实际问题与一元二次方程面积问题
一元二次方程与实际问题

01 传播问题
02 变化率问题
一元二次方程 的实际应用
03 赛制问题 04 数字问题
05 面积问题
06 利润问题
01 传播问题
方法解析:如果一个人感染病毒,每次可以传染给x个人,那么经过n 次传播后,共有(1+x)n个人感染病毒。
例 .
变式:
02 变化率问题
02 变化率问题
05
总利润=销售量×(每一件售价-每一件进价)
06 利润问题 西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价
格出售,每天可售出200千克。为了促销,该经营户决定降价销售。经调 查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克。另外,每 天的房租等固定成本共24元。该经营户要想每天盈利200元,应将每千克 小型西瓜的售价降低多少元?
1.某试验水稻2016年平均每公顷产量为7200kg, 2018年平 均每公顷产量为8000kg,设该试验水稻每公顷产量的年 平均增长率为x,则可列方程为( )
02 变化率问题
03 赛制问题
03 赛制问题
变式:
生物兴趣小组的学生,将自己收集的标本向本组其 他成员各赠送一件,全组共互赠了182件,这个小组共有 多少名同学?
04 数字问题
方法解析: (1)三个连续偶数(奇数)的表示方法:通常设中间的一个 数为x,则另外两个数分别是x+2与x-2;(2)用字母表示两位以上的数:各数 位所对应的数值乘以此数位上的字母再分别相加。如(用a和b表示一个两 位数,十位数字是a,个位数字是b,则可表示为10a+b)
例:
05 面积问题
1、如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙 长18m),另三边用木栏围成,木栏长35m。①鸡场的面积能达到 150m2吗?②鸡场的面积能达到180m2吗?如果能,请你给出设计方 案;如果不能,请说明理由。
一元二次方程应用--面积------教案

一元二次方程的应用复习教学目标【知识技能】能根据几何图形找出问题中的等量关系,列出一元二次方程解决实际问题,并检验解的合理性。
【过程与方法】经历读题、审题和解题,让学生进一步体会“问题情境--建立模型--求解--解释与应用”的过程。
【情感、态度与价值观】获得运用数学知识分析和解决实际问题的方法和经验,更好的体会数学的价值观。
教学重点、难点重点:将实际问题转化为一元二次方程的数学模型,并根据实际问题检验解的合理性。
难点:建立数学模型解决实际问题,借助方程验证方案的可行性。
突破方法:引导学生用不同图形的面积公式列出方程。
教法与学法教学方法:启发引导,创设情境,利用多媒体课件激发学生学习兴趣;引导学生分析设计方案,借助方程验证方案的可行性。
学习方法:小组合作探究,组内讨论交流教学准备教师准备:多媒体课件学生准备:完成导学案教学过程一、前置诊断1.在长a米,宽b米的一块草坪上修了一条1米宽的笔直小路,则余下的草坪面积可表示为米2,为了增加美感,把这条小路改为宽恒为1米的弯曲小路,则剩余草坪的面积可表示为米2。
2.幼儿园活动教室矩形地面的长为8米,宽为5米,现准备在地面的正中间铺设一块面积为18m2的地毯,四周未铺地毯的条形区域的宽度都相同,求四周的宽度是多少。
3.如图,学校准备在校园里利用围墙的一段,围成一个矩形花园ABCD(围墙MN最长可利用25米),现有50米的栅栏,请设计一种围法,使矩形花园的面积为300米2。
【设计说明】:本环节的目的是发挥教材的引领作用。
把教材、学生和教师三个方面有机地结合起来,帮助学生回顾应用一元二次方程解决应用题的一般步骤,解决图形公式型应用题的基本方法,纠正学生解答过程中出现的问题。
【学生活动】:独立思考和交流合作相结合,完成学案中的问题。
【题后反思】列方程解应用题的基本步骤:【拓展应用】幼儿园活动教室矩形地面的长为8米,宽为5米,现准备在地面的正中间铺设两块地毯,四周未铺地毯的条形区域的宽度都相同,若地毯面积是教室矩形地面面积的32,求四周的宽度是多少。
22.3.2一元二次方程的应用——面积问题

2 2
b 4ac (10) 4 1 30 20 0
∴此方程无解. ∴用20cm长的铁丝不能折成面积为30cm2的矩形.
例3:某校为了美化校园,准备在一块长32米,宽
20米的长方形场地上修筑若干条道路,余下部
分作草坪,并请全校同学参与设计,现在有两位
学生各设计了一种方案(如图),根据两种设计方
1、掌握面积法建立一元二次方程的数学模型
并运用它解决实际问题.
2、利用提问的方法复习几种特殊图形的面积
公式来引入新课,解决新课中的问题.
