平面向量及其应用综合练习题(1)

平面向量及其应用综合练习题(1)
平面向量及其应用综合练习题(1)

一、多选题1.题目文件丢失!

2.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( )

A .||||||a b a b ?≤

B .若a b c b ?=?且0b ≠,则a c =

C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向

D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是

5,3??-+∞ ???

3.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S .下列

ABC 有关的结论,正确的是( ) A .cos cos 0A B +>

B .若a b >,则cos2cos2A B <

C .24sin sin sin S R A B C =,其中R 为ABC 外接圆的半径

D .若ABC 为非直角三角形,则tan tan tan tan tan tan A B C A B C ++= 4.给出下列结论,其中真命题为( ) A .若0a ≠,0a b ?=,则0b =

B .向量a 、b 为不共线的非零向量,则22

()a b a b ?=? C .若非零向量a 、b 满足2

2

2

a b

a b +=+,则a 与b 垂直

D .若向量a 、b 是两个互相垂直的单位向量,则向量a b +与a b -的夹角是

2

π 5.已知向量a =(2,1),b =(1,﹣1),c =(m ﹣2,﹣n ),其中m ,n 均为正数,且(a b -)∥c ,下列说法正确的是( ) A .a 与b 的夹角为钝角

B .向量a 在b

C .2m +n =4

D .mn 的最大值为2

6.ABC 中,2AB =,30ACB ∠=?,则下列叙述正确的是( ) A .ABC 的外接圆的直径为4.

B .若4A

C =,则满足条件的ABC 有且只有1个 C .若满足条件的ABC 有且只有1个,则4AC =

D .若满足条件的ABC 有两个,则24AC <<

7.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,b =15,c =16,B =60°,则a 边为

( ) A .8+33 B .83161+

C .8﹣33

D .83161-

8.如图,在平行四边形ABCD 中,,E F 分别为线段,AD CD 的中点,AF CE G =,

则( )

A .12

AF AD AB =+ B .1

()2

EF AD AB =

+ C .2133

AG AD AB =

- D .3BG GD = 9.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列结论中正确的是( )

A .若a b >,则sin sin A

B >

B .若sin 2sin 2A B =,则AB

C 是等腰三角形 C .若cos cos a B b A c -=,则ABC 是直角三角形

D .若2220a b c +->,则ABC 是锐角三角形

10.已知平行四边形的三个顶点的坐标分别是(3,7),(4,6),(1,2)A B C -.则第四个顶点的坐标为( ) A .(0,1)-

B .(6,15)

C .(2,3)-

D .(2,3)

11.(多选题)下列命题中,正确的是( ) A .对于任意向量,a b ,有||||||a b a b +≤+; B .若0a b ?=,则00a b ==或; C .对于任意向量,a b ,有||||||a b a b ?≤ D .若,a b 共线,则||||a b a b ?=± 12.下列命题中,正确的有( )

A .向量A

B 与CD 是共线向量,则点A 、B 、

C 、

D 必在同一条直线上 B .若sin tan 0αα?>且cos tan 0αα?<,则角2

α

为第二或第四象限角 C .函数1

cos 2

y x =+

是周期函数,最小正周期是2π D .ABC ?中,若tan tan 1A B ?<,则ABC ?为钝角三角形 13.对于ABC ?,有如下判断,其中正确的判断是( ) A .若sin 2sin 2A B =,则ABC ?为等腰三角形

B .若A B >,则sin sin A B >

C .若8a =,10c =,60B ?=,则符合条件的ABC ?有两个

D .若222sin sin sin A B C +<,则ABC ?是钝角三角形 14.设,a b 是两个非零向量,则下列描述正确的有( ) A .若||||||a b a b +=-,则存在实数λ使得a b λ= B .若a b ⊥,则||||a b a b +=-

C .若||||||a b a b +=+,则a 在b 方向上的投影为||b

D .若存在实数λ使得a b λ=,则||||||a b a b +=-15.题目文件丢失!

二、平面向量及其应用选择题

16.已知ABC 的面积为30,且12

cos 13

A =,则A

B A

C ?等于( ) A .72

B .144

C .150

D .300

17.在ABC ?中,角A ,B ,C 所对的边分别是a ,b ,c ,设S 为ABC ?的面积,满足cos cos b A a B =,且角B 是角A 和角C 的等差中项,则ABC ?的形状为( ) A .不确定 B .直角三角形 C .钝角三角形

D .等边三角形

18.下列说法中说法正确的有( )

①零向量与任一向量平行;②若//a b ,则()a b R λλ=∈;

③()()a b c a b c ??=??④||||||a b a b +≥+;⑤若0AB BC CA ++=,则A ,B ,C 为一个三角形的三个顶点;⑥一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底; A .①④

B .①②④

C .①②⑤

D .③⑥

19.在△ABC 中,内角A 、B 、C 所对边分别为a 、b 、c ,若2cosA 3cosB 5cosC

a b c

==,则

∠B 的大小是( )

A .

12π

B .

6

π C .4

π

D .

3

π 20.在ABC ?中,a 、b 、c 分别是角A 、B 、C 的对边,若

sin cos sin a b c

A B B

===ABC ?的面积为( ) A .2 B .4 C .2 D .22

21.已知在四边形ABCD 中, 2, 4,53AB a b BC a b CD a b =--=+=+,则四边形

ABCD 的形状是( )

A .矩形

B .梯形

C .平行四边形

D .以上都不对

22.在ABC ?中,D 为BC 中点,且1

2

AE ED =,若BE AB AC λμ=+,则λμ+=( ) A .1

B .23

-

C .13

-

D .34

-

23.在ABC ?中,设2

2

2AC AB AM BC -=?,则动点M 的轨迹必通过ABC ?的( ) A .垂心

B .内心

C .重心

D . 外心

24.下列命题中正确的是( ) A .若a b ,则a 在b 上的投影为a B .若(0)a c b c c ?=?≠,则a b =

C .若,,,A B C

D 是不共线的四点,则AB DC =是四边形ABCD 是平行四边形的充要条件 D .若0a b ?>,则a 与b 的夹角为锐角;若0a b ?<,则a 与b 的夹角为钝角 25.在ABC ?中,若cos cos a A b B =,则ABC 的形状一定是( ) A .等腰直角三角形 B .直角三角形

C .等腰三角形

D .等腰或直角三角形26.题目文件丢

失!

27.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若

()()(23)a b c a c b ac +++-=+,则cos sin A C +的取值范围为

A .33

(

,)2

B .3

(

,3)2 C .3(,3]2

D .3

(,3)2

28.如图,在ABC 中,点D 在线段BC 上,且满足1

2

BD DC =

,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N 若AM mAB =,AN nAC =,则( )

A .m n +是定值,定值为2

B .2m n +是定值,定值为3

C .

11

m n +是定值,定值为2 D .

21

m n

+是定值,定值为3 29.在ABC 中,若 cos a b C =,则ABC 的形状是( ) A .直角三角形

B .等腰三角形

C .等腰直角三角形

D .等腰或直角三角形

30.设(),1A a ,()2,1B -,()4,5C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在

OC 方向上的投影相同,则a =( )

A .12

-

B .

12

C .-2

D .2

31.ABC ?中,22:tan :tan a b A B =,则ABC ?一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形

D .等腰或直角三角形

32.如图所示,设P 为ABC ?所在平面内的一点,并且11

42

AP AB AC =+,则BPC ?与ABC ?的面积之比等于( )

A .

25

B .

35 C .34

D .1

4 33.ABC 中,a ,b ,c 分别为A ∠,B ,C ∠的对边,如果a ,b ,c 成等差数列,

30B ∠=?,ABC 的面积为3

2

,那么b 等于( )

A 13

+ B .13C 23

+ D .23

34.在ABC 中,若sin 2sin cos B A C =,那么ABC 一定是( ) A .等腰直角三角形 B .等腰三角形 C .直角三角形 D .等边三角形

35.在ABC 中,若A B >,则下列结论错误的是( )

A .sin sin A

B >

B .cos cos A B <

C .sin2sin2A B >

D .cos2cos2A B <

【参考答案】***试卷处理标记,请不要删除

一、多选题 1.无 2.AC 【分析】

根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的

运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】

对于A ,由平面向量数量积定义可知 解析:AC 【分析】

根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】

对于A ,由平面向量数量积定义可知cos ,a b a b a b ?=,则||||||a b a b ?≤,所以A 正确,

对于B ,当a 与c 都和b 垂直时,a 与c 的方向不一定相同,大小不一定相等,所以B 错误,

对于C ,两个非零向量a ,b ,若||||||a b a b -=+,可得22()(||||)a b a b -=+,即

22||||a b a b -?=,cos 1θ=-,

则两个向量的夹角为π,则a 与b 共线且反向,故C 正确; 对于D ,已知(1,2)a =,(1,1)b =且a 与a b λ+的夹角为锐角, 可得()0a a b λ?+>即2||0a a b λ+?>可得530λ+>,解得53

λ>-

, 当a 与a b λ+的夹角为0时,(1,2)a b λλλ+=++,所以2220λλλ+=+?= 所以a 与a b λ+的夹角为锐角时5

3

λ>-且0λ≠,故D 错误; 故选:AC. 【点睛】

本题考查了平面向量数量积定义的应用,向量共线及向量数量积的坐标表示,属于中档题.

