基于SST51单片机的简易数字存储示波器
数字存储示波器 实验报告

数字存储示波器实验报告数字存储示波器实验报告引言:数字存储示波器是现代电子测量领域中常见的一种仪器。
它通过将模拟信号转换为数字信号,并进行存储和处理,能够更准确地显示和分析电路中的信号波形。
本实验旨在通过使用数字存储示波器,对不同信号的波形进行观测和分析,并探究其在电子实验中的应用。
一、实验原理:数字存储示波器的工作原理主要包括信号采样、信号转换和信号显示三个过程。
首先,示波器通过采样装置对模拟信号进行采样,将其转换为离散的数字信号。
然后,通过模数转换器将离散的信号转换为数字信号,并将其存储在示波器的存储器中。
最后,示波器通过显示器将存储的数字信号转换为波形图形进行显示。
二、实验步骤:1. 连接电路:将待测的电路与示波器进行连接,确保信号源与示波器的输入端正确连接。
2. 设置示波器参数:根据待测信号的特点,设置示波器的采样频率、触发方式和时间基准等参数。
3. 开始测量:打开示波器电源,观察显示屏上的波形图形,并对波形进行分析和测量。
4. 调整参数:根据需要,调整示波器的参数,如水平和垂直灵敏度、触发电平等,以获得更清晰和准确的波形图形。
5. 结束实验:关闭示波器电源,断开电路连接,整理实验器材。
三、实验结果:通过实验,我们得到了多个不同信号的波形图形,并进行了分析和测量。
以下是实验中得到的一些典型结果:1. 正弦波信号:我们首先对一个正弦波信号进行观测。
通过示波器的显示,我们可以清晰地看到波形的周期、幅度和相位等特征。
通过测量,我们还可以得到波形的频率和峰峰值等具体数值。
2. 方波信号:接下来,我们对一个方波信号进行观测。
方波信号具有明显的上升沿和下降沿,通过示波器的显示,我们可以观察到方波的占空比和频率等信息。
同时,我们还可以通过示波器的测量功能,得到方波的上升时间和下降时间等参数。
3. 脉冲信号:最后,我们对一个脉冲信号进行观测。
脉冲信号具有较短的脉宽和较高的幅度,通过示波器的显示,我们可以观察到脉冲信号的上升时间、下降时间和脉宽等特征。
基于单片机和CPLD的数字存储示波器设计

简易数字存储示波器设计摘要本次设计基于数字示波器原理,以高速转换器件、CPLD和单片机为核心,结合直接存储器存取(DMA)技术,设计制作完成了简易数字存储示波器。
此数字示波器具有实时单、双踪显示和存储、连续回放显示功能。
整个设计实现了数字存储示波器的所有功能指标。
关键字:数字存储示波器,高速A/D、D/A转换器一、方案设计和论证数字存储示波器可以方便地对模拟信号进行采集和存储,并能利用微处理器对存储的数据作进一步处理,具有单踪、双踪实时显示和存储显示两种模式。
高速数据采集、存储、回放及触发电平调节是本设计的难点和重点。
下面就对这几个重要环节做论证和比较:1.数据采集方案一:采用中高速A/D转换器,由单片机控制对模拟信号进行采集。
限于单片机的工作频率,仅可采集低于5KHz的信号;对于更高频率的信号,虽然经处理后也能采集,但过程比较复杂。
本设计不采用此方案。
方案二:用CPLD控制高速A/D转换器采集模拟信号。
CPLD的工作时钟频率可达几十兆赫兹,完全可以控制高速A/D转换器对的高频信号进行实时采样。
只要A/D转换器的速度跟得上,可以实现对上兆的信号的采样。
本设计采用此方案。
2.数据存储方案一:采用双口RAM存储采样量化后的波形数据。
虽然控制和存储都很方便,但是本地根本买不到,所以本设计不采用此方案。
方案二:采用普通RAM存储采样量化后的波形数据。
虽然软硬件都比采用双口RAM 复杂,但是双口RAM不是哪里都能买到的,这也不失为一种替代的好方法。
本设计就采用此方案。
3.双踪显示方案一:用两片A/D转换器、两片存储器和两片D/A转换器,分别对两路模拟信号进行采样、存储和回放。
双踪显示时,只需要轮流切换两路输出信号,就可以实现双踪显示。
但是此方案①成本很高;②要做两路控制,软硬件相对更加复杂,本设计不采用此方案。
方案二:用一片A/D转换器、一片存储器和一片D/A转换器,以高速率切换模拟开关实现对两路模拟信号的采集。
简易数字存储示波器设计报告[]
![简易数字存储示波器设计报告[]](https://img.taocdn.com/s3/m/149a33a32b160b4e777fcfb1.png)
简易数字存储示波器设计报告摘要本设计分为四个模块,分别是:信号前向调整模块,数据采集模块,数据输出模块和控制模块。