教学重点
根据面积与面积之间的等量关系建立一元二元方
程的数学模型并运用它解决实际问题. 教学难点 根据面积与面积之间的等量关系建立一元二次方
程的数学模型.
例1 有一块矩形铁皮,长100㎝,宽50㎝, 在它的四角各切去一个正方形,然后将四 周突出部分折起,就能制作一个无盖方盒, 如果要制作的方盒的底面积为3600平方
32 2 20 2 2 =100 (米2) 草坪面积= 32 20 100 = 540(米2)
2
取x=2时,道路总面积为:
答:所求道路的宽为2米。
解法二: 我们利用“图形经过移动, 它的面积大小不会改变”的道理, 把纵、横两条路移动一下,使列 方程容易些(目的是求出路面的 宽,至于实际施工,仍可按原图 的位置修路)
与一元二次方程有关的面积 问题(含答案)

1、如图12—1,在宽20米,长32米的矩形耕地上,修筑同样宽的三条路 (两条纵向,一条横向,并且横向与纵向互相垂直),把这块耕地分成大 小相等的六块试验田,要使试验田的面积是570平方米,问道路应该多 宽? 解:设道路为x米宽,
由题意得:20×32﹣20x×2﹣32x+2x2=570, 整理得:x2﹣36x+35=0,
= 所以时,面积有最大值 但墙长15米,所观m能取的最大值为15米 当m=15时,鸡场面积最大为1515=225(平方面) (3)不能
理由:设围成的鸡场长为y米,则宽为 由题意得: 整理得: 解得均大于15米,不合题意 所以,围成的鸡场的面积不能达到250 m (本题也可以将鸡场面积表示出来,用配方法求出最大值是小于250 的,从而判断不能围成鸡场面积是250 m) (4)能, 理由:由(3)得 整理得 解得: 因为墙长为15米 所以y=5 当长为5米时,可围成的鸡场的面积能达到100 m 4、已知:如图所示,在△ABC中,∠C=90,BC=7cm, AC= 5 cm,.点P从 点A开始沿AC边向点C以1cm/s的速度移动,点Q从点C开始沿BC边向点 C以2cm/s的速度移动. (1)如果Q、P,分别从C、A,同时出发,那么几秒后,△PCQ的面积等 于4 m? (2)如果Q、P,分别从C、A,同时出发,那么几秒后,PQ的长度等于 5cm? (3)在(1)中,△PCQ的面积能否等于7 m?说明理由 解:(1)设x秒后,△PCQ的面积等于4 m,由题意得: ,解得
Q B A C P
所以1秒后,△PCQ的面积等于4 m (2)设,y秒后 PQ的长度等于5cm 解得 所以,2秒后, PQ的长度等于5cm (3)在(1)中,若△PCQ的面积能否等于7 m,则 整理得: 原方程无解
22.3 实际问题与一元二次方程(2)

设长方形框的边宽为xcm,依题意 得 依题意,得 解:设长方形框的边宽为 设长方形框的边宽为 依题意 X
上一节,我们学习了解决“平均增 上一节,我们学习了解决“平均增 下降)率问题 长(下降 率问题”,现在,我们要 下降 率问题” 现在, 学习解决“面积、体积问题。 学习解决“面积、体积问题。
探究3 探究
在长方形钢片上冲去一个长方形, 在长方形钢片上冲去一个长方形,制成一个四 周宽相等的长方形框。已知长方形钢片的长为30cm,宽 周宽相等的长方形框。 2 为20cm,要使制成的长方形框的面积为400cm ,求这个 长方形框的框边宽。 长方形框的框边宽。 分析: 分析 本题关键是如何用x的代数式表示这个长方形框的面积 本题关键是如何用 的代数式表示这个长方形框的面积 X X X X
1 解: (1) 方案 :长为9 米,宽为 米; 方案1: 宽为7米 7
∴ b2 − 4ac = (−16)2 − 4 × 1 × 65 = −4 < 0
方案2:长为 米 宽为4米 方案3: 方案 :长为16米,宽为 米; 方案 :长=宽=8米; 宽 米 注:本题方案有无数种 (2)在长方形花圃周长不变的情况下,长方形花 )在长方形花圃周长不变的情况下, 圃面积不能增加2平方米 平方米. 圃面积不能增加 平方米 由题意得长方形长与宽的和为16米 设长方形花圃 由题意得长方形长与宽的和为 米.设长方形花圃 的长为x米 则宽为(16-x) 的长为x米,则宽为(16-x)米. x(16-x)=63+2, , x2-16x+65=0, , ∴此方程无解. 此方程无解 在周长不变的情况下, ∴在周长不变的情况下,长方形花圃的面积不能 增加2平方米 增加 平方米
21.3实际问题与一元二次方程课件

试一试
4、某航空公司有若干个飞机场,每个飞机场之间 都开辟一条航线,一共开辟了10条航线,则这个 航空公司共有飞机场(B ) A.4个 B.5个 C.6个 D.7个
5、在一次商品交易会上,参加交易会的每两家公司 之间都要签订一份合同,会议结束后统计共签订了78 份合同,问有多少家公司出席了这次交易会?