3.ABD 【分析】

对于A ,利用及余弦函数单调性,即可判断;对于B ,由,可得,根据二倍角的余弦公式,即可判断;对于C ,利用和正弦定理化简,即可判断;对于D ,利用两角和的正切公式进行运算,即可判断. 【

解析:ABD 【分析】

对于A ,利用A B π+<及余弦函数单调性,即可判断;对于B ,由a b >,可得

sin sin A B >,根据二倍角的余弦公式,即可判断;对于C ,利用in 1

2

s S ab C =和正弦定

理化简,即可判断;对于D ,利用两角和的正切公式进行运算,即可判断.

【详解】

对于A ,∵A B π+<,∴0A B ππ<<-<,根据余弦函数单调性,可得

()cos cos cos A B B π>-=-,∴cos cos 0A B +>,故A 正确;

对于B ,若sin sin a b A B >?>,则22sin sin A B >,则2212sin 12sin A B -<-,即

cos2cos2A B <,故B 正确;

对于C ,2

11sin 2sin 2sin sin 2sin sin sin 22

S ab C R A R B C R A B C ==???=,故C 错

误;

对于D ,在ABC 为非直角三角形,()tan tan tan tan 1tan tan B C

A B C B C

+=-+=--?,则

tan tan tan tan tan tan A B C A B C ++=,故D 正确. 故选:ABD. 【点睛】

本题主要考查了正弦定理在解三角形中的应用,三角函数基本性质.考查了推理和归纳的能力.

4.CD 【分析】

对于A 由条件推出或,判断该命题是假命题;对于B 由条件推出,判断该命题是假命题;对于C 由条件判断与垂直,判断该命题是真命题;对于D 由条件推出向量与的夹角是,所以该命题是真命题. 【详解

解析:CD 【分析】

对于A 由条件推出0b =或a b ⊥,判断该命题是假命题;对于B 由条件推出

()

()()

2

2

2

a b a b ?≠?,判断该命题是假命题;对于C 由条件判断a 与b 垂直,判断该命题

是真命题;对于D 由条件推出向量a b +与a b -的夹角是2

π

,所以该命题是真命题. 【详解】

对于A ,若0a ≠,0a b ?=,则0b =或a b ⊥,所以该命题是假命题; 对于B ,()()

2

2

2

2

2

cos cos a b

a b a b αα

?==,而()()2

2

2

2

a b

a b ?=,

由于a 、b 为不共线的非零向量,所以2cos 1α≠,所以(

)

()()

2

2

2

a b a b ?≠?,

所以该命题是假命题;

对于C ,若非零向量a 、b 满足2

2

2

a b

a b +=+,22222a b a b a b ++?=+,所以

0a b ?=,则a 与b 垂直,所以该命题是真命题;

对于D ,以a 与b 为邻边作平行四边形是正方形,则a b +和a b -所在的对角线互相垂直,所以向量a b +与a b -的夹角是2

π

,所以该命题是真命题. 故选:CD. 【点睛】

本题考查平面向量的线性运算与数量积运算、向量垂直的判断,是基础题.

5.CD 【分析】

对于A ,利用平面向量的数量积运算判断; 对于B ,利用平面向量的投影定义判断;对于C ,利用()∥判断;对于D ,利用C 的结论,2m+n=4,结合基本不等式判断. 【详解】 对于A ,向量(

解析:CD 【分析】

对于A ,利用平面向量的数量积运算判断; 对于B ,利用平面向量的投影定义判断;对于C ,利用(a b -)∥c 判断;对于D ,利用C 的结论,2m +n =4,结合基本不等式判断. 【详解】

对于A ,向量a =(2,1),b =(1,﹣1),则2110a b ?=-=>,则,a b 的夹角为锐角,错误;

对于B ,向量a =(2,1),b =(1,﹣1),则向量a 在b 方向上的投影为2

2

a b b

?=

,错误;

对于C ,向量a =(2,1),b =(1,﹣1),则a b -= (1,2),若(a b -)∥c ,则(﹣n )=2(m ﹣2),变形可得2m +n =4,正确;

对于D ,由C 的结论,2m +n =4,而m ,n 均为正数,则有mn 12=

(2m ?n )12

≤ (

22m n +)2

=2,即mn 的最大值为2,正确; 故选:CD. 【点睛】

本题主要考查平面向量的数量积运算以及基本不等式的应用,属于基础题.

6.ABD 【分析】

根据正弦定理,可直接判断的对错,然后,,三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可.

解:由正弦定理得,故正确; 对于,,选项:如图

解析:ABD 【分析】

根据正弦定理,可直接判断A 的对错,然后B ,C ,D 三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可. 【详解】

解:由正弦定理得2

24sin sin30AB R ACB =

==∠?

,故A 正确;

对于B ,C ,D 选项:如图:以A 为圆心,2AB =为半径画圆弧,该圆弧与射线CD 的交点个数,即为解得个数. 易知当

1

22

x =,或即4AC =时,三角形ABC 为直角三角形,有唯一解; 当2AC AB ==时,三角形ABC 是等腰三角形,也是唯一解;

当AD AB AC <<,即1

22

x x <<,24x ∴<<时,满足条件的三角形有两个.

故B ,D 正确,C 错误. 故选:ABD .

【点睛】

本题考查已知两边及一边的对角的前提下,三角形解得个数的判断问题.属于中档题.

7.AC 【分析】

利用余弦定理:即可求解. 【详解】

在△ABC 中,b =15,c =16,B =60°, 由余弦定理:, 即,解得. 故选:AC 【点睛】

本题考查了余弦定理解三角形,需熟记定理,考查了基

解析:AC

利用余弦定理:2222cos b a c ac B =+-即可求解. 【详解】

在△ABC 中,b =15,c =16,B =60°, 由余弦定理:2222cos b a c ac B =+-, 即216310a a -+=,解得833a =±. 故选:AC 【点睛】

本题考查了余弦定理解三角形,需熟记定理,考查了基本运算,属于基础题.

8.AB 【分析】

由向量的线性运算,结合其几何应用求得、、、,即可判断选项的正误 【详解】 ,即A 正确 ,即B 正确

连接AC ,知G 是△ADC 的中线交点, 如下图示

由其性质有 ∴,即C 错误 同理 ,

解析:AB 【分析】

由向量的线性运算,结合其几何应用求得12AF AD AB =+

、1

()2

EF AD AB =+、21

33AG AD AB =

+、2BG GD =,即可判断选项的正误 【详解】 11

22

AF AD DF AD DC AD AB =+=+

=+,即A 正确 11

()()22

EF ED DF AD DC AD AB =+=+=+,即B 正确

连接AC ,知G 是△ADC 的中线交点, 如下图示

由其性质有||||1

||||2

GF GE AG CG == ∴211121

()333333

AG AE AC AD AB BC AD AB =

+=++=+,即C 错误 同理21212

()()33333BG BF BA BC CF BA AD AB =

+=++=- 211()333DG DF DA AB DA =+=+,即1

()3

GD AD AB =-

∴2BG GD =,即D 错误 故选:AB 【点睛】

本题考查了向量线性运算及其几何应用,其中结合了中线的性质:三角形中线的交点分中线为1:2,以及利用三点共线时,线外一点与三点的连线所得向量的线性关系

9.AC 【分析】

对选项A ,利用正弦定理边化角公式即可判断A 正确;对选项B ,首先利用正弦二倍角公式得到,从而得到是等腰三角形或直角三角形,故B 错误;对选项C ,利用正弦定理边化角公式和两角和差公式即可判

解析:AC 【分析】

对选项A ,利用正弦定理边化角公式即可判断A 正确;对选项B ,首先利用正弦二倍角公式得到sin cos sin cos A A B B =,从而得到ABC 是等腰三角形或直角三角形,故B 错误;对选项C ,利用正弦定理边化角公式和两角和差公式即可判断C 正确;对D ,首先根据余弦定理得到A 为锐角,但B ,C 无法判断,故D 错误. 【详解】

对选项A ,2sin 2sin sin sin a b r A r B A B >?>?>,故A 正确; 对选项B ,因为sin 2sin 2sin cos sin cos A B A A B B =?= 所以A B =或2

A B π

+=

,则ABC 是等腰三角形或直角三角形.故B 错误;

对选项C ,因为cos cos a B b A c -=,

所以()sin cos sin cos sin sin A B B A C A C -==+,

sin cos sin cos sin cos cos sin A B B A A B A B -=+,sin cos cos sin B A A B -=,

因为sin 0B ≠,所以cos 0A =,2

A π

=,ABC 是直角三角形,故③正确;

对D ,因为2

2

2

0a b c +->,所以222

cos 02a b c A ab

+-=>,A 为锐角.