信号前向调整模块采用高速低噪音模拟开关(MAX4545)和宽带运算放大器(MAX817)构成可编程运算放大器,对幅度不等的输入信号分别进行不同等级的放大处理.数据采集模块采用可编程器件(EPM7128SLC84—15)控制高速A/D(TLC5510)对不同频率的输入信号分别以相应的采样速度予以采样,并将采样数据存在双口RAM(IDT7132)中.数据输出模块采用另一片可编程器件(EPM7128SLC84—15)控制两片D/A(DAC0800)分别输出采样信号和锯齿波,在示波器上以X-Y的方式显示波形.控制模块以AT89C52单片机为控制核心,协调两片可编程器件的工作,并完成其它的测量,计算及控制功能.一.总体方案设计与论证:方案一:数字示波器采用数字电路,将输入信号先经过A/D变换器,把模拟波形变换成数字信息,暂存于存储器中。
显示时通过D/A变换器将存储器中的数字信息变换成模拟波形显示在模拟示波器的示波管上。
对于存储器的地址计数及数据存取可通过数字电路对时钟脉冲计数产生地址,并选通存储器来实现;对输入信号何时触发采集可通过模拟比较器及其它简单的模拟电路实现。
但是,这种方法的硬件电路过于复杂,调试起来也不方便,不利于系统的其它功能扩展,因而不可采取。
方案二:采用AT89C52单片机。
单片机软件编程灵活,自由度大。
可通过软件编程实现对模拟信号的采集,存储数据的输出以及各种测量,逻辑控制等功能。
但是,系统要求的频带上限为50KHZ,根据采样定理,采样速度的下限为100KHZ,需要用高速A/D进行采样.假设单片机系统用12M的晶体振荡器作为系统时钟,那麽一条指令就需要1us或2us,根本无法控制A/D高速工作.因此,单纯用软件是不可能实现该系统的。
方案三:采用AT89C52单片机作为控制核心,采用可编程器件(ALTERA公司的EPM7128SLC84—15)来实现对数字系统的控制。
简易数字示波器的设计论文

简易数字示波器的设计摘要示波器是用量最多、用途最广的测量仪器之一,是观察和测量电子波形不可缺少的工具。
传统的模拟示波器在观测周期性重复频率较高的波形方面仍然得到普遍使用,但对于不能重复出现的单次信号、持续的非周期信号以及重复频率较低的周期信号则显得无能为力。
数字存储示波器正是基于上述要求而出现的。
数字示波器是新型智能化示波器,其技术基础是数据的采集,该技术可以应用于更广泛的数据采集产品中,具有深远意义。
本论文对示波器的工作原理进行了介绍,提出了一种基于STC12C5A60S2单片机和12864点阵液晶屏的数字示波器设计方案,实现对被测信号的采样、存储以及显示;扫描频率可调,幅度可调;设置10ms/div、2ms/div、1ms/div、500μs/div、400μs/div五档扫描速度,仪器的频率范围为DC~3kHz。
其依据是利用STC12C5A60S2芯片的AD转换器对输入的模拟信号进行采样,将采样值存入缓冲区经程序处理后在LCD液晶屏上显示出对应的波形。
实验结果表明本设计电路结构简单,运算速度高,频率显示准确,可以实现快速读取,波形显示刷新速度较快。
设计中采用的模块化设计方法,提高了设计效率。
整个系统成本廉价,并且实现了数字示波器的所有功能要求,达到了较高的性能指标。
关键词:单片机,液晶显示,数字示波器,AD采样THE DESIGN OF SIMPLE DIGITAL OSCILLOSCOPEABSTRACTThe oscilloscope is one of the most widely used measuring instruments, is an indispensable tool of observation and measurement of electronic waveform. Traditional analog oscilloscope observation cyclical high repetition frequency waveform is still widely used, but for a single signal that can not be repeated, sustained non-periodic signal, and low repetition frequency of periodic signals look powerless. Digital storage oscilloscope is based on the above requirements emerge. The digital oscilloscope is a new intelligent oscilloscope, its technology is based on the data