B.50+50(1+x)2=196
C.50+50(1+x)+50(1+x)2=196
D.50+50(1+x)+50(1+2x)=196
试一试
1.某乡无公害蔬菜的产量在两年内从20吨增加到35吨. 设这两年无公害蔬菜产量的年平均增长率为x,根据题意, 列出方程为 __________________ .
了一系列政策措施,2001年中央财政用于支持这项改革
试点的资金约为180亿元,预计到2003年将到达304.2亿
元,求2001年到2003年中央财政每年投入支持这项改革
资金的平均增长率?
分析:设这两年的平均增长率为x,
2001年 2002 年
2003年
180
180(1+x)
180(1 x)2
解:这两年的平均增长率为x,依题有
纵向路面面积为20x 米2 。
32m
耕地矩形的长(横向)为(32-x) 米 ,
耕地矩形的宽(纵向)为 (20-x) 米 。
相等关系是:耕地长×耕地宽=540米2
即 32 x20 x 540.
化简得:x2 52 x 100 0, x1 50, x2 2
再往下的计算、格式书写与解法1相同。
x米
矩形面积减去道路面积等
于540米2。
20m
解法一、
如图,设道路的宽为x米, 则横向的路面面积为 32x 米2
22.3-实际问题与一元二次方程-课件2
即 32 x20 x 540.
化简得:x2 52x 100 0, x1 50, x2 2
再往下的计算、格式书写与解法1相同。
第16页,共23页。
例4.某林场计划修一条长750m,断面为 等腰梯形的渠道,断面面积为1.6m2, 上口
宽比渠深多2m,渠底比渠深多0.4m. (1)渠道的上口宽与渠底宽各是多少?
例. (2003年,舟山)如图,有长为24米的篱笆,一面利 用墙(墙的最大可用长度a为10米),围成中间隔有 一道篱笆的长方形花圃。设花圃的宽AB为x米,面积为
S米2,
(1)求S与x的关系式;(2)如果要围成面积为45米2的花 圃,AB的长是多少米?
【解析】(1)设宽AB为x米, 则BC为(24-3x)米,这时面积 S=x(24-3x)=-3x2+24x (2)由条件-3x2+24x=45 化为:x2-8x+15=0解得x1=5,x2=3 ∵0<24-3x≤10得14/3≤x<8 ∴x2不合题意,AB=5,即花圃的宽AB为5米
这里a=1,b=-10,c=30,
b2 4ac (10)2 4130 20 0
∴此方程无解.
答:用20cm长的铁丝不能折成面积为30cm2的矩形.
第4页,共23页。
3.如图,是长方形鸡场平面示意图,一边靠墙, 另外三面用竹篱笆围成,若竹篱笆总长为35m,所 围的面积为150m2,则此长方形鸡场的长、宽分 别为_______.
第1页,共23页。
上一节,我们学习了解决“流感传
播问题和平均增长(下降)率问题”, 现在,我们要学习解决“面积、体 积问题。
第2页,共23页。
例题解析
1.如图,用长为18m的篱笆(虚线部分),两面靠 墙围成矩形的苗圃.要围成苗圃的面积为81m2,应该
一元二次方程面积问题的实际应用
数学试卷九年级实际问题与一元二次方程(3)导学案(27)班级: 上课时间:姓名:评价知识目标:(1)、掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.(2)、利用提问的方法复习几种特殊图形的面积公式来引入新课,解决新课中的问题.重点:据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.难点:根据面积与面积之间的等量关系建立一元二次方程的数学模型.(一)导学求思1、列方程解应用题步骤2、填空:1).直角三角形的面积公式是 •一般三角形的面积公式是2).正方形的面积公式是长方形的面积公式又是3).梯形的面积公式是 4).菱形的面积公式是5).平行四边形的面积公式是 6).圆的面积公式是(二)、探究交流(一)要设计一本书的封面,封面长27㎝,宽21㎝,正中央是一个矩形,如果要使四周的边衬所占面积是封面面积的四分之一,上、下、左、右边衬等宽,应如何设计四周边衬的宽度?分析:(法一)这本书的上下左右边衬的宽度相等,可设四周边衬的宽度为xcm,据四周的边衬所占面积是封面面积的四分之一可得方程。
(此题的过程展示右上)分析: (法二)这本书的上下左右边衬的宽度相等,可设四周边衬的宽度为xcm,据四周的边衬所占面积是封面面积的四分之一可知正中央矩形的面积是封面面积的四分之三,从而得方程。
解:(三)(探究3)如图,要设计一本书的封面,封面长27cm,宽21cm,•正中央是一个与整个封面长宽比例相同的矩形,•如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,•应如何设计四周边衬的宽度(结果保留小数点后一位)?分析:(法一)这本书的长宽之比是9:7,依题知正中央的矩形两边之比也为9:7,设正中央的矩形两边分别为9xcm,7xcm,则上、下边衬为,左、右边衬为因为四周的彩色边衬所点面积是封面面积的四分之一,则中央矩形的面积是封面面积的四分之三,从而得方程。
人教版九年级上册数学 21.3 实际问题与一元二次方程 课件
4.三个连续偶数,已知最大数与最小数的
平方和比中间一个数的平方大332,求这三 个连续偶数.