但B ,C 无法判断,所以无法判断ABC 是锐角三角形,故D 错误.

故选:AC 【点睛】

本题主要考查正弦定理和余弦定理解三角形,同时考查学三角函数恒等变换,属于中档题.

10.ABC 【分析】

设平行四边形的四个顶点分别是,分类讨论点在平行四边形的位置有:,,,将向量用坐标表示,即可求解. 【详解】 第四个顶点为, 当时,,

解得,此时第四个顶点的坐标为; 当时,, 解得

解析:ABC 【分析】

设平行四边形的四个顶点分别是(3,7),(4,6),(1,2),(,)A B C D x y -,分类讨论D 点在平行四边形的位置有:AD BC =,AD CB =,AB CD =,将向量用坐标表示,即可求解. 【详解】

第四个顶点为(,)D x y ,

当AD BC =时,(3,7)(3,8)x y --=--,

解得0,1x y ==-,此时第四个顶点的坐标为(0,1)-; 当AD CB =时,(3,7)(3,8)x y --=,

解得6,15x y ==,此时第四个顶点的坐标为(6,15); 当AB CD =时,(1,1)(1,2)x y -=-+,

解得2,3x y ==-,此时第四个项点的坐标为(2,3)-. ∴第四个顶点的坐标为(0,1)-或(6,15)或(2,3)-. 故选:ABC . 【点睛】

本题考查利用向量关系求平行四边形顶点坐标,考查分类讨论思想,属于中档题.

11.ACD 【分析】

利用向量数量积的定义和运算法则逐项判断后可得正确的选项. 【详解】

由向量加法的三角形法则可知选项A 正确; 当时,,故选项B 错误; 因为,故选项C 正确;

当共线同向时,, 当共线反

解析:ACD 【分析】

利用向量数量积的定义和运算法则逐项判断后可得正确的选项. 【详解】

由向量加法的三角形法则可知选项A 正确; 当a b ⊥时,0a b ?=,故选项B 错误;

因为||cos ||||a b a b a b θ?=≤,故选项C 正确; 当,a b 共线同向时,||||cos 0||||a b a b a b ?==,

当,a b 共线反向时,||||cos180||||a b a b a b ?=?=-,所以选项D 正确. 故选:ACD. 【点睛】

本题考查向量加法的性质以及对向量数量积的运算规律的辨析,注意数量积运算有交换律,但没有消去律,本题属于基础题.

12.BCD 【分析】

根据共线向量的定义判断A 选项的正误;根据题意判断出角的终边的位置,然后利用等分象限法可判断出角的终边的位置,进而判断B 选项的正误;利用图象法求出函数的最小正周期,可判断C 选项的正误

解析:BCD 【分析】

根据共线向量的定义判断A 选项的正误;根据题意判断出角α的终边的位置,然后利用等分象限法可判断出角

2

α

的终边的位置,进而判断B 选项的正误;利用图象法求出函数

1

cos 2

y x =+

的最小正周期,可判断C 选项的正误;利用切化弦思想化简不等式tan tan 1A B ?<得出cos cos cos 0A B C <,进而可判断出选项D 的正误.综合可得出结论. 【详解】

对于A 选项,向量AB 与CD 共线,则//AB CD 或点A 、B 、C 、D 在同一条直线上,A 选项错误;

对于B 选项,2sin sin tan 0cos α

ααα?=>,cos tan sin 0ααα?=<,所以sin 0cos 0αα

>?

, 则角α为第四象限角,如下图所示:

2

α

为第二或第四象限角,B 选项正确; 对于C 选项,作出函数1

cos 2

y x =+

的图象如下图所示:

由图象可知,函数1

cos 2

y x =+是周期函数,且最小正周期为2π,C 选项正确; 对于D 选项,

tan tan 1A B <,

()()cos cos sin sin cos cos sin sin 1tan tan 1cos cos cos cos cos cos cos cos A B C A B A B A B A B A B A B A B A B

π+--∴-=-===cos 0cos cos C

A B

=-

>,cos cos cos 0A B C ∴<,

对于任意三角形,必有两个角为锐角,则ABC ?的三个内角余弦值必有一个为负数, 则ABC ?为钝角三角形,D 选项正确. 故选:BCD. 【点睛】

本题考查三角函数、三角恒等变换与向量相关命题真假的判断,考查共线向量的定义、角的终边位置、三角函数的周期以及三角形形状的判断,考查推理能力,属于中等题.

13.BD 【分析】

对于A ,根据三角函数的倍角公式进行判断;对于B ,根据正弦定理即可判断证明;对于C ,利用余弦定理即可得解;对于D ,根据正弦定理去判断即可. 【详解】 在中,

对于A ,若,则或,

当A =

解析:BD 【分析】

对于A ,根据三角函数的倍角公式进行判断;对于B ,根据正弦定理即可判断证明;对于C ,利用余弦定理即可得解;对于D ,根据正弦定理去判断即可. 【详解】 在ABC ?中,

对于A ,若sin 2sin 2A B =,则22A B =或22A B π+=, 当A =B 时,△ABC 为等腰三角形; 当2

A B π

+=

时,△ABC 为直角三角形,故A 不正确,

对于B ,若A B >,则a b >,由正弦定理得sin sin a b A B

=,即sin sin A B >成立.故B 正确;

对于C ,由余弦定理可得:b C 错误; 对于D ,若222sin sin sin A B C +<,由正弦定理得222a b c +<,

∴222

cos 02a b c C ab

+-=<,∴C 为钝角,∴ABC ?是钝角三角形,故D 正确;

综上,正确的判断为选项B 和D . 故选:BD . 【点睛】

本题只有考查了正弦定理,余弦定理,三角函数的二倍角公式在解三角形中的综合应用,考查了转化思想,属于中档题.

14.AB 【分析】

若,则反向,从而; 若,则,从而可得;

若,则同向,在方向上的投影为

若存在实数使得,则共线,但是不一定成立. 【详解】

对于选项A ,若,则反向,由共线定理可得存在实数使得; 对于选

解析:AB 【分析】

若||||||a b a b +=-,则,a b 反向,从而a b λ=; 若a b ⊥,则0a b ?=,从而可得||||a b a b +=-;

若||||||a b a b +=+,则,a b 同向,a 在b 方向上的投影为||a

若存在实数λ使得a b λ=,则,a b 共线,但是||||||a b a b +=-不一定成立. 【详解】

对于选项A ,若||||||a b a b +=-,则,a b 反向,由共线定理可得存在实数λ使得

a b λ=;

对于选项B ,若a b ⊥,则0a b ?=,

222222||2,||2a b a a b b a b a a b b +=+?+-=-?+,可得||||a b a b +=-;

对于选项C ,若||||||a b a b +=+,则,a b 同向,a 在b 方向上的投影为||a ;

对于选项D ,若存在实数λ使得a b λ=,则,a b 共线,但是||||||a b a b +=-不一定成立. 故选:AB. 【点睛】

本题主要考查平面向量的性质及运算,明确向量的性质及运算规则是求解的关键,侧重考查逻辑推理的核心素养.

15.无

二、平面向量及其应用选择题

16.B 【分析】

首先利用三角函数的平方关系得到sin A ,然后根据平面向量的数量积公式得到所求. 【详解】

解:因为ABC 的面积为30,且12cos 13A =

,所以5sin 13

A =,所以1

||||sin 302

AB AC A ?=,得到||||626AB AC ?=?, 所以12

|||||cos 62614413

AB AC AB AC A =?=??=; 故选:B . 【点睛】

本题考查了平面向量的数量积以及三角形的面积;属于中档题. 17.D 【分析】

先根据cos cos b A a B =得到,A B 之间的关系,再根据B 是,A C 的等差中项计算出B 的大小,由此再判断ABC 的形状. 【详解】

因为cos cos b A a B =,所以sin cos sin cos =B A A B , 所以()sin 0B A -=,所以A B =,

又因为2B A C B π=+=-,所以3

B π

=,

所以3

A B π

==,所以ABC 是等边三角形.