acquisition, and the technology can be applied to a wider range of data acquisition products and has far-reaching significance.The paper describes the working principle of the oscilloscope, it puts forward a solution that based microcontroller STC12C5A60S2 and 12864 dot matrix LCD screen, digital oscilloscope design to achieve the measured signal, sampling, storage and display; scanning frequency is adjustable, amplitude adjustable; set 10ms/div、2ms/div、1ms/div、500μs/div、400μs/div fifth gear scanning speed, the frequency range of the instrument for DC ~ 3kHz. It is based on the AD converter in STC12C5A60S2 chip sample the input analog signal, the sampled values are stored in the buffer, then shows the corresponding waveform on the LCD screen after procedures.Experimental results show that this design is a simple circuit structure, high-speed operation, accurate frequency display, can be quickly read, waveform display refresh rate faster. Equivalent sampling techniques used in the design, can be a good high-speed periodic signal measurements require high-speed sampling, to reduce the requirements for the A / D conversion rate, reduce thehardware cost of the oscilloscope. The modular design approach adopted in the design, improves design efficiency highly. The whole system is very cheap, and fulfills all the functional requirements of the digital oscilloscope to achieve a higher performance.KEY WORDS:Single-chip Microcomputer, LCD, Digital Oscilloscope, AD Sample目录第1章绪论 (1)§1.1 课题背景 (1)§1.2 课题研究的目的和意义 (2)§1.3 课题的主要研究工作 (2)第2章系统设计方案的研究 (3)§2.1 系统设计的总体思路 (3)§2.2 系统设计任务 (3)§2.3系统设计的原理 (4)§2.4总体方案的选定 (5)§2.4.1 方案论证 (5)§2.4.2 系统框图 (5)第3章硬件电路设计 (7)§3.1 单片机的选型 (7)§3.1.1 STC12C5A60S2的内部结构 (7)§3.1.2 STC12C5A60S2的管脚说明 (8)§3.1.3 STC12C5A60S2的时钟 (9)§3.1.4 STC12C5A60S2的复位 (10)§3.2 A/D采样 (11)§3.2.1 A/D采样的基本原理 (11)§3.2.2 STC12C5A60S2的A/D结构和操作方法 (12)§3.3 12864液晶显示模块 (14)§3.3.1液晶显示模块概述 (14)§3.3.2显示RAM (14)§3.3.3点阵LCD的显示原理 (15)§3.4信号保持电路 (16)§3.5串口通信电路 (18)§3.6键盘控制电路 (19)第4章系统软件设计 (21)§4.1 软件架构 (21)§4.2 主程序的设计 (22)§4.3 波形显示程序的设计 (23)§4.4 按键检测程序的设计 (25)§4.5 软硬联调结果 (26)结论 (28)参考文献 (29)致谢 (30)附录 (31)第1章绪论§1.1课题背景本世纪70年代起,数字集成电路和微处理机技术获得了迅速发展,示波器也开始应用这些新技术来适应各种需要。
