定理(2)命题1: 例1例2 小结:教学反思:D C B AA CB D课 题:17.1 勾股定理(3)年级:八年级 科目:数学 主备人:王珊琴 课型:新授课 授课时间: 累计课时:教学目标:知识与技能:1.掌握勾股定理的内容,会用勾股定理解决简单的实际问题。
2.树立数形结合的思想。
过程与方法:1、经历观察—猜想—归纳—验证的数学发现过程,2、发展合情推理的能力,体会数形结合和由特殊到一般的数学思想. 树立数形 结合的思想、分类讨论思想情感态度与价值观:通过对勾股定理历史的了解和实例应用,体会勾股定理的文化价值;通过获得成功的经验和克服困难的经历,增进数学学习的信心.激发学生的民族自豪感,和爱国情怀。
教学重点:勾股定理的简单计算。
勾股定理的应用。
教学难点:勾股定理的灵活运用。
实际问题向数学问题的转化。
教学方法:创设情景---观察思考----分析讨论---归纳总结----得出结论 教学过程:一课堂导入:问题1、什么叫勾股定理?怎样证明?问题2、如何将实际问题转化为数学问题,之后用勾股定理解决实际问题呢?注意条件的转化;学会如何利用数学 知识、思想、方法解决实际问题。
二、合作探究:1、议一议: 看书、讨论 归纳解题方法 p25例1、例2勾股定理在实际的生产生活当中有着广泛的应用。
勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。
三、交流展示: D AB C例1(教材P25)一个门框的尺寸如图,一块长3 米、宽2.2米的长方形薄木板能否从门框内通过?为什么?分析:⑴在实际问题向数学问题的转化过程中,注意勾股定理的使用条件,即门框为长方形,四个角都是直角。
⑵让学生深入探讨图中有几个直角三角形?图中标字母的线段哪条最长?⑶指出薄木板在数学问题中忽略厚度,只记长度,探讨以何种方式通过?⑷转化为勾股定理的计算,采用多种方法。
⑸注意给学生小结深化数学建模思想,激发数学兴趣。
明确如何将实际问题转化为数学问题,注意条件的转化;学会如何利用数学知识、思想、方法解决实际问题。
例2(教材P25)一架2.6米长的梯子AB 斜靠在一竖直的墙AO 上,这时AO 为2.4米,如果梯子的顶端A 沿强下滑0.5米,那么梯子底端B 也外移0.5米吗?分析:⑴在△AOB 中,已知AB=3,AO=2.5,利用勾股定理计算OB 。