1.偶数个连续偶数(或奇数),一般可设中间两个为 (x1)和(x 1). 2.奇数个连续偶数(或奇数,自然数),一般可设中 间一个为x.如三个连续偶数,可设中间一个偶数为x, 则其余两个偶数分别为(x2)和(x+2)又如三个连续自 然数,可设中间一个自然数为x,则其余两个自然数 分别为(x1)和(x 1).
解这个方程得:x1 x2 4
CQ
B
答:当AP 4cm时,四边形面积为16cm2
小结 拓展
回味无穷
• 列方程解应用题的一般步骤是: • 1.审:审清题意:已知什么,求什么?已,未知之间有什么关系? • 2.设:设未知数,语句要完整,有单位(同一)的要注明单位; • 3.列:列代数式,列方程; • 4.解:解所列的方程; • 5.验:是否是所列方程的根;是否符合题意; • 6.答:答案也必需是完事的语句,注明单位且要贴近生活. • 列方程解应用题的关键是: • 找出相等关系. • 关于两次平均增长(降低)率问题的一般关系: • a(1±x)2=A(其中a表示基数,x表表示增长(或降低)率,A表示新数)
数字与方程
实际问题与一元二次方程 (三)
1. 两个数的差等于4,积等于45,求这两个数.
2. 一个两位数,它的十位数字比个位数字小3,而 它的个位数字的平方恰好等于这个两位数.求这 个两位数.
3.有一个两位数,它的十位数字与个位数字的和是5. 把这个两位数的十位数字与个位数字互换后得到 另一个两位数,两个两位数的积为736.求原来的 两位数.
则 x(18 x) 81
化简得,x2 18x 81 0 (x9)2 0 x1 x2 9
一元二次方程解决实际问题
一元二次方程解决实际问题一、根据题目的意思设数;二、根据题目列出方程;三、解方程;四、根据具体问题的实际意义,检验结果是否合理;五、答题。
1、面积问题;1)要使一块矩形场地的长比宽多6米,并且面积为16平方米,场地的长和宽分别是多少?2)某农民要在自己的房屋旁边搞一个鸡场,房屋的墙长16米,计划用32米长的围栏靠墙围成一个矩形鸡场。
(1)要使鸡场的面积为120平方米,则矩形的长和宽分别是多少?(2)能不能围成一个面积为150平方米的矩形?(3)矩形的长和宽分别是多少时,鸡场的面积最大?2、增长率问题;1)某种药品经过两次的降价,由原来的每盒25元下降到16元。
设平均每次的下降率为x,由题意所得,列出方程是;2)某村2011年人均收入为1200元,2013年的人均收入为1452元,求人均收入的增长率。
3)(2013年第20题)雅安地震牵动全国人民的心,某单位开展一次“一方有难,八方支援”赈灾捐款活动,第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天。
第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?4)(2012年第16题)据媒体报道,我国2009年公民出境旅游总人数约5 000万人次,2011年公民出境旅游总人数约7 200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?3、双循环、单循环问题;1)足球比赛是进行主客(双循环)比赛的。
在一次足球联赛中,一共进行了30场比赛。
问有多少支队参加比赛?2)要组织以次篮球比赛,赛制为单循环形式(每两队之间都赛一场),计划安排15场比赛,有多少个对参加比赛?3)在一次聚会中,每两个人之间都握一次手,共握了45次手,问有多少人参加聚会?4、病毒传染与树杈问题;1)有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?如果得不到很好的控制,则第三轮传染,一共会有多少人患上流感?2)有一只猪患了“猪流感”,经过两轮传染共有169只猪患了“猪流感”,求每轮传染中平均一只猪传染了几只猪?3)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是91,每个支干长出多少小分支?*5、动态几何问题例9如图4所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动。