故选:D. 【点睛】

本题考查等差中项以及利用正弦定理判断三角形形状,难度一般.(1)已知b 是,a c 的等差中项,则有2b a c =+;(2)利用正弦定理进行边角互化时,注意对于“齐次”的要求. 18.A 【分析】

直接利用向量的基础知识的应用求出结果. 【详解】

对于①:零向量与任一向量平行,故①正确;

对于②:若//a b ,则()a b R λλ=∈,必须有0b ≠,故②错误; 对于③:()()

a b c a b c ??=??,a 与c 不共线,故③错误; 对于④:a b a b +≥+,根据三角不等式的应用,故④正确;

对于⑤:若0AB BC CA ++=,则,,A B C 为一个三角形的三个顶点,也可为0,故⑤错误;对于⑥:一个平面内,任意一对不共线的向量都可以作为该平面内所有向量的基底,故⑥错误. 综上:①④正确. 故选:A. 【点睛】

本题考查的知识要点:向量的运算的应用以及相关的基础知识,主要考察学生的运算能力和转换能力,属于基础题. 19.D 【分析】

根据正弦定理,可得

111

tan tan tan 235

A B C ==,令tan 2A k =,tan 3B k =,tan 5C k =,再结合公式tan tan()B A C =-+,列出关于k 的方程,解出k 后,进而可得

到B 的大小. 【详解】 解:∵2cosA 3cosB 5cosC

a b c ==, ∴sin sin sin 2cos 3cos 5cos A B C

A B C ==,

111

tan tan tan 235

A B C ==,

令tan 2A k =,tan 3B k =,tan 5C k =,显然0k >, ∵tan tan tan tan()tan tan 1

A C

B A

C A C +=-+=-,

∴2

73101k k k =

-,解得k =

∴tan 3B k ==B =3

π

故选:D . 【点睛】

本题考查正弦定理边角互化的应用,考查两角和的正切,用k 表示tan 2A k =,tan 3B k =,tan 5C k =是本题关键

20.A 【分析】

首先由条件和正弦定理判断ABC 是等腰直角三角形,由三角形的性质可知直角三角形的外接圆的圆心在斜边的中点,所以由ABC 外接圆的半径可求得三角形的边长,再求面积. 【详解】 由正弦定理可知2sin sin sin a b c

r A B C

===

已知

sin cos sin a b c

A B B

===sin cos B B =和sin sin C B =, 所以45B =,45C =,所以ABC 是等腰直角三角形,

由条件可知ABC ,即等腰直角三角形的斜边长为

所以1

22

ABC

S

=?=. 故选:A 【点睛】

本题考查正弦定理判断三角形形状,重点考查直角三角形和外接圆的性质,属于基础题型. 21.B 【分析】

计算得到BC A CD B -=,得到BCDM ,ABCM 为平行四边形,得到答案. 【详解】

2, 4,53AB a b BC a b CD a b =--=+=+,则53BC AB BC B a b CD A -=+=+=.

设BC BA BM +=,故BCDM ,ABCM 为平行四边形,故ABCD 为梯形. 故选:B .

【点睛】

本题考查了根据向量判断四边形形状,意在考查学生的综合应用能力. 22.B 【分析】

选取向量AB ,AC 为基底,由向量线性运算,求出BE ,即可求得结果. 【详解】

13BE AE AB AD AB =-=

-,1

()2

AD AB AC =+ , 51

66

BE AB AC AB AC λμ∴=-+=+,

56λ∴=-,1

6μ=,23

λμ∴+=-.

故选:B. 【点睛】

本题考查了平面向量的线性运算,平面向量基本定理,属于基础题. 23.D 【分析】

根据已知条件可得()

2

2

2AC AB AC AB BC AM BC -=+?=?,整理可得

()

0BC MC MB ?+=,若E 为BC 中点,可知BC ME ⊥,从而可知M 在BC 中垂线

上,可得轨迹必过三角形外心. 【详解】

()()()

2

2

2AC AB AC AB AC AB AC AB BC AM BC -=+?-=+?=?

()

20BC AC AB AM ∴?+-=

()()

0BC AC AM AB AM BC MC MB ??-+-=?+=

设E 为BC 中点,则2MC MB ME +=

20BC ME ∴?= BC ME ?⊥

ME ?为BC 的垂直平分线 M ∴轨迹必过ABC ?的外心 本题正确选项:D

【点睛】

本题考查向量运算律、向量的线性运算、三角形外心的问题,关键是能够通过运算法则将已知条件进行化简,整理为两向量垂直的关系,从而得到结论. 24.C 【分析】

根据平面向量的定义与性质,逐项判断,即可得到本题答案. 【详解】

因为a b //,所以,a b 的夹角为0或者π,则a 在b 上的投影为||cos ||a a θ=±,故A 不正确;设(1,0),(0,0),(0,2)c b a ===,则有(0)a c b c c ?=?≠,但a b ≠,故B 不正确;

,||||AB DC AB DC =∴=且//AB DC ,又,,,A B C D 是不共线的四点,所以四边形

ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则//AB DC 且

||||AB DC =,所以AB DC =,故C 正确;0a b ?>时,,a b 的夹角可能为0,故D 不正

确. 故选:C 【点睛】

本题主要考查平面向量的定义、相关性质以及数量积. 25.D 【分析】

首先利用正弦定理求得sin 2sin 2A B =,进一步利用三角函数的诱导公式求出结果. 【详解】

解:已知:cos cos a A b B =,利用正弦定理:

2sin sin sin a b c

R A B C

===, 解得:sin cos sin cos A A B B =,即sin 2sin 2A B =,

所以:22A B =或21802A B =?-,解得:A B =或90A B +=? 所以:ABC 的形状一定是等腰或直角三角形 故选:D . 【点评】

本题考查的知识要点:正弦定理的应用,三角函数的诱导公式的应用,属于中档题.

26.无

27.A 【分析】

先化简已知()()(2a b c a c b ac +++-=+得6

B π

=

,再化简

cos sin A C +)3

A π

+,利用三角函数的图像和性质求其范围.

【详解】

三角函数与向量综合题练习

平面向量与三角函数综合练习 题型一三角函数平移与向量平移的综合 三角函数与平面向量中都涉及到平移问题,虽然平移在两个知识系统中讲法不尽相同,但它们实质是 一样的,它们都统一于同一坐标系的变化前后的两个图象中?解答平移问题主要注意两个方面的确定:(1)平移的方向;(2)平移的单位?这两个方面就是体现为在平移过程中对应的向量坐标 例1 把函数y = sin2x的图象按向量a = (- , —3)平移后,得到函数y = Asin( w x+ )(A > 0, w> 0 , 6 || = p的图象,贝U 和B的值依次为 题型二三角函数与平面向量平行(共线)的综合 此题型的解答一般是从向量平行(共线)条件入手,将向量问题转化为三角问题,然后再利用三角函数 的相关知识再对三角式进行化简,或结合三角函数的图象与民性质进行求解?此类试题综合性相对较强,有利于考查学生的基础掌握情况,因此在高考中常有考查 例2 已知A、B、C为三个锐角,且 A + B + C=n若向量8 = (2 —2sinA , cosA + si nA)与向量6 = (cosA —si nA , 1 + si nA)是共线向量. (I)求角A; 一 C —3B (n)求函数y = 2sin 2B + cos —;—的最大值? 题型三三角函数与平面向量垂直的综合 此题型在高考中是一个热点问题,解答时与题型二的解法差不多,也是首先利用向量垂直的充要条件 将向量问题转化为三角问题,再利用三角函数的相关知识进行求解.此类题型解答主要体现函数与方程的思想、转化的思想等.

已知向量 "a = (3sin a cos a ), "b = (2sin a, 5sin a — 4cos a , (I )求tan a 的值; a (n )求 cos ( +)的值. 2 3 题型四三角函数与平面向量的模的综合 此类题型主要是利用向量模的性质 |"|2 ="2,如果涉及到向量的坐标解答时可利用两种方法: (1) 先进行向量运算,再代入向量的坐标进行求解; (2)先将向量的坐标代入向量的坐标,再利用向量的坐标 运算进行求解? 5 v 3< 0 v av ,且 sin 3=— ,求 sin a 的值. 2 13 题型五 三角函数与平面向量数量积的综合 此类题型主要表现为两种综合方式: (1)三角函数与向量的积直接联系; (2)利用三角函数与向量的夹 角交汇,达到与数量积的综合 ?解答时也主要是利用向量首先进行转化,再利用三角函数知识求解 ? 例 5 设函数 f(x)=""其中向量"=(m , cosx) , " = (1 + sinx , 1), x € R ,且 f( ) = 2. (I)求 实数m 的值;(n )求函数f (x )的最小值. 六、解斜三角形与向量的综合 在三角形的正弦定理与余弦定理在教材中是利用向量知识来推导的,说明正弦定理、余弦定理与向量 有着密切的联系?解斜三角形与向量的综合主要体现为以三角形的角对应的三角函数值为向量的坐标, 要求 根据向量的关系解答相关的问题 ? b A A b 例6 已知角A 、B 、C 为△ABC 的三个内角,其对边分别为 a 、 b 、 c ,若m = (— cos ;, sin'), n = 妖(牛,2 n ,且b 已知向量 ""=(cos a ,sin a ), " = (cos B,sin 3, a — 3)的值;(n )若一- l " —= .(I )求 cos(