简易数字存储示波器设计

3. 部分电路设计及模拟
* 有关解释 程控开关Sn 必须是模拟开关,选择集成开关MAX4501; 增益调节电阻Rnn ,模拟开关的内阻计人其中; 补偿电容 改善通道频响特性
3. 部分电路设计及模拟
3)低通滤波器 * 作用:抗混迭
采样信号的频谱混迭现象及改善方法
* 抗混迭滤波器电路
3. 部分电路设计及模拟
态
校满度
信
号
程控增益和扫描速度
开始写数据 动
停止写数据
态 数据处理
信
启动显示 号
扩展显示
锁存显示
双踪显示
单次触发
用途 输入短路 输入端接0.8V 分别接通增益和选择时钟 RAMa和RAMb地址为 00H RAMa和RAMb地址为 FFH 或1FFH
将零点偏移、满度校准以及光迹分离量计入采集数 据
从RAM读数据至D/A
采用实时采样方式
2. 方案讨论
2.2 控制器的选择
* 对控制器的要求
采集速率: 高达1000kHz(1 μ s), 低至 20ms; (决定于扫描速度)
样点恢复速率:10kHz; 程控增益: 1V/div,0.1V/div,0.01V/div 双踪、扩展… * 三种方案
(1) VLSI 例如 CPLD (2) MUC (3) MUC+CPLD
① 显示器是其外设; ② 与CPLD 的连接是P0、P1口; ③ 键盘中断优线于触发中断; ④ 输出信号恢复和产生扫描电压的数据; ⑤ 单片机的有关设定
P1口,表6.4 内RAM的设定,表6.5 前向通道的控制信号,表6.6 补充说明: 扫描速度为0.2s/div时,每采样一点就显示一次,否则要产生 闪烁现象。
4) 控制器的软件设计 (根据DSO的工作过程编写)
基于单片机的示波器

题目5 基于单片机的简易示波器班级:自动化131 :姜小华蔡兴鹏一、电路设计原理本次课程设计设计的示波器由控制模块、人机界面接口、信号输入通道、信号显示模块组成。
控制器模块应该具有以下一些主要功能:在满足触发条件时能启动对被测信号的频率范围确定相应的采样速率;在对存储的信号进行显示时,可以选择一个适宜的速率将存储的信号数据读出并恢复模拟量;为了使A/D在适宜的模拟输入信号幅度下进行转换,应能根据垂直灵敏度的要求选择信号调理电路的增益。
人机界面接口模块可通过键盘对不同信号通道的选择,与波形位置的调整。
信号输入通道模块;信号〔正弦信号、方波信号〕的产生,信号的放大、衰减电路,A/D转换电路。
信号显示模块组成;LCD显示出波形。
二、介绍各芯片参数1、数模转换ADC0808ADC0808是采样分辨率为8位的、以逐次逼近原理进行模/数转换的器件。
其内部有一个8通道多路开关,它可以根据地址码锁存译码后的信号,只选通8路模拟输入信号中的一个进行A/D转换。
ADC0808是ADC0809的简化版本,功能根本相同。
一般在硬件仿真时采用ADC0808进行A/D转换,实际使用时采用ADC0809进行A/D转换。
ADC0808芯片有28条引脚,采用双列直插式封装,如右图所示。
各引脚功能如下:1~5和26~28〔IN0~IN7〕:8路模拟量输入端。
8、14、15和17~21:8位数字量输出端。
22〔ALE〕:地址锁存允许信号,输入,高电平有效。
6〔START〕:A/D转换启动脉冲输入端,输入一个正脉冲〔至少100ns宽〕使其启动〔脉冲上升沿使0809复位,下降沿启动A/D转换〕。
7〔EOC〕:A/D转换结束信号,输出,当A/D转换结束时,此端输出一个高电平〔转换期间一直为低电平〕。
9〔OE〕:数据输出允许信号,输入,高电平有效。
当A/D转换结束时,此端输入一个高电平,才能翻开输出三态门,输出数字量。
10〔CLK〕:时钟脉冲输入端。
简易数字存储示波器设计
数字电子技术
1.2 时序分析
图11-42 图11-38的仿真波形
1.3 硬件测试
可以为图11-38的电路增加一个输出口,即将作为地址 信号发生器的计数器的计数信号中的高8位直接输出,与实 验系统上的第2个DAC0832相接,使此DAC输出锯齿波, 然后用此锯齿波控制示波器的X轴,而Y轴输入负责ADC采 样数据输出的DAC的信号,从而选择示波器的X-Y控制波形 显示。