平面向量综合试题(含答案)

B A C D 一.选择题: 1. 在平面上,已知点A (2,1),B (0,2),C (-2,1),O (0,0).给出下面的结论: ①BC CA AB =- ②OB OC OA =+ ③OA OB AC 2-= 其中正确..结论的个数是 ( )A .1个 B .2个 C .3个 D .0个 2. 下列命题正确的是 ( ) A .向量A B 的长度与向量BA 的长度相等 B .两个有共同起点且相等的向量,其终点可能不同 C .若非零向量AB 与C D 是共线向量,则A 、B 、C 、D 四点共线 D .若→ a → b → c ,则→ a → c 3. 若向量= (1,1), = (1,-1), =(-1,2),则 等于( ) A.+ B. C. D.+ 4. 若 ,且与也互相垂直,则实数的值为( ) A . C. 5.已知=(2,3) , =(,7) ,则在上的正射影的数量为( ) A. B. C. D. 6. 己知 (2,-1) .(0,5) 且点P 在 的延长线上, , 则P 点坐标为( ) A.(-2,11) B.( C.( ,3) D.(2,-7) 7.设,a b 是非零向量,若函数()()()f x x x =+-a b a b 的图象是一条直线,则必有( ) A .⊥a b B .∥a b C .||||=a b D .||||≠a b 8.已知D 点与ABC 三点构成平行四边形,且A (-2,1),B (-1,3),C (3,4),则D 点坐标为( ) A.(2,2) B.(4,6) C. (-6,0) D.(2,2)或(-6,0)或(4,6) 9.在直角ABC ?中,CD 是斜边AB 上的高,则下列等式不成立的是 (A )2 AC AC AB =? (B ) 2 BC BA BC =? (C )2AB AC CD =? (D ) 2 2 ()() AC AB BA BC CD AB ???= 10. 设两个向量22 (2,cos )a λλα=+-和(, sin ),2m b m α=+其中,,m λα为实数.若2,a b =则m λ 的取值范围是 ( ) A.[6,1]- B.[4,8] C.(,1]-∞ D.[1,6]- 10.已知P ={a |a =(1,0)+m (0,1),m ∈R },Q ={b |b =(1,1)+n (-1,1),n ∈R }是两个向量集合,则P ∩Q 等于 ( )A .{(1,1)} B .{(-1,1)} C .{(1,0)} D .{(0,1)} 二. 填空题:11.若向量a b , 的夹角为 60,1a b ==,则() a a b -= . 12.向量2411()(),, ,a =b =.若向量()λ⊥b a +b ,则实数λ的值是 . 13.向量a 、b a b =1,b 3-=3,则 b +3 =

专题二 三角函数与平面向量的综合应用

专题二 三角函数与平面向量的综合应用 (时间:45分钟 满分:100分) 一、选择题(每小题7分,共35分) 1.已知sin(2π-α)=45,α∈????3π2,2π,则sin α+cos αsin α-cos α 等于( ) A.17 B .-17 C .-7 D .7 2.如图,D 、 E 、 F 分别是△ABC 的边AB 、BC 、CA 的中点,则( ) A .+BE →+CF →=0 B. -CF →+DF → =0 C .+CE →-CF →=0 D. -BE →-FC →=0 3.已知向量a =(2,sin x ),b =(cos 2x,2cos x ),则函数f(x)=a ·b 的最小正周期是( ) A.π2 B .π C .2π D .4π 4.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n =(cos A , sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角A ,B 的大小分别为( ) A.π6,π3 B.2π3,π6 C.π3,π6 D .π3,π3 5.已知向量OB →=(2,0),向量=(2,2),向量CA →=(2cos α,2sin α),则向量OA →与向 量OB →的夹角的取值范围是( ) A.????0,π4 B.??? ?π4,512π C.????512π,π2 D.??? ?π12,512π 二、填空题(每小题6分,共24分) 6.在直角坐标系xOy 中,已知点A (-1,2),B (2cos x ,-2cos 2x ),C (cos x,1),其中x ∈[0,π],若⊥,则x 的值为______. 7.如图,在梯形ABCD 中,AD ∥BC ,AD ⊥AB ,AD =1,BC =2,AB =3,P 是BC 上的一个动点,当?PD PA 取得最小值时,tan ∠DP A 的值为 ________.

平面向量综合试题(含答案)

A C 平面向量 一.选择题: 1. 在平面上,已知点A(2,1),B(0,2),C(-2,1),O(0,0).给出下面的结论: ①= -②= +③2 - = 其中正确 ..结论的个数是() A.1个B.2个C.3个D.0个 2.下列命题正确的是() A.向量的长度与向量的长度相等B.两个有共同起点且相等的向量,其终点可能不同C.若非零向量与CD是共线向量,则A、B、C、D四点共线D.若 → a → b → c,则 → a → c 3. 若向量= (1,1), = (1,-1), =(-1,2),则等于( ) A.+ B. C. D.+ 4.若,且与也互相垂直,则实数的值为( ) A. B.6 C. D.3 5.已知=(2,3) , =(,7) ,则在上的正射影的数量为()A. B. C. D. 6.己知(2,-1) .(0,5) 且点P在的延长线上,, 则P点坐标为( ) A.(-2,11) B.( C.(,3) D.(2,-7) 7.设, a b是非零向量,若函数()()() f x x x =+- a b a b的图象是一条直线,则必有() A.⊥ a b B.∥ a b C.|||| = a b D.|||| ≠ a b 8.已知D点与ABC三点构成平行四边形,且A(-2,1),B(-1,3),C(3,4),则D点坐标为() A.(2,2) B.(4,6) C. (-6,0) D.(2,2)或(-6,0)或(4,6) 9.在直角ABC ?中,CD是斜边AB上的高,则下列等式不成立的是 (A) 2 AC AC AB =?(B)2 BC BA BC =? (C) 2 AB AC CD =?(D)2 2 ()() AC AB BA BC CD AB ??? = 10.设两个向量22 (2,cos) aλλα =+-和(,sin), 2 m b mα =+其中,,m λα为实数.若2, a b =则 m λ 的取值范围是 ( ) A.[6,1] - B.[4,8] C.(,1] -∞ D.[1,6] - 10.已知P={a|a=(1,0)+m(0,1),m∈R},Q={b|b=(1,1)+n(-1,1),n∈R}是两个向量集合,则P∩Q等于()A.{(1,1)} B.{(-1,1)} C.{(1,0)} D.{(0,1)} 二. 填空题:11.若向量a b ,的夹角为 60,1 a b ==,则() a a b -=. 12.向量2411 ()() ,,, a=b=.若向量() λ ⊥ b a+b,则实数λ

向量和三角函数综合试题(卷)

向量与三角函数综合试题 1.已知向量a 、b 满足b ·(a-b)=0,且|a|=2|b|,则向量a +2b 与a 的夹角为 ( D ) A.3π B.3π2 C. 2π D.6π 2.已知向量),(n m =,)sin ,(cos θθ=,其中R n m ∈θ,,.若||4||=,则当2 λλ或2-<λ B .2>λ或2-<λ C .22< <-λ D .22<<-λ 3.已知O 为原点,点P (x ,y )在单位圆x 2 +y 2 =1上,点Q (2cos θ,2sin θ),且PQ =(3 4, -3 2),则·的值是 ( A ) A .18 25 B .9 25 C .2 D .9 16 4.R t t ∈+===,),20cos ,20(sin ,)25sin ,25(cos 0 0,则||的最小值是B A. 2 B. 22 C. 1 D. 2 1 5.如图,△ABC 中,AB=4,AC=4,∠BAC=60°,延长CB 到D ,使||||BA BD =u u u r u u u r ,当E 点在线段AD 上移动时,若,AE AB AC λμλμ=+-u u u r u u u r u u u r 则的最大值是( C ) A .1 B 3 C .3 D .236.已知向量(2,0)OB =u u u v ,向量(2,2)OC =u u u v ,向量22)CA αα=u u u v ,则向量OA u u u v 与向量OB uuu v 的夹角的取值围是( D ) A .[0, ]4π B .5[,]412ππ C .5[,]122ππ D .5[,]1212 ππ 7.已知向量(1,1),(1,1),(22)a b c θθ==-=r r r ,实数,m n 满足ma nb c +=r r r ,则 22(1)(1)m n -+-的最小值为( D ) A 21 B .1 C 2 D .322- 8.如图,BC 是单位圆A 的一条直径, F 是线段AB 上的点,且2BF FA =u u u r u u u r , 若DE 是圆A 中绕圆心A 运动的一条直径,则FD FE u u u r u u u r g 的值是( B ) B .)

平面向量综合试题(含答案)

A 平面向量 一.选择题: 1. 在平面上,已知点A (2,1),B (0,2),C (-2,1),O (0,0).给出下面的结论: ①BC CA AB =- ②OB OC OA =+ ③OA OB AC 2-= 其中正确..结论的个数是 ( )A .1个 B .2个 C .3个 D .0个 2. 下列命题正确的是 ( ) A .向量A B 的长度与向量BA 的长度相等 B .两个有共同起点且相等的向量,其终点可能不同 C .若非零向量AB 与C D 是共线向量,则A 、B 、C 、D 四点共线 D .若→ a → b → c ,则→ a → c 3. 若向量= (1,1), = (1,-1), =(-1,2),则 等于( ) A.+ B. C. D.+ 4. 若 ,且与也互相垂直,则实数的值为( ) A . C. 5.已知=(2,3) , =(,7) ,则在上的正射影的数量为( )A. B. C. D. 6. 己知 (2,-1) . (0,5) 且点P 在 的延长线上, , 则P 点坐标为( ) A.(-2,11) B.( C.( ,3) D.(2,-7) 7.设,a b 是非零向量,若函数()()()f x x x =+-a b a b 的图象是一条直线,则必有( ) A .⊥a b B .∥a b C .||||=a b D .||||≠a b 8.已知D 点与ABC 三点构成平行四边形,且A (-2,1),B (-1,3),C (3,4),则D 点坐标为( ) A.(2,2) B.(4,6) C. (-6,0) D.(2,2)或(-6,0)或(4,6) 9.在直角ABC ?中,CD 是斜边AB 上的高,则下列等式不成立的是 (A )2AC AC AB =? (B ) 2 BC BA BC =? (C )2 AB AC CD =? (D ) 2 2 ()() AC AB BA BC CD AB ???= 10. 设两个向量22 (2,cos )a λλα=+-和(, sin ),2m b m α=+其中,,m λα为实数.若2,a b =则m λ 的取值范围是 ( ) A.[6,1]- B.[4,8] C.(,1]-∞ D.[1,6]- 10.已知P ={a |a =(1,0)+m (0,1),m ∈R },Q ={b |b =(1,1)+n (-1,1),n ∈R }是两个向量集合,则P ∩Q 等于( )A .{(1,1)} B .{(-1,1)} C .{(1,0)} D .{(0,1)} 二. 填空题:11.若向量a b , 的夹角为 60,1a b ==,则() a a b -= .

三角函数与平面向量(好)

三角函数与平面向量 一:考点分析 小题主要考查三角函数图象与性质,利用诱导公式与和差角公式、倍角公式、正余弦定 理求值化简,有时与向量相结合。大题一般三角函数的图象与性质与向量及解三角形相结合。 1任意角的三角函数: (1)弧长公式:I |aR R 为圆弧的半径,a 为圆心角弧度数,I 为弧长。 cosa 2.已知 tan -- =2,,则 3sin 2一一 -cos sin -- +1=( ) A.3 B.-3 C.4 D.-4 3 .已知sin 、,2 cos .. 3 , 则tan ( ) A.二 B .2 C D . 2 2 2 4.若 sin(— 3 1 5 ) ,贝U cos(—— )的值为 ( ) A 1 f 1 2 2 2^2 A. — B. c. D. 3 3 3 3 类型二:三角恒等变换 1.若 sin( ) 4 5 (o,—), 则sin 2 cos 的值等于 5 2 2 2.若 cos2 2 则cos +sin 的值为 sin( 4) 2 3.已知角 e 的顶点与原点重合,始边与 x 轴正半轴重合,终边在直线 n 类型一: 诱导公式的应用 3 sin(2 ) cos(3 ) cos( ) 1 .化简: 2 sin( )sin(3 ) cos( ) (4)诱导公式:(奇变偶不变,符号看象限) (2) 扇形的面积公式: S llR R 2 (3) 同角三角函数关系式:商数关系: 为圆弧的半径,I 为弧长。 , sin a tana 平方关系: sin 2a cos 2 a 1 k 所谓奇偶指的是整数 k 的奇偶性; 2 y = 2x 上,则

三角函数、平面向量综合题六类型

三角函数与平面向量综合题的六种类型 题型一:结合向量的数量积,考查三角函数的化简或求值 【例1】(2007年高考安徽卷)已知04 πα<<,β为()cos(2)8 f x x π =+的最小正 周期,(tan(),1),(cos ,2),4a b a b m βαα=+-=?= ,求22cos sin 2()cos sin ααβαα ++-的值. 【解答】因为β为()cos(2)8 f x x π =+ 的最小正周期,故βπ=.因为a b m ?= , 又cos tan()24a b βαα?=?+- ,故cos tan()24 m βαα?+=+. 由于04 π α<< ,所以 2 2cos sin 2() cos sin ααβαα ++= -2 2cos sin(22) cos sin ααπαα ++- 2 2cos sin 2cos sin αααα += -2cos (cos sin ) cos sin ααααα +=-1tan 2cos 1tan ααα +=?- cos tan()24 m β αα=?+ =+. 【评析】 合理选用向量的数量积的运算法则构建相关等式,然后运用三角函数中的和、差、半、倍角公式进行恒等变形,以期达到与题设条件或待求结论的相关式,找准时机代入 求值或化简。 题型二:结合向量的夹角公式,考查三角函数中的求角问题 【例2】 (2006年高考浙江卷)如图,函数2sin(),y x x R π?=+∈(其中02 π ?≤≤) 的图像与y 轴交于点(0,1)。 (Ⅰ)求?的值; (Ⅱ)设P 是图像上的最高点,M 、N 是图像与x 轴的交点,求PM 与P N 的夹角。 【解答】(I )因为函数图像过点(0,1), 所以2sin 1,?=即1sin .2?= 因为02 π ?≤≤ ,所以6 π ?= . (II )由函数2sin()6 y x π π=+ 及其图像,得1 15 (,0),(,2),(,0),636 M P N - - 所以11 (,2),(,2),22 P M P N =-=- 从而 cos ,|||| PM PN PM PN PM PN ?<>=? 1517=,故,P M P N <>= 15arccos 17 .

三角函数与平面向量综合题的六种类型

第1讲 三角函数与平面向量综合题3.17 题型一:三角函数与平面向量平行(共线)的综合 【例1】 已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)与向量→q =(cosA -sinA ,1+sinA)是共线向量. (Ⅰ)求角A ;(Ⅱ)求函数y =2sin 2B +cos C -3B 2的最大值. 题型二. 三角函数与平面向量垂直的综合 【例2】 已知向量→a =(3sinα,cosα),→b =(2sinα,5sinα-4cosα),α∈(3π 2 ,2π),且→a ⊥→b . (Ⅰ)求tanα的值;(Ⅱ)求cos(α2+π 3)的值. 题型三. 三角函数与平面向量的模的综合 【例3】 已知向量→a =(cosα,sinα),→b =(cosβ,sinβ),|→a -→b |=2 5 5.(Ⅰ)求cos(α-β)的值;(Ⅱ) 若-π2<β<0<α<π 2,且sinβ=-513,求sinα的值. 题型四 三角函数与平面向量数量积的综合 【例4】设函数f(x)=→a ·→b .其中向量→a =(m ,cosx),→b =(1+sinx ,1),x ∈R ,且f(π2)=2.(Ⅰ) 求实数m 的值;(Ⅱ)求函数f(x)的最小值. 题型五:结合三角形中的向量知识考查三角形的边长或角的运算 【例5】(山东卷)在ABC ?中,角,,A B C 的对边分别为,,a b c ,tan C = (1)求cos C ;(2)若5 2 CB CA ?= ,且9a b +=,求c . 题型六:结合三角函数的有界性,考查三角函数的最值与向量运算 【例6】()f x a b =? ,其中向量(,cos 2)a m x = ,(1sin 2,1)b x =+ ,x R ∈,且函数 ()y f x =的图象经过点(,2)4 π . (Ⅰ)求实数m 的值; (Ⅱ)求函数()y f x =的最小值及此时x 值的集合。 题型七:结合向量的坐标运算,考查与三角不等式相关的问题 【例7】设向量(sin ,cos ),(cos ,cos ),a x x b x x x R ==∈ ,函数()()f x a a b =?+ . (Ⅰ)求函数()f x 的最大值与最小正周期;(Ⅱ)求使不等式3 ()2 f x ≥成立的x 的取值集. 【跟踪训练】 三角函数与平面向量训练反馈 1、已知向量=(x x x 3,52-),=(2,x ),且⊥,则由x 的值构成的集合是( ) A 、{0,2,3} B 、{0,2} C 、{2} D 、{0,-1,6} 2、设02x π≤≤, sin cos x x =-,则 ( ) A .0x π≤≤ B . 74 4x π π≤≤ C .544 x ππ ≤≤ D . 32 2 x π π ≤≤ 3、函数1cos 4tan 2sin )(++?=x x x x f 的值域是 。 4、在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos cos 2B b C a c =-+. (1)求角B 的大小; (2)若 b a + c =4,求a 的值. 5、已知向量 )1),3 (cos(π + =x ,)21),3(cos(-+ =π x ,)0),3 (sin(π+=x 函数 x f ?=)(, x g ?=)(, x h ?-?=)( (1)要得到)(x f y =的图象,只需把)(x g y =的图象经过怎样的平移或伸缩变换? (2)求)()()(x g x f x h -=的最大值及相应的x .