数字电子技术
简易数字存储示波器设计
1.1 电路结构与工作原理
图11-38 ADC0809采样电路系统:RSV.bdf
1.1 电路结构Biblioteka 工作原理图11-39 CNT8B设置界面
1.1 电路结构与工作原理
图11-40 CNT10B设置界面
1.1 电路结构与工作原理
图11-41 21max电路结构
基于51单片机示波器实物买家秀
基于51单片机示波器实物买家秀51单片机示波器是一种基于51单片机技术的示波器。
它主要由51单片机、显示屏、信号探头等组成,具有显示波形、测量信号频率和幅度等功能。
下面我将从示波器的外观、特点和应用方面进行介绍,给大家展示一下这款示波器的魅力。
首先,我们来看看51单片机示波器的外观。
它通常采用手持式设计,外壳采用塑料材料制成,重量轻,便于携带。
在外壳的顶部,有设置了显示屏,可以直观地显示波形。
在设备的一侧,有一个控制面板,上面有各种功能按钮和旋钮,便于用户对示波器进行控制和设置。
此外,示波器的前端还有一个信号探头接口,用户可以连接信号探头进行信号的测量。
其次,我们来看看51单片机示波器的特点。
首先,它具有高性能的51单片机,可以实现较高的采样率和信号处理能力,能够准确地捕获和显示信号波形。
其次,示波器采用TFT显示屏,具有较高的分辨率和色彩饱和度,可以清晰地显示波形,方便用户观察和分析。
再次,示波器支持多种触发方式和时间基准调整,用户可以根据需要进行设置,方便进行波形触发和时间测量。
此外,示波器的信号探头采用了专业的设计,具有良好的阻抗匹配和信噪比,可以保证测量结果的准确性和稳定性。
最后,让我们来看看51单片机示波器的应用。
首先,它可以应用于电子教育实验,如电路实验课程、模拟电路实验等,帮助学生更直观地观察和分析信号波形,加深对电子原理的理解。
其次,示波器可以应用于电子维修和调试领域,例如对电路板进行信号测量和故障排查,帮助维修人员快速定位和解决问题。
此外,示波器还可以应用于科研领域,帮助科研人员对信号进行采集和分析,探索新的科学现象和技术方法。
综上所述,51单片机示波器作为一种基于51单片机技术的示波器,具有外观精美、性能优良、应用广泛等特点,深受用户的喜爱。
它不仅可以满足电子教育、电子维修和科研等领域的需求,还可以帮助用户更好地理解和应用电子技术。
相信随着科技的不断进步,51单片机示波器会在未来发展得更加出色。
简易数字存储示波器设计
简易数字存储示波器设计任务及要求:1、设计并制作一台用普通示波器显示被测波形的简易数字存储示波器,示意图如下:2、基本要求(1)要求仪器具有单次触发存储显示方式,即每按动一次“单次触发”键,仪器在满足触发条件时,能对被测周期信号或单次非周期信号进行一次采集与存储,然后连续显示。
(2)要求仪器的输入阻抗大于100kΩ,垂直分辨率为32级/div,水平分辨率为20点/div;设示波器显示屏水平刻度为10div,垂直刻度为8div。
(3)要求设置0.2s/div、0.2ms/div、20μs/div三档扫描速度,仪器的频率范围为DC~50kHz,误差≤5%。
(4)要求设置0.1V/div、1V/div二档垂直灵敏度,误差≤5%。
(5)仪器的触发电路用内触发,要求上升沿触发、触发电平可调。
(6)观测波形无明显失真。
3、发挥部分(1)增加连续触发存储显示方式,在这种方式下,仪器能连续对信号进行采集、存储并实时显示,且具有锁存(按“锁存”键即可存储当前波形)功能。
(2)增加双踪示波功能,能同时显示两路被测信号波形。
(3)增加水平移动扩展显示功能,要求存储深度增加一倍,并且能通过操作“移动”键显示被存储信号波形的任一部分。
(4)垂直灵敏度增加0.01V/div档,以提高仪器的垂直灵敏度,并尽力减小输入短路时的输出噪声电压。
方案选择及设计理念:数字存储示波器系统由信号调理电路、采样保持电路、触发电路、A/D、D/A、X输出电路、Y输出电路、控制处理器等组成。
下图所示为数字存储示波器的原理框图。
每隔一端时间对输入的模拟信号进行采样然后经过A/D转换,把这些数字化后的信息按一定的顺序存入RAM中,当采样频率走高时,就可以实现信号的不失真存储。
当需要观察这些信息时,只要以合适的频率把这些信息从存储器RAM中按原顺序取出,经D/A转化和LPF滤波后送至示波器就可以观察到稳定的还原后的波形。
方案讨论:采样方式的选择本题要求的单次信号测量,需采用实时采样;要求最高信号频率为50KHZ,为使该频率下每个周期内有20个采样点,就要求最高采样速率为1MHZ,A/D转换速率1Ms/s,在目前市场条件下满足1MHZ采样速率的A/D无论技术条件还是价格都不是困难的。