高一三角函数与平面向量综合题

讲座 三角形内的三角函数问题 ○知识梳理 1.内角和定理:三角形三角和为π,这是三角形中三角函数问题的特殊性,解题可不能忘记! 任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余. ,sin()sin ,sin cos 22 A B C A B C A B C π++=-+== 锐角三角形?三内角都是锐角?三内角的余弦值为正值?任两角和都是钝角? 任意两边的平方和大于第三边的平方. A>B a>b sinA>sinB ??,60?o A,B,C 成等差数列B= 2.正弦定理:2sin sin sin a b c R A B C ===(R 为三角形外接圆的半径). 注意:①正弦定理的一些变式: ()sin sin sin i a b c A B C ::=::; ()sin ,sin ,sin 222a b c ii A B C R R R = == ; ()2sin ,2sin ,2sin iii a R A b R B b R C ===; ②已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解. 3.余弦定理:2 2 2 2222cos ,cos 2b c a a b c bc A A bc +-=+-=等,常选用余弦定理鉴定 三角形的形状. 4.面积公式: 222111222 111sin sin sin 222sin sin sin sin sin sin 1112sin 2sin 2sin 1()2 ==========++=a b c S ah bh ch ab C bc A ca B B C C A A B a b a A B C r a b c (其中r 为三角形内切圆半径,2 a b c p ++=). 5.射影定理: a = b ·cos C + c ·cos B ,b =a ·cos C +c ·cos A ,c =a ·cos B +c ·cos A . 特别提醒:求解三角形中含有边角混合关系的问题时,常运用正弦定理、余弦定理实现边角互化。

平面向量及其应用专题(有答案)

一、多选题 1.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知 cos cos 2B b C a c =-, 4 ABC S = △,且b = ) A .1cos 2 B = B .cos 2 B = C .a c += D .a c +=2.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S .下列 ABC 有关的结论,正确的是( ) A .cos cos 0A B +> B .若a b >,则cos2cos2A B < C .24sin sin sin S R A B C =,其中R 为ABC 外接圆的半径 D .若ABC 为非直角三角形,则tan tan tan tan tan tan A B C A B C ++= 3.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的有( ) A .::sin :sin :sin a b c A B C = B .若sin 2sin 2A B =,则a b = C .若sin sin A B >,则A B > D . sin sin sin +=+a b c A B C 4.已知点()4,6A ,33,2B ??- ??? ,与向量AB 平行的向量的坐标可以是( ) A .14,33?? ??? B .97,2? ? ??? C .14,33?? - - ??? D .(7,9) 5.已知向量a =(2,1),b =(1,﹣1),c =(m ﹣2,﹣n ),其中m ,n 均为正数,且(a b -)∥c ,下列说法正确的是( ) A .a 与b 的夹角为钝角 B .向量a 在b C .2m +n =4 D .mn 的最大值为2 6.下列关于平面向量的说法中正确的是( ) A .已知A 、 B 、 C 是平面中三点,若,AB AC 不能构成该平面的基底,则A 、B 、C 共线 B .若a b b c ?=?且0b ≠,则a c = C .若点G 为ΔABC 的重心,则0GA GB GC ++= D .已知()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则实数λ的取值范围为1λ< 7.八卦是中国文化的基本哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八边形ABCDEFGH ,其中1OA =,则下列结论正确的有( )

平面向量与三角函数、解三角形的综合习题

三角函数与平面向量、解三角形综合题 题型一:三角函数与平面向量平行(共线)的综合 【例1】 已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)与向量→q =(cosA -sinA ,1+sinA)是共线向量. (Ⅰ)求角A ;(Ⅱ)求函数y =2sin 2B +cos C -3B 2的最大值. 题型二. 三角函数与平面向量垂直的综合 【例2】 已知向量→a =(3sinα,cosα),→b =(2sinα,5sinα-4cosα),α∈(3π 2 ,2π),且→a ⊥→b . (Ⅰ)求tanα的值;(Ⅱ)求cos(α2+π 3)的值. 题型三. 三角函数与平面向量的模的综合 【例3】 已知向量→a =(cosα,sinα),→b =(cosβ,sinβ),|→a -→b |=2 5 5.(Ⅰ)求cos(α-β)的值;(Ⅱ) 若-π2<β<0<α<π 2,且sinβ=-513,求sinα的值. 题型四 三角函数与平面向量数量积的综合 【例3】 设函数f(x)=→a ·→b .其中向量→a =(m ,cosx),→b =(1+sinx ,1),x ∈R ,且f(π2)=2.(Ⅰ)求实数m 的值;(Ⅱ)求函数f(x)的最小值. 题型五:结合三角形中的向量知识考查三角形的边长或角的运算 【例5】(山东卷)在ABC ?中,角,,A B C 的对边分别为,,a b c ,tan 37C =. (1)求cos C ;(2)若5 2 CB CA ?=u u u r u u u r ,且9a b +=,求c . 题型六:结合三角函数的有界性,考查三角函数的最值与向量运算 【例6】()f x a b =?r r ,其中向量(,cos 2)a m x =r ,(1sin 2,1)b x =+r ,x R ∈, 且函数()y f x =的图象经过点( ,2)4 π . (Ⅰ)求实数m 的值; (Ⅱ)求函数()y f x =的最小值及此时x 值的集合。

角函数、平面向量综合题九种类型

三角函数与平面向量综合题的九种类型
题型一:三角函数与平面向量平行(共线)的综合
【例 1】 已知 A、B、C 为三个锐角,且 A+B+C=π.若向量→p =(2-2sinA,cosA+sinA)与向量→q =(sinA -cosA,1+sinA)是共线向量.
(Ⅰ)求角 A;(Ⅱ)求函数 y=2sin2B+cosC-23B的最大值.
题型二. 三角函数与平面向量垂直的综合 【例2】 已知向量→a =(3sinα,cosα),→b =(2sinα,5sinα-4cosα),α∈(32 ,2π),且→a ⊥→b .
α (Ⅰ)求 tanα 的值;(Ⅱ)求 cos( 2 + 3 )的值.
题型三. 三角函数与平面向量的模的综合 【例 3】 已知向量→a =(cosα,sinα),→b =(cosβ,sinβ),|→a -→b |=25 5.(Ⅰ)求 cos(α-β)的值;(Ⅱ) 若- 2 <β<0<α< 2 ,且 sinβ=-153,求 sinα 的值.
题型四:结合向量的数量积,考查三角函数的化简或求值
【例 4】(2010 年高考安徽卷)已知 0 , 为 f (x) cos(2x ) 的最小正周期,
4
8
ar
(tan(
r ), 1),b
(cos, 2), ar
r b
m
,求
2 cos2
sin
2(
)
的值.
4
cos sin
练习:设函数 f(x)=→a ·→b .其中向量→a =(m,cosx),→b =(1+sinx,1),x∈R,且 f( 2 )=2.(Ⅰ)求实数 m 的值;(Ⅱ)求函数 f(x)的最小值.
题型五:结合向量的夹角公式,考查三角函数中的求角问题

2021届高考数学解答题核心素养题型3 三角函数与平面向量综合问题(答题指导解析版)

专题03 三角函数与平面向量综合问题 (答题指导) 【题型解读】 ??题型一:三角函数的图象和性质 1.注意对基本三角函数y =sin x ,y =cos x 的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y =A sin(ωx +φ)的形式,然后利用整体代换的方法求解. 2.解决三角函数图象与性质综合问题的步骤 (1)将f (x )化为a sin x +b cos x 的形式. (2)构造f (x )=a 2 +b 2 ? ?? ?? a a 2+ b 2 ·sin x +b a 2+b 2·cos x . (3)和角公式逆用,得f (x )=a 2+b 2 sin(x +φ)(其中φ为辅助角). (4)利用f (x )=a 2 +b 2 sin(x +φ)研究三角函数的性质. (5)反思回顾,查看关键点、易错点和答题规范. 【例1】 (2017·山东卷)设函数f (x )=sin ? ????ωx -π6+sin ? ????ωx -π2,其中0<ω<3.已知f ? ????π6=0. (1)求ω; (2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π 4 个 单位,得到函数y =g (x )的图象,求g (x )在??????-π4 ,3π4上的最小值. 【答案】见解析 【解析】(1)因为f (x )=sin ? ????ωx -π6+sin ? ????ωx -π2,所以f (x )=32sin ωx -12cos ωx -cos ωx =32sin

向量与三角函数综合试题

A B C D F 向量与三角函数综合试题 1.已知向量a 、b 满足b ·(a-b)=0,且|a|=2|b|,则向量a +2b 与a 的夹角为 ( D ) A.3π B.3π2 C. 2π D.6π 2.已知向量),(n m a =,)sin ,(cos θθ=b ,其中R n m ∈θ,,.若||4||b a =,则当2 λλ或2-<λ B .2>λ或2-<λ C .22< <-λ D .22<<-λ 3.已知O 为原点,点P (x ,y )在单位圆x 2 +y 2 =1上,点Q (2cos θ,2sin θ),且PQ =(3 4, -3 2),则OP ·OQ 的值是 ( A ) A .18 25 B .9 25 C .2 D .9 16 4.R t b t a u b a ∈+===,),20cos ,20(sin ,)25sin ,25(cos 0 0,则|u |的最小值是B A. 2 B. 22 C. 1 D. 2 1 5.如图,△ABC 中,AB=4,AC=4,∠BAC=60°,延长CB 到D ,使||||BA BD =u u u r u u u r ,当E 点在线段AD 上移动时,若,AE AB AC λμλμ=+-u u u r u u u r u u u r 则的最大值是( C ) A .1 B .3 C .3 D .23 6.已知向量(2,0)OB =u u u v ,向量(2,2)OC =u u u v ,向量(2cos ,2sin )CA αα=u u u v ,则向量OA u u u v 与向量OB uuu v 的夹角的取值范围是( D ) A .[0, ]4π B .5[,]412ππ C .5[,]122ππ D .5[,]1212 ππ 7.已知向量(1,1),(1,1),(2cos ,2sin )a b c θθ==-=r r r ,实数,m n 满足ma nb c +=r r r ,则 22(1)(1)m n -+-的最小值为( D ) A .21- B .1 C .2 D .322- 8.如图,BC 是单位圆A 的一条直径, F 是线段AB 上的点,且2BF FA =u u u r u u u r , 若DE 是圆A 中绕圆心A 运动的一条直径,则FD FE u u u r u u u r g 的值是( B ) B .) ( )

平面向量与三角函数、解三角形的综合习题.doc

三角函数与平面向量、解三角形综合题 题型一: 三角函数与平面向量平行 ( 共线 ) 的综合 【例 1】 已知 A 、 B 、C 为三个锐角,且 A +B + C =π . 若向量 → = (2 - 2sinA ,cosA + sinA) 与向 p → = (cosA - sinA ,1+ sinA) 是共线向量 . 量 q (Ⅰ)求角 A ;(Ⅱ)求函数 y = 2sin 2 C - 3B B + cos 2 的最大值 . 题型二 . 三角函数与平面向量垂直的综合 → → 3 【例 2】 已知向量 a =(3sin α,cos α) , b =(2sin α, 5sin α- 4cos α) ,α∈ ( 2 ,2π) , → → 且 a ⊥ b . α (Ⅰ)求 tan α 的值;(Ⅱ)求 cos( 2+ 3)的值. 题型三 . 三角函数与平面向量的模的综合 → → → → 2 【例 3】 已知向量 a =(cos α,sin α) , b =(cos β,sin β) , | a - b | = 5 5.( Ⅰ ) 求 cos( α -β ) 的值; ( Ⅱ ) 若- 2 <β< 0<α< 2 5 ,且 sin β=- 13,求 sin α 的值 . 题型四 三角函数与平面向量数量积的综合 → → → → ,x ∈R ,且 f( 2 ) 【例 3】 设函数 f(x) = a · b . 其中向量 a = (m ,cosx) , b = (1 + sinx ,1) = 2. (Ⅰ)求实数 m 的值;(Ⅱ)求函数 f(x) 的最小值 . 题型五:结合三角形中的向量知识考查三角形的边长或角的运算 【例 5】(山东卷)在 ABC 中,角 A, B,C 的对边分别为 a, b, c , tan C 3 7 . uuur uuur 5 ,且 a b 9 ,求 c . (1)求 cosC ;( 2)若 CB CA 2 题型六:结合三角函数的有界性,考查三角函数的最值与向量运算 【例 6】f ( x) r r r r (1 sin 2x,1) , R ,且函数 y f ( x) a b ,其中向量 a (m,cos 2x) ,b x 的图象经过点 ( ,2) . 4 (Ⅰ)求实数 m 的值; (Ⅱ)求函数 y f ( x) 的最小值及此时 x 值的集合。

平面向量及其应用最新高考试题精选百度文库

一、多选题 1.下列说法中错误的为( ) A .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是 5,3??-+∞ ??? B .向量1(2,3)e =-,213,24e ?? =- ??? 不能作为平面内所有向量的一组基底 C .若//a b ,则a 在b 方向上的投影为||a D .非零向量a 和b 满足||||||a b a b ==-,则a 与a b +的夹角为60° 2.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S .下列 ABC 有关的结论,正确的是( ) A .cos cos 0A B +> B .若a b >,则cos2cos2A B < C .24sin sin sin S R A B C =,其中R 为ABC 外接圆的半径 D .若ABC 为非直角三角形,则tan tan tan tan tan tan A B C A B C ++= 3.在ABC ?中,内角,,A B C 的对边分别为,,,a b c 若,2,6 A a c π ===则角C 的大小 是( ) A . 6 π B . 3 π C . 56 π D . 23 π 4.ABC 是边长为2的等边三角形,已知向量a ,b 满足2AB a =,2AC a b =+,则下列结论正确的是( ) A .a 是单位向量 B .//BC b C .1a b ?= D .() 4BC a b ⊥+ 5.在△ABC 中,点E ,F 分别是边BC 和AC 上的中点,P 是AE 与BF 的交点,则有( ) A .1122 AE AB AC → →→ =+ B .2AB EF →→ = C .1133 CP CA CB → →→ =+ D .2233 CP CA CB → →→ =+ 6.在ABC 中,角A ,B ,C 所对各边分别为a ,b ,c ,若1a =,b =30A =?,则B =( ) A .30 B .45? C .135? D .150? 7.如图,在平行四边形ABCD 中,,E F 分别为线段,AD CD 的中点,AF CE G =, 则( )

(完整word版)三角函数与向量综合题

题型一 三角函数平移与向量平移的综合 三角函数与平面向量中都涉及到平移问题,虽然平移在两个知识系统中讲法不尽相同,但它们实质是一样的,它们都统一于同一坐标系的变化前后的两个图象中.解答平移问题主要注意两个方面的确定:(1)平移的方向;(2)平移的单位.这两个方面就是体现为在平移过程中对应的向量坐标. 【例1】 把函数y =sin2x 的图象按向量→a =(-π6 ,-3)平移后,得到函数y =Asin(ωx +?)(A >0,ω>0,|?|=π2 )的图象,则?和B 的值依次为 ( ) A .π12,-3 B .π3,3 C .π3,-3 D .-π12,3 【分析】 根据向量的坐标确定平行公式为??? x =x '+π6y =y '+3 ,再代入已知解析式可得.还可以由向量的坐标得图象的两个平移过程,由此确定平移后的函数解析式,经对照即可作出选择. 【解析1】 由平移向量知向量平移公式??? x '=x -π6y '=y -3,即??? x =x '+π6y =y '+3 ,代入y =sin2x 得y '+3=sin2(x '+π6),即到y =sin(2x +π3)-3,由此知?=π3 ,B =-3,故选C. 【解析2】 由向量→a =(-π6 ,-3),知图象平移的两个过程,即将原函数的图象整体向左平移π6个单位,再向下平移3个单位,由此可得函数的图象为y =sin2(x +π6 )-3,即y =sin(2x +π3)-3,由此知?=π3 ,B =-3,故选C. 【点评】 此类题型将三角函数平移与向量平移有机地结合在一起,主要考查分析问题、解决问题的综合应用能力,同时考查方程的思想及转化的思想.本题解答的关键,也是易出错的地方是确定平移的方向及平移的大小. 题型二 三角函数与平面向量平行(共线)的综合 此题型的解答一般是从向量平行(共线)条件入手,将向量问题转化为三角问题,然后再利用三角函数的相关知识再对三角式进行化简,或结合三角函数的图象与民性质进行求解.此类试题综合性相对较强,有利于考查学生的基础掌握情况,因此在高考中常有考查. 【例2】 已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)与向量→q =(cosA -sinA ,1+sinA)是共线向量. (Ⅰ)求角A ; (Ⅱ)求函数y =2sin 2B +cos C -3B 2 的最大值. 【分析】 首先利用向量共线的充要条件建立三角函数等式,由于可求得A 角的正弦值,再根据角的范围即可解决第(Ⅰ)小题;而第(Ⅱ)小题根据第(Ⅰ)小题的结果及A 、B 、C 三个角的关系,结合三角民恒等变换公式将函数转化为关于角B 的表达式,再根据B 的范

相关文档
最新文档