简易数字存储示波器
目录1 任务分析 (3)2 方案论证和比较 (4)2.1处理器的比较和选择 (4)2.2信号前向调整模块的设计方案 (4)2.3A/D转换器选型方案 (4)2.4显示设备的选择 (5)3系统硬件设计 (5)3.1总体设计思路 (5)3.2信号前向调整模块 (5)3.3频率计的基本原理 (6)3.4MSP430F247处理器 (7)3.5存储器 (8)3.6显示输出电路 (9)3.7键盘设计 (9)3.8电源稳压保护电路 (10)4 软件设计 (10)5 系统测试 (11)6 结束语 (12)7 参考文献 (13)8附录 (14)附录1 系统电路总图 (14)附录2 制作实物图 (15)摘要本设计是一种简单实用的数字存储示波器。
该设计主要由四个模块电路组成:前端信号处理模块、数据的采集与存储模块、键盘输入控制模块、单片机控制模块与LCD显示模块。
采样率可达1M,并具有数据的采集、显示菜单、单次触发、存储显示等功能。
本设计以MSP430F247单片机为核心,采用运算放大器OPA2132,对大小信号分别进行放大处理;LCD12864显示波形,并且可以显示当前的时间扫描灵敏度和垂直灵敏度状态。
此外作品大大优化了外围硬件线路的设计,增加了系统的稳定性和可靠性。
关键词:示波器数字存储高速AD转换,简易数字存储示波器1 设计任务设计并制作一个简易数字存储示波器( 简易DSO )。
基本要求(1) 可以显示测量的波形,(2) 垂直灵敏度:0.01V/div,0.02V/div,0.05V/div,0.1V/div,0.2V/div,0.5V/div,1V/div,2V/div,5V/div误差≤5% ;(3) 水平扫速: 30μs/div,50μs/div,100μs/div,200μs/div,500μs/div,1ms/div,2ms/div,5ms/div,10ms/div,20ms/div,50ms/div,100ms/div,200ms/div,1s/div,误差≤5%;(4) 可测量的模拟输入信号的电压范围在10mV-5V。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于SST51单片机的简易数字存储示波器
一、任务
设计并制作一台用于显示被测波形的简易数字存储示波器,参考结构图如
下:
信号调理(放大、电平提升)ADC(TLC549)ADC驱动模块存储模块(XRAM)采样控制模块RS232
驱动
模块
系统时钟
11.0592Mhz
显
示
控
制
模
块
数据处理模
块(RMS、频
率等数据测
量)
LCD显示屏
采样控制模
块
PC端
Labview
虚拟仪
器
二、要求
1、基本要求
(1)要求仪器具有触发存储显示功能,仪器在满足触发条件时,能对被测周
期信号采集与存储,然后通过串口发送数据,在PC端通过SST51示波器软件(默
认波特率:38400,起始位、停止位)显示波形;
(2)要求仪器的输入阻抗大于1MΩ,输入信号范围为±2.5V。
(3)要求实现30sps、300sps、3ksps三档采样速率,仪器带宽为DC~150Hz,
误差≤5%。
(4)仪器的触发采用软件触发,存储深度为20byte。
(5)观测波形无明显失真。
2、发挥部分
(1)具有锁存(按“Stop”键即可存储锁定当前波形)功能。
(2)增加水平移动扩展显示功能,并且能通过操作“移动”键显示被存储信
号波形的任一部分。
(3)通过LCD显示器显示RMS及信号频率值,在PC端Labview虚拟仪
器实现连续显示。
(4)提高仪器的垂直灵敏度,可设置0.05V/div、0.5V/div两种灵敏度,并
尽力减小输入短路时的输出噪声电压。
三、评分标准
项目 满分
设计报告
方案比较、设计与论证,理论分析与计算,电路图及有关设计
文件,测试方法与仪器,测试数据及测试结果分析。
50
基本要求 实际制作完成情况
50
发挥部分
完成第(1)项
10
完成第(2)项
10
完成第(3)项
15
完成第(4)项
15
四、附加说明
1、如果采用中断技术,应注意采样中断及显示中断的优先级;
2、ADC的输入信号范围为0~5V,为了接受±2.5V的信号,信号调离电路应该
能够将输入信号电平进行提升;
3、制作信号调理电路过程可以参考模拟电路设计教材,并通过TINA进行仿真;
4、为了尽可能实现更高带宽,应该尽可能的提高代码质量;
5、测试过程可以使用示波器显示软件SST51或者串口调试助手。
五、技术支持及建议
1、单片机、硬件支持:
2、Labview支持: