生物化学复习资料

生物化学复习资料
生物化学复习资料

生物化学复习资料

1.氨基酸的结构特点:在20种标准氨基酸中只有脯氨酸为亚基氨酸,其他氨基酸都是α-氨基酸,除了甘氨酸之外,其他氨基酸的α-碳原子都结合了4个不同的原子或基团(羧基、氨基、R基和一个氢原子)。所以α-碳原子是一个手性碳原子,氨基酸是手性分子,有L-氨基酸与D-氨基酸之分,标准氨基酸均为L-氨基酸。

2.酸性氨基酸:天冬氨酸、谷氨酸(R基所含的羧基在生理条件下可以给出H+的带负电荷)

碱性氨基酸:赖氨酸、精氨酸、组氨酸(R基所含的咪唑基在生理条件下可以给出H+的带负电荷)

芳香族氨基酸:色氨酸、苯丙氨酸、酪氨酸

3.氨基酸的两性电离:氨基酸都含有氨基和羧基,氨基可以结合H+而带正电荷,羧基可以给出H+而带负电荷,所以氨基酸是两性电解质,氨基酸的这种解离特征成为两性解离。

等电点:氨基酸在溶液中的解离程度受ph影响,在某一ph值条件下,氨基酸解离成阴离子和阳离子的趋势和程度相同,溶液中氨基酸的静电荷为0,此时溶液的ph值称为该氨基酸的等电点。

4.试比较蛋白质和多肽的区别:多肽链是蛋白质的基本结构,实际上蛋白质就是具有特定构象的多肽,但多肽并不都是蛋白质(①分子量<10kDa的是多肽<不包含寡肽>,分子量>10kDa的是蛋白质,胰岛素例外,它是蛋白质②一个多肽分子只有一条肽链,而一个蛋白质分子通常含有不止一条肽链③多肽的生物活性可靠与其构象无关,而蛋白质则不然,改变蛋白质的构象会改变其生物活性④许多蛋白质含有辅基,而多肽一般不含辅基

5.简述蛋白质的一二三四级结构,常见的二级结构有哪些?

一:蛋白质分子内氨基酸的排列顺序称为蛋白质的一级结构,包括二硫链的位置

二:蛋白质多肽链局部片段的构象,不涉及侧链的空间排布:α螺旋、β折叠、β转角、无规则卷曲。

三:在一级结构中相隔较远的一些氨基酸依靠非共价键及少量共价键相互结合,使多肽链在二级结构基础上进一步折叠,形成特定的空间结构,这就是蛋白质的三级结构。

四:多亚基蛋白的亚基按特定的空间排布结合在一起,构成该蛋白质的四级结构

6.维持蛋白质各级结构的主要作用力有:①肽键②H键③疏水作用、H键、部分离子键、少量共价键

7.蛋白质的紫外吸收有何特点:单纯蛋白质不吸收可见光,是无色的。一些缀合蛋白质的辅基能吸收可见光,所以呈现不同的颜色,如血红素使血红蛋白呈红色。不过因为两点而对紫外线有吸收:①其肽键结构对220nm以下的紫外线有强吸收②是所含的色氨酸和酪氨酸对280nm的紫外线有强吸收,在一定条件下,蛋白质溶液对280nm紫外线的吸光度与其浓度成正相关,在分离分析蛋白质时常以此作为检测手段。

8.变性:在一些因素作用下,蛋白质的天然构象被破坏,从而导致其理化性质改变,生物活性丧失

复性:当变性程度较轻时,除去其变性因素,蛋白质能恢复或部分恢复其原来构象及功能。

9.蛋白质的两性解离:因为他们肽链主链C端的羧基,谷氨酸的γ-羧基和天冬氨酸的β-羧基,可以给出H+而带负电荷,也有肽链主链N端的氨基,赖氨酸的ε-氨基,精氨酸的胍基和组氨酸的咪唑基,可以结合H+而带正电

10.引起蛋白质变性的因素:

物理因素(高温、高压、震荡、紫外线、超声波)

化学因素(强酸、强碱、乙醇、丙酮、尿素、重金属盐和去污剂eg.十二烷基硫酸钠)

核酸化学

1.简述DNA双螺旋结构的基本内容:

①DNA是由两股链反向互补构成的双链结构:在该结构中,由脱氧核糖与磷酸交替连接构成的主链位于外侧,碱基位于内侧,双链碱基之间配成Watson-Crick碱基对而A=T,

C=G,碱基互补配对原则。

②DNA双链进一步构成右手双螺旋结构:在双螺旋中,碱基平面与螺旋轴垂直

③H键和碱基堆积力维持DNA双螺旋结构的稳定性

2.比较DNA的双螺旋结构与蛋白质的α-螺旋结构

DNA的双螺旋结构是DNA的典型二级结构,蛋白质的α-螺旋结构是蛋白质的典型二级

rRNA:构成核糖体核酶:催化活性

4.简述tRNA二级结构的基本特点:tRNA都具有三叶草的二级结构,该结构中有四臂三环,即氨基酸臂,反密码子臂和反密码子环,TψC臂和TψC环,二氢尿嘧啶臂和二氢尿嘧啶环。其中氨基酸可以结合氨基酸,而反密码子环则含有三个碱基组成的反密码子。

5.mRNA的结构特点:种类多,寿命短,含量少,占细胞总RNA的10%以下

6.核酸(DNA)的变性:指DNA的分子由稳定的双螺旋结构松解为无规则线性结构的现象,确切地说是维持双螺旋稳定性的H键和疏水键的断裂。

核酸的复性:缓慢降低温度,恢复生理条件,变性DNA单链会自发互补结合,重新合成原来的双螺旋姐结构。

7.简述DNA的解链温度(Tm):使DNA变性链达到50%时的温度,又称为变性温度、溶解温度、熔点,与DNA大小碱基组成、溶液的ph值、离子强度有关。

1.酶的特点:催化效率极高,特异性极高,酶蛋白不稳定,酶的活性可以调节

2.酶原:有些酶在细胞内侧合成或初分泌时只有酶的无活性前体,必须水解掉一个或几个特定的肽段,是酶蛋白构象发生改变,从而表现出酶的活性,酶的这种无活性前体,即酶原。

酶的激活:无活性的酶原转化成有活性的酶的过程。实际上是形成或暴露酶的活化中心的过程。

3.酶按分子组成分为:①单纯酶:仅由氨基酸构成的酶②结合酶:由蛋白质部分和非蛋白质部分构成。

4.全酶由哪两部分组成:脱辅基酶蛋白+辅助因子=结合形成的复合物全酶(只有全酶才具有催化活性)

酶促反应的特异性:酶对催化反应的底物和反应类型具有选择性

反应类别由什么决定:酶对其底物结构选择的程度

5.酶活性中心的必须基团分为哪两大类,在酶促反应中其作用是什么?

分子活性中心外:维持酶活性中心的构象所必需的

必须基团结合基团:与底物结合,使底物与一定构象的酶形成复合物,又称为中间产物

位于活性中心内催化基因:改变底物中某种化学键的稳定性,使底物发生反应生成产物

6.Km值有哪些有关,与哪些无关,有何意义?

Km只与酶的性质,底物的种类,酶促反应的条件(温度、ph离子强度)有关,与酶的浓度无关。

意义:①Km值是反应速度为最大反应速度一半时的底物浓度②Km是酶的特征常数,可反应酶的种类③Km值反应酶和底物的亲和力④分析酶的激活剂和抑制剂。

7.酶蛋白与辅助因子的关系:①酶蛋白决定酶的专一性(特异性),辅助因子具体参与化学反应,决定反应类型②单纯的酶蛋白或单纯的辅助因子都没有催化活性,必须要结合成全酶才有催化活性③一种酶蛋白常只需一种辅助因子构成一种全酶,催化一种化学反应,得到一一定的产物④一种辅助因子可以与一类酶蛋白构成不同的全酶,催化不同的化学反应,得到不同的产物

抑制剂和底物的相对浓度有关。Km升高,Vmax不变

非竞争性抑制作用:抑制剂与底物结构不相似或完全不同,它只与活性中心以外的必需基团结合使[E]和[ES]都下降。该抑制作用的强弱只与抑制剂的浓度有关:Km不变,mVax下降反竞争性抑制作用:抑制剂并不与酶直接结合,而是与ES复合物结合成ESI,使酶失去催化活性,结合的ESI则不能。分解成产物,Km减小,Vmax降低

9.以磺胺药为例说明竞争性抑制作用在临床上的作用(P74)

磺胺类药物是对氨基苯甲酸的结构类似物,能与二氢叶酸合成酶结合,抑制二氢叶酸的合成。

磺胺增效剂与二氢叶酸结构相似,能与二氢叶酸还原酶结合,抑制二氢叶酸还原成四氢叶酸。

10.简述温度对酶促反应影响的双效型

①升高温度可以增加活化分子数目,反应速度提高(在一定范围内)

②温度超过一定范围,则会导致酶蛋白变性失活,使酶促反应速度降低

酶促反应速度最快时反应速度称为该酶促反应的最适温度。

<最适温度:T↑增加活化分子数目起主导作用,反应速度提高

<最适温度:T↑使酶蛋白变性起主导作用,反应速度降低

11.何谓同工酶:指能催化相同的化学反应,但酶蛋白的分子组成,分子结构和理化性质及免疫学性质和电泳行为都不相同的一组酶,是生命在长期进化过程中基因突变的产物

12.酶的催化作用有哪些特点:①只催化热力学上允许的化学反应②提高化学反应速率,但不改变化学平衡③催化作用:降低化学反应的活化能④本身无质和量的改变⑤催化效率极高⑥具有很高的特异性⑦酶蛋白容易失活⑧酶活性可以调节

13.酶的专一性:绝对特异性、相对特异性、立体异构特异性

维生素与微量元素

1.维生素有哪些特点:①维生素种类很多,化学结构各异,本质上都属于小分子有机化合物

②维生素既不是构成机体组织结构的原料,也不是供能物质,但在代谢过程中发挥着重要作用,他们大多数参与构成酶的辅助因子③维生素的需求量很少,但多数不能在体内合成或质量不足,必须从食物中摄取④维生素摄取不足会造成代谢障碍,但若应用不当或长期过量摄取,也会出现中毒症状

2.B族维生素和辅酶的关系

3.试述维生素C维持生物膜正常功能的原因:维生素C能把氧化型谷胱甘肽GSSG还原成还原型谷胱肽GSH,GSH能还原细胞膜过氧化脂质,保护细胞膜。

4.缺乏维生素A为什么会引发夜盲症:①维生素A即抗干眼病维生素,其活性形式包括视黄醛、视黄酸②维生素A构成视觉细胞的感光成分

人的视网膜上有两种感光细胞:视锥细胞主要感受强光,视杆细胞主要感受弱光。视杆细胞内的感光物质为视紫红质,可以感受弱光而产生暗视觉。视紫红质是由视蛋白与II-顺视黄醛构成的,所以视杆细胞合成视紫红质需要维生素A,缺乏维生素A会影响视紫红质的合成,导致感受弱光的能力减退,出现夜盲症

5.卫生么多晒太阳是预防维生素D缺乏的有效方法?在人体内,胆固醇可以转化成T-脱氢胆固醇,然后在皮下经紫外线转化成维生素D3,一般人只需充分接受阳光照射,体内合成维生素D就可以满足生理需要

生物氧化

1.试述生物氧化的特点P96

营养物质在体内通过生物氧化分解与在体外氧化分解或燃烧的化学本质是相同的,表现在耗氧量相同,终产物相同,释放的能量也相同。

特点:①生物氧化过程是由细胞内ph值接近中性和约37℃的溶液中逐步进行的一系列酶促反应完成的②营养物质在生物氧化过程中逐步释放能量,并尽可能多地从化学能的形式储存与高能化合物中,使其得到最有效的利用③生物氧化的产物CO2是由有机酸发生脱羧反应生成的,并非体外氧化对C直接与O2反应生成④生物氧化的产物水主要是营养物质分子脱下的H经一系列传递反应最终与O2结合生成的,并非体外氧化时物质中的H直接与O2反应生成

2.CO氧化物卫什么能引起细胞窒息死亡?

CO能与血红蛋白结合,从而导致O2与血红蛋白结合率减少,机体供氧不足,引起窒息死亡。氧化物对呼吸链的电子传递选择性有阻断作用,这种抑制剂阻断电子传递的结果,一致了ATP的合成,以致呼吸停止,能源断绝,严重时危及生命。

3.甲状腺机能亢进患者一般表现为基础代谢率提高,请运用生化知识说明:

甲状腺激素能诱导许多组织细胞膜Na+、K+、ATPase的合成,是ATP分解成ADP和Pi的速度加快,进入线粒体的ADP量增加,从而使氧化磷酸化速度加快。甲状腺激素还能促进解偶联蛋白基因的表达,使线粒体内膜的解偶联蛋白增加。上述两种调节都会使机体耗氧量增加,姑甲状腺功能亢进患者常出现基础代谢率增高,怕热和易出汗等症状。

4.抑制氧化磷酸化的物质有哪几类?机制如何?

在生物氧化过程中,氧化释放的电子经呼吸链传递给O2生成H2O,所释放的自由能推动ADP磷酸化生成ATP,这一过程为氧化磷酸化,氧化磷酸化产生的ATP均占ATP总量的80%

5.NADH氧化呼吸链是如何组成的?说明各个组成成分在呼吸链中的作用

线粒体内的NADH讲电子送入呼吸链,并按一下顺序传递给O2,生成H2O:

NADH→复合体→Q→复合体III→Cytc→复合体IV→O2

O2生成H2O。

琥珀酸→复合体II→Q→集合体III→CytC→复合体IV→O2

糖代谢

1.糖酵解有何意义:P117

①为某些组织细胞的重要功能途径:如红细胞、视网膜、骨髓、人脑等

②糖酵解的中间产物是其他物质的合成原料

2.论述三羧酸循环的总结过及其主要特点:

①每一循环氧化1个乙酰基,通过2次脱羧生成2个CO2,通过4次脱氢给出4对H (4x2H),其中3x2H以NAD+为受氢体。4x2H通过氧化磷酸化可以推动合成11个ATP。另外,三羧酸循环还通过底物水平磷酸化合成1个ATP,这样每氧化1个乙酰基共产生12个ATP。

②三羧酸循环有3种关键酶,即柠檬酸合酶、异柠檬酸脱氢酶和α-酮戊二酸脱氢酶系。其中异柠檬酸脱氢酶是重要的调节酶,他们所催化的反应在生理条件下是不可逆的,所以三羧酸循环是不可逆的。

③三羧酸循环本身不会改变中间产物的总量,即不会消耗中间产物。不过,其他代谢会消耗三羧酸循环的中间产物,需要及时补充,三羧酸循环中间产物最基本的补充方式是有丙酮酸羧化生成草酰乙酸。

3.糖的有氧氧化及三所循环有何生理意义:

三羧酸循环:①产生大量能量②三羧酸循环是糖类、脂类和蛋白质分解代谢的共同途径③三羧酸循环是糖类、脂类和蛋白质代谢联系的枢纽④循环过程中的某些中间产物是合成一些物质的原料

6.计算从糖原开始的1个葡萄糖单位在肝脏彻底氧化可净生成多少ATP

7.磷酸戊糖途径有何生理意义:

磷酸戊糖途径生成的5-磷酸核糖和NADPH是生命物质的合成原料

①5-磷酸核糖:磷酸戊糖途径是体内利用葡萄糖生成5-磷酸核糖的唯一途径,5-磷酸核糖是核苷酸的合成原料

②NADPH:磷酸戊糖途径的另一个重要意义是提供细胞代谢所需的NADPH

NADPH的生理功能:①为脂肪酸和胆固醇等物质的合成提供H ②参与肝脏内的生物转化③作为谷胱甘肽还原酶的辅酶,参与CSSG(氧化型谷胱甘肽)还原成GSH(还原型谷胱甘肽)的反应

8.肝糖原和肌糖原的代谢途径有何不同?为什么?P128

肌糖原→血糖(葡萄糖)肌糖原→乳酸→葡萄糖→肌糖原

肌肉组织中缺乏葡萄糖-6-磷酸酶,所以肌糖原分解产生的6-磷酸葡萄糖不能水解生成葡萄糖,只能将6-磷酸葡萄糖→(糖酵解)乳酸→(血液循环)肝脏→(糖异化)葡萄糖→血液→被肌肉组织吸收

9.肝糖原的合成与分解有何生理意义?糖原的合成与分解是维持血糖正常水平的重要途径。人的进食是间断的,所以机体必须储存一定的糖以备不进食时的生理需要,糖原是糖的储存形式,进食后过多的糖可以在肝脏和肌肉组织中合成糖原储存起来,以免血糖浓度过高。当停止进食时,如果血糖浓度下降,肝糖原会分解成葡萄糖释放入血液补充血糖。

10.为什么说肌肉活动剧烈时,肌糖原也是补充血糖的途径?P128

11.简述人体内6-磷酸葡萄糖有哪些代谢去向?

①经糖酵解途径生成乳酸②经糖的有氧氧化途径生成CO2和H2O并释放能量③经磷酸戊糖途径生成NADPH和磷酸核糖④经糖醛酸途径生成葡糖醛酸⑤经糖原合成途径合成糖原⑥脱磷酸生成葡萄糖

12.糖异生有何意义:主要在饥饿时,饱食高蛋白食物时或剧烈运动时进行

①在饥饿时维持血糖水平的相对稳定②参与食物氨基酸的转化与储存③参与乳酸的回收利用

糖异生:指由非糖物质合成葡萄糖的过程

血糖:指血液中的游离葡萄糖

13.简述细胞液中的草酰乙酸转变为葡萄糖的反应途径,其过程有哪些糖异生的关键酶参与:

14.血糖有哪些来源与去路?

来源:①食物糖消化吸收②肝糖原分解③肝脏内糖异生作用

去路:①氧化分解供能②合成糖原③转化成其他糖类或非糖物质④血糖过高时随尿液排出

15.简述胰岛素的作用机制:

胰岛B细胞分泌的胰岛素是唯一能降低血糖浓度的激素

①促进葡萄糖进入肌肉,脂肪组织细胞内进行代谢②诱导糖酵解关键酶的生成,促进糖的氧化分解③促进糖原的合成④促进糖转化成脂肪⑤抑制糖原分解和糖异生(抑制糖异生的关键酶)

16.试论述肝脏对血糖浓度的调节

①肝脏是维持血糖浓度的最主要器官,是通过控制糖原的合成与分解及糖异生来调节血糖的②当血糖浓度高于正常水平时,肝糖元合成作用加强,促进血糖消耗;糖异生作用减弱,限制血糖补充,从而使血糖浓度降至正常水平③当血糖浓度低于正常水平时,肝糖元分解作用加强,糖异生作用加强,从而使血糖浓度升至正常水平④当然肝脏对血糖浓度的

调节是在神经和激素的控制下进行的

17.试从糖尿病的发病机理,解释糖尿病患者“三多一少”的临床表现

糖尿病患者除了表现为高血糖和尿糖外,尚有“三多一少”的症状,即“多食、多饮、多尿、体重减轻”

①糖尿病患者的糖氧化供能途径发生障碍,机体所需能量不足,故患者饥饿多食②多食进一步使血糖升高,血糖升高超过肾糖阈时出现糖尿,堂的大量排出必然带走大量水分,因而多尿③多尿失水过多,血液高渗引起口渴,因而多饮④由于唐氧化功能途径发生障碍,体内大量动员脂肪,严重时组织蛋白也要氧化供能,因而消耗多,身体逐渐消瘦体重减轻。

脂类代谢

1.试述血浆脂蛋白的组成和分类:是脂类和蛋白质组成的颗粒,是脂类在血浆中的存在形式和转运形式。脂类不溶于水,所以必须与蛋白质结合才能在血浆中转运。

①电泳分类法:各类脂蛋白的颗粒大小和所带电荷的不同,所以在电场中移动的速度也不同。分离:α脂蛋白、前β脂蛋白、β脂蛋白、乳糜颗粒

②超速离心法(密度分类法):在脂蛋白中,脂类和蛋白质的含量不同,所以密度也就不同。从小到大:乳糜颗粒(CM)、极低密度脂蛋白(VLDL)、低密度脂蛋白(LDL)、高密度脂蛋白(HDL)

正常人空腹血浆中不存在CM,VLDL占极少量,LDL占2/3,HDL占1/3

2.血浆中各类脂蛋白的主要成分和功能

CM:从小肠转运甘油三酯和胆固醇至肝脏及形成于小肠粘膜转运来自食物中的外源性甘油三酯和胆固醇。

VLDL:形成于肝脏,转运肝脏合成的内源性甘油三酯(TG)和胆固醇

HDL:形成于肝脏,少量形成于小肠,是从肝脏外组织向肝脏转运胆固醇

LDL:血浆中由VLDL转化而来,从肝脏向肝外组织转运胆固醇

3.试述脂肪酸氧化的过程及所需的酶

脂肪酸氧化有多条途径,其中最主要的是β氧化

①脂肪酸由位于线粒体外膜上的脂酰辅酶A合成酶催化活化成脂酰辅酶A

②脂酰辅酶A以L-肉碱为载体转运进入线粒体,需要肉碱酰基转移酶I、肉碱酰基转移酶II催化

③脂酰辅酶A接下来的氧化过程包括脱氢、加水、在脱氢和硫解四步反应,最终降解成乙酰辅酶A,由脂酰辅酶A脱氢酶,α,β-烯脂酰辅酶A水化酶、β-羟脂酰辅酶A脱氢酶、β-酮脂酰辅酶A硫解酶催化。

4.试述酮体生成的组织、原料及过程

酮体包括乙酰乙酸、β-羟丁酸和丙酮,以乙酰辅酶A为原料在肝脏线粒体内合成

①2分子乙酰辅酶A由硫解酶催化缩合,生成乙酰乙酰辅酶A

②乙酰乙酰辅酶A由HMG-CoA合成酶催化与1分子乙酰辅酶A缩合,生成HMG-CoA

③HMG-CoA由HMG-CoA裂解酶催化裂解,生成乙酰乙酸和乙酰辅酶A

④乙酰乙酸由β-羟丁酸脱氢酶催化还原,生成β-羟丁酸

⑤乙酰乙酸由乙酰乙酸脱羧酶催化脱羧,生成丙酮

5.血脂的成分:甘油三酯、磷脂、胆固醇酯、脂肪酸

定义:血浆中所含脂类的统称

6.何谓酮体?酮体在何处生成?在何处氧化?

包括乙酰乙酸、β-羟丁酸和丙酮,是脂肪酸分解代谢的正常产物,在肝脏内合成,在线粒体内被氧化

7.试述酮体生成和利用的生理意义

①酮体是脂肪酸代谢的正常产物,是乙酰辅酶A的转运形式,肝脏的β氧化能力最强,可以为其他组织代加工,指脂肪酸氧化成乙酰辅酶A,但乙酰辅酶A不能直接透过细胞膜,必须转运成酮体

②酮体是水溶性分子,容易透过毛细血管壁,被肝脏组织特别是心脏、肾脏和骨骼肌吸收和利用。饥饿时血糖水平下降,脑组织也可提供酮体

③在长期饥饿、糖尿病或进食高脂低糖膳食时,酮体合成增加,超过肝脏组织利用酮体的能力,导致血液中酮体积累,成为酮血症,此时尿液中出现酮体,成为酮尿症。乙酰乙酸和β-羟丁酸都是有机酸,所以酮体积累会导致血液ph值下降,发生代谢性酸中毒。

8.试述脂肪酸合成的原料来源和合成部位

①除了从食物摄取之外,脂肪酸主要在体内合成②乙酰辅酶A和NADPH是脂肪酸合成原料,糖类、脂类和蛋白质分解代谢均可以产生乙酰辅酶A,NADPH主要来自磷酸戊糖途径③脂肪酸合成还需要ATP、生物素、CO2、和Mn2+或Mg2+等④脂肪酸是在肝脏、乳腺和脂肪组织等细胞质中合成的⑤肝脏是人体内脂肪酸合成最活跃的场所,其合成能力较脂肪组织大8-9倍

9.胆固醇能转化成那些物质?

胆固醇在人体内不能分解成CO2和H2O,但可以转化成具有重要生物活性的物质

①在肝脏中转化成胆汁酸②在肾上腺皮质中转化成肾上腺皮质激素,在卵巢和睾丸等性腺中转化成性激素③在肝脏和肠粘膜细胞内转化成T-脱氢胆固醇(维生素D原),后者存于皮下,经过紫外线照射后转化成维生素D3

10.胆固醇酯化的过程及所需酶

①在细胞内,胆固醇由脂酰辅酶A胆固醇酰基转移酶催化以酰基辅酶A获得一个酰基,生成胆固醇酯②在血浆中,胆固醇由磷脂酰胆碱胆固醇酰基转移酶(LCAT)催化从磷脂酰胆碱获得一个酰基,生成胆固醇酯。

11.何谓载脂蛋白?其主要功能如何?血浆脂蛋白中的蛋白质成分?

结合及转运脂类,此外不同载脂蛋白还有其特殊功能

12.1分子14碳的脂肪酸彻底氧化分解为CO2和H2O时,需经过多少次β-氧化?净生成多少分子ATP?

①经6次β氧化生成7个乙酰辅酶A,6FADH2和6NADH,他们继续代谢可生成ATP:7x12+6x2+6x3=114ATP

②1分子14碳的脂肪酸活化时消耗2ATP

③所以净生成112ATP

13.简述体内糖是如何转变成脂肪的

①葡萄糖经过有氧氧化途径可生成乙酰辅酶A,葡萄糖经过磷酸戊糖途径可生成NADPH,乙酰辅酶A和NADPH可以用来合成脂肪酸

②糖代谢可产生ATP,ATP可将脂肪酸活化成脂酰辅酶A

③葡萄糖在糖酵解途径中产生的磷酸二羟丙酮可还原成3-磷酸

蛋白质的分解代谢

1.氮平衡有哪三种类型?如何根据氮平衡来反映体内蛋白质代谢状况?

氮平衡:是指摄入氮与排出氮的动态平衡,它反映出体内蛋白质的代谢状况

氮总平衡:是指摄入氮等于排出氮,说明摄取的蛋白质最基本上能满足体内组织蛋白更新的需要,表示体内蛋白质的合成代谢与分解代谢维持动态平衡,常见于健康人氮正平衡:是指摄入氮多于排出氮,说明摄取的蛋白质部分用于合成组织蛋白,表示体内蛋白质的合成代谢多于分解代谢。例如:儿童、孕妇和康复期患者的蛋白质代谢均属于氮正平衡

氮负平衡:是指摄入氮少于排出氮,说明摄取的蛋白质量不足以补充人体分解掉的蛋白质,表示体内蛋白质的分解代谢多于合成代谢。例如:长时间饥饿者以及消耗性疾病、大面积烧伤和大量失血等患者的蛋白质代谢

2.哪些是人体内必需氨基酸?如何判断蛋白质的营养价值?

甲硫氨酸、色氨酸、赖氨酸、缬氨酸、异亮氨酸、亮氨酸、苯丙氨酸、苏氨酸

食物蛋白质营养价值高低主要取决于其必需氨基酸的含量高低及所含的必需氨基酸的种类和比例是否与人体对必需氨基酸的需求一致。必需氨基酸的含量越高而且种类和比例与人体的需求越一致,就越能满足人体组织蛋白质更新的需求,蛋白质的营养价值越高。

3.何谓蛋白质的腐败作用?

少量未被消化的食物蛋白和未被吸收的消化产物在大肠下部受肠道菌作用进行分解代谢,产生一系列对人体有害的物质,如胺类、酚类、吲哚类、H2S、NH3和CH4等,这一过程成为腐败。

4.测定血清GPT/ALT有何临床意义?为什么?P167

ALT:肝脏中活性最强AST:心脏中活性最强

在正常情况下,氨基转移酶主要存在于组织细胞内,尤以心脏和肝脏内活性最高。而在血清中活性很低,只有当组织受损,细胞破裂时,氨基转移酶才会大量释放入血,使血清中氨基转移酶活性明显升高。例如:急性肝炎患者血清ALT活性显著升高,心肌梗死患者血清AST活性显著升高

5.试用所学的生化知识解释引起肝昏迷的可能机理P172

NH3具有毒性,脑组织对NH3尤为敏感,肝功能严重受损时尿素合成发生障碍,会导致血氨升高,成为高血氨症。血氨升高时大量的NH3进入脑组织,与脑细胞内的α-酮戊二酸结合生成谷氨酸,进一步生成谷氨酰胺

结果:①大量消耗NADH和ATP等能源物质②大量消耗α-酮戊二酸,使三羧酸循环速度降低,影响ATP的生成,使脑组织供能不足③大量消耗谷氨酸,而谷氨酸是神经递质

能量及神经递质严重缺乏会影响到脑功能直至昏迷,临床上称为氨中毒或肝昏迷

《生物化学》考研复习重点大题

中国农业大学研究生入学考试复习资料 《生物化学》重点大题 1.简述Chargaff 定律的主要内容。 答案:(1)不同物种生物的DNA 碱基组成不同,而同一生物不同组织、器官的DNA 碱基组成相同。(2)在一个生物个体中,DNA 的碱基组成并不随年龄、营养状况和环境变化而改变。 (3)几乎所有生物的DNA 中,嘌呤碱基的总分子数等于嘧啶碱基的总分子数,腺嘌呤(A)和胸腺嘧啶(T) 的分子数量相等,鸟嘌呤(G)和胞嘧啶(C)的分子数量相等,即A+G=T+C。这些重要的结论统称 为Chargaff 定律或碱基当量定律。 2.简述DNA 右手双螺旋结构模型的主要内容。 答案:DNA 右手双螺旋结构模型的主要特点如下: (1)DNA 双螺旋由两条反向平行的多核苷酸链构成,一条链的走向为5′→3′,另一条链的走向为3′→5′;两条链绕同一中心轴一圈一圈上升,呈右手双螺旋。 (2)由脱氧核糖和磷酸构成的骨架位于螺旋外侧,而碱基位于螺旋内侧。 (3)两条链间A 与T 或C 与G 配对形成碱基对平面,碱基对平面与螺旋的虚拟中心轴垂直。 (4)双螺旋每旋转一圈上升的垂直高度为3.4nm(即34?),需要10 个碱基对,螺旋直径是2.0nm。(5)双螺旋表面有两条深浅不同的凹沟,分别称为大沟和小沟。 3.简述DNA 的三级结构。 答案:在原核生物中,共价闭合的环状双螺旋DNA 分子,可再次旋转形成超螺旋,而且天然DNA 中多为负超螺旋。真核生物线粒体、叶绿体DNA 也是环形分子,能形成超螺旋结构。真核细胞核内染色体是DNA 高级结构的主要表现形式,由组蛋白H2A、H2B、H3、H4 各两分子形成组蛋白八聚体,DNA 双螺旋缠绕其上构成核小体,核小体再经多步旋转折叠形成棒状染色体,存在于细胞核中。 4.简述tRNA 的二级结构与功能的关系。 答案:已知的tRNA 都呈现三叶草形的二级结构,基本特征如下:(1)氨基酸臂,由7bp 组成,3′末端有-CCA-OH 结构,与氨基酸在此缩合成氨基酰-tRNA,起到转运氨基酸的作用;(2)二氢尿嘧啶环(DHU、I 环或D 环),由8~12 个核苷酸组成,以含有5,6-二氢尿嘧啶为特征;(3)反密码环,其环中部的三个碱基可与mRNA 的三联体密码子互补配对,在蛋白质合成过程中可把正确的氨基酸引入合成位点;(4)额外环,也叫可变环,通常由3~21 个核苷酸组成;(5)TψC 环,由7 个核苷酸组成环,和tRNA 与核糖体的结合有关。 5.简述真核生物mRNA 3′端polyA 尾巴的作用。 答案:真核生物mRNA 的3′端有一段多聚腺苷酸(即polyA)尾巴,长约20~300 个腺苷酸。该尾巴与mRNA 由细胞核向细胞质的移动有关,也与mRNA 的半衰期有关;研究发现,polyA 的长短与mRNA 寿命呈正相关,刚合成的mRNA 寿命较长,“老”的mRNA 寿命较短。 6.简述分子杂交的概念及应用。 答案:把不同来源的DNA(RNA)链放在同一溶液中进行热变性处理,退火时,它们之间某些序列互补的区域可以通过氢键重新形成局部的DNA-DNA 或DNA-RNA 双链,这一过程称为分子杂交,生成的双链称杂合双链。DNA 与DNA 的杂交叫做Southern 杂交,DNA 与RNA 杂交叫做Northern 杂交。 核酸杂交已被广泛应用于遗传病的产前诊断、致癌病原体的检测、癌基因的检测和诊断、亲子鉴定和动

贝克曼(比较详细)

[化学发光]美国Beckman公司UniCel DxI800免疫分析仪 迎接PG级超微量检测时代的来临 免疫定量分析的发展历程 1960年代以前人工免疫检测阶段 1960-70年代非标记免疫发展阶段放射标记免疫发展阶段 1970-80年代免疫分析新项目不断产生临床应用领域迅速拓展荧光免疫发展阶 段 1980-90年代免疫检测逐渐常规化检测原理发展阶段化学发光,电化学发光1990-2000年标记免疫检测原理日臻成熟优化系统均衡,清洗分离手技术的发展2000-2003年免疫自动化发展阶段;进一步吸收大生化检测的自动化技术成就,采用系统叠加的方式以寻求更快的检测速度 免疫分析技术的自动化智能化发展,是临检领域继生化全自动分析时期的又一个标志性的重要阶段。其推动力源自一些大型实验室在免疫检测应用方面的进一步拓展和规模化,对免疫分析系统的检测速度、自动化和智能化性能提出了更高的要求。 智能化方面 提高了系统流程管理的智能化程度,将系统的自动化性能推进到了一个新的智能化阶段,并进一步强化了全方位的系统监控功能,保证了自动化的可控性。 自动化方面 进一步完善系统的自动化性能,加强系统的简便性、灵活性和前赡性,例如多种的进样方式、尽可能简洁的日常保养程序等,并提高了与轨道自动化的顺应性。 系统化方面 改变了原有检测仪器将系统进行简单并连组合以提高检测速度的做法,在继承原有分系统的独立性优点的基础上,采用同一套分析和探测系统,保证系统的整体性和结果的统一性。 UniCel TM DxI 800 展现自动化非凡成就引领智能免疫时代 DxI 800智能化整系统运行,突破分系统简单组合的传统方式,采用分立一体化整系统的专利设计

生物化学超详细复习资料图文版

一。 核酸的结构和功能 脱氧核糖核酸( deoxyribonucleic acid, DNA ):遗传信息的贮存和携带者,生物的主要遗传物质。在真核细胞中,DNA 主要集中在细胞核,线粒体和叶绿体中均有各自的DNA 。原核细胞没有明显的细胞核结构,DNA 存在于称为类核的结构区。 核糖核酸(ribonucleic acid, RNA ):主要参与遗传信息的传递和表达过程,细胞的RNA 主要存在于细胞质中,少量存在于细胞核中。 DNA 分子中各脱氧核苷酸之间的连接方式(3′-5′磷酸二酯键)和排列顺序叫做DNA 的一级结构,简称为碱基序列。一级结构的走向的规定为5′→3′。 DNA 的双螺旋模型特点: 两条反向平行的多聚核苷酸链沿一个假设的中心轴右旋相互盘绕而形成。 ?磷酸和脱氧核糖单位作为不变的骨架组成位于外侧,作为可变成分的碱基位于侧,链间碱基按A —T ,G —C 配对(碱基配对原则,Chargaff 定律) ?螺旋直径2nm ,相邻碱基平面垂直距离0.34nm,螺旋结构每隔10个碱基对(base pair, bp )重复一次,间隔为3.4nm DNA 的双螺旋结构稳定因素 ? 氢键 ?碱基堆集力 ?磷酸基上负电荷被胞组蛋白或正离子中和 DNA 的双螺旋结构的意义 该模型揭示了DNA 作为遗传物质的稳定性特征,最有价值的是确认了碱基配对原则,这是DNA 复制、转录和反转录的分子基础,亦是遗传信息传递和表达的分子基础。该模型的提出是本世纪生命科学的重大突破之一,它奠定了生物化学和分子生物学乃至整个生命科学飞速发展的基石。 DNA 的三级结构 在细胞,由于DNA 分子与其它分子(主要是蛋白质)的相互作用,使DNA 双螺旋进一步扭曲形成的高级结构. RNA 类别: ?信使RNA (messenger RNA ,mRNA ):在蛋白质合成中起模板作用; ?核糖体RNA (ribosoal RNA ,rRNA ):与蛋白质结合构成核糖体(ribosome ),核糖体是蛋白质合成的场所; ?转移RNA (transfor RNA ,tRNA ):在蛋白质合成时起着携带活化氨基酸的作用。 rRNA 的分子结构 特征:? 单链,螺旋化程度较tRNA 低 ? 与蛋白质组成核糖体后方能发挥其功能

生物化学 复习资料 重点+试题 第五章 脂类代谢

第六章脂类代谢 一、知识要点 (一)脂肪的生物功能: 脂类是指一类在化学组成和结构上有很大差异,但都有一个共同特性,即不溶于水而易溶于乙醚、氯仿等非极性溶剂中的物质。通常脂类可按不同组成分为五类,即单纯脂、复合脂、萜类和类固醇及其衍生物、衍生脂类及结合脂类。 脂类物质具有重要的生物功能。脂肪是生物体的能量提供者。 脂肪也是组成生物体的重要成分,如磷脂是构成生物膜的重要组分,油脂是机体代谢所需燃料的贮存和运输形式。脂类物质也可为动物机体提供溶解于其中的必需脂肪酸和脂溶性维生素。某些萜类及类固醇类物质如维生素A、D、E、K、胆酸及固醇类激素具有营养、代谢及调节功能。有机体表面的脂类物质有防止机械损伤与防止热量散发等保护作用。脂类作为细胞的表面物质,与细胞识别,种特异性和组织免疫等有密切关系。 (二)脂肪的降解 在脂肪酶的作用下,脂肪水解成甘油和脂肪酸。甘油经磷酸化和脱氢反应,转变成磷酸二羟丙酮,纳入糖代谢途径。脂肪酸与ATP和CoA在脂酰CoA合成酶的作用下,生成脂酰CoA。脂酰CoA在线粒体内膜上肉毒碱:脂酰CoA转移酶系统的帮助下进入线粒体衬质,经β-氧化降解成乙酰CoA,在进入三羧酸循环彻底氧化。β-氧化过程包括脱氢、水合、再脱氢和硫解四个步骤,每次β-氧化循环生成FADH2、NADH、乙酰CoA和比原先少两个碳原子的脂酰CoA。此外,某些组织细胞中还存在α-氧化生成α羟脂肪酸或CO2和少一个碳原子的脂肪酸;经ω-氧化生成相应的二羧酸。 萌发的油料种子和某些微生物拥有乙醛酸循环途径。可利用脂肪酸β-氧化生成的乙酰CoA 合成苹果酸,为糖异生和其它生物合成提供碳源。乙醛酸循环的两个关键酶是异柠檬酸裂解酶和苹果酸合成酶前者催化异柠檬酸裂解成琥珀酸和乙醛酸,后者催化乙醛酸与乙酰CoA生成苹果酸。 (三)脂肪的生物合成 脂肪的生物合成包括三个方面:饱和脂肪酸的从头合成,脂肪酸碳链的延长和不饱和脂肪酸的生成。脂肪酸从头合成的场所是细胞液,需要CO2和柠檬酸的参与,C2供体是糖代谢产生的乙酰CoA。反应有二个酶系参与,分别是乙酰CoA羧化酶系和脂肪酸合成酶系。首先,乙酰CoA在乙酰CoA羧化酶催化下生成,然后在脂肪酸合成酶系的催化下,以ACP作酰基载体,乙酰CoA为C2受体,丙二酸单酰CoA为C2供体,经过缩合、还原、脱水、再还原几个反应步骤,先生成含4个碳原子的丁酰ACP,每次延伸循环消耗一分子丙二酸单酰CoA、两分子NADPH,直至生成软脂酰ACP。产物再活化成软脂酰CoA,参与脂肪合成或在微粒体系统或线粒体系统延长成C18、C20和少量碳链更长的脂肪酸。在真核细胞内,饱和脂肪酸在O2的参与和专一的去饱和酶系统催化下,进一步生成各种不饱和脂肪酸。高等动物不能合成亚油酸、亚麻酸、花生四烯酸,必须依赖食物供给。 3-磷酸甘油与两分子脂酰CoA在磷酸甘油转酰酶作用下生成磷脂酸,在经磷酸酶催化变成二酰甘油,最后经二酰甘油转酰酶催化生成脂肪。 (四)磷脂的生成 磷脂酸是最简单的磷脂,也是其他甘油磷脂的前体。磷脂酸与CTP反应生成CDP-二酰甘油,在分别与肌醇、丝氨酸、磷酸甘油反应,生成相应的磷脂。磷脂酸水解成二酰甘油,再与CDP-胆碱或CDP-乙醇胺反应,分别生成磷脂酰胆碱和磷脂酰乙醇胺。 二、习题

全自动生化分析仪贝克曼奥林帕斯AU介绍

全自动生化分析仪贝克曼AU2700 生化分析仪是根据光电比色原理来测量体液中某种特定化学成分的仪器。它属于光学式分析仪器,基于物质对光的选择性吸收,即分光光度法。分光光度法基于不同分子结构的物质对电磁辐射的选择性吸收而建立起来的方法,属于分子吸收光谱分析。单色器将光源分成单色光,特定波长的单色光通过盛有样品的比色池,光电转化器将透射光转换为电信号后送入信号处理系统进行分析。 从全自动生化分析仪的发展来看,以进样个反应方式分为连续流动式、离心式和分立式三大类。目前分立式技术成熟,全面取代连续流动式和离心式成为主流。分立式全自动生化分析仪能以样本为单位检测,因此使用灵活,客服了离心式的大部分缺陷,并随着技术的进步,分立式的测试速度和稳定性都有较大的提高。我院新引进的贝克曼AU2700测试速度是五年前引进的德林Dimension max的3倍多,而且测试成本低,故障率低,自动化程度高,易保养。其诸多优势得益于其优秀的设计和先进的技术的引入。 全自动生化分析仪由加样和试剂系统、比色系统、清洗系统和程序控制系统组成。 一加样和试剂系统一套加样和试剂系统由一根样品探针,两个试剂探针,三个注射器,三个阀门,三个加样臂,试剂仓与转盘和样本传送装置组成。普通生化仪只有一套,二AU2700有两套,为达到1600个测试/小时提供了硬件保障。同时应用最新的数字加样系统和数字光路系统,加样更精确更精细,最小加样量可达1μL,步进达到0.1μL,最低反应容量仅120μL,减小了试剂用量,而且可以用国产试剂,ISE电解质分析电极寿命长,无需保养,从而极大的减少了测试成本,间接增加了医院收入。自动跟踪微量采样技术根据吸样量大小自动跟踪液面而下降,从而减少探针吸附,降低携带污染。为适应临床需要,AU2700

浙江工业大学生物化学期末复习知识重点

1.糖异生和糖酵解的生理学意义: 糖酵解和糖异生的代谢协调控制,在满足机体对能量的需求和维持血糖恒定方面具有重要的生理意义。 2.简述蛋白质二级结构定义及主要类别。 定义:指多肽主链有一定周期性的,由氢键维持的局部空间结构。 主要类别:α-螺旋,β-折叠,β-转角,β-凸起,无规卷曲 3.简述腺苷酸的合成途径. IMP在腺苷琥珀酸合成酶与腺苷琥珀酸裂解酶的连续作用下,消耗1分子GTP,以天冬氨酸的氨基取代C-6的氧而生成AMP。 4.何为必需脂肪酸和非必需脂肪酸?哺乳动物体内所需的必需脂肪酸有哪些? 必需脂肪酸:自身不能合成必须由膳食提供的脂肪酸常见脂肪酸有亚油酸、亚麻酸非必须脂肪酸:自身能够合成机单不饱和脂肪酸 5.简述酶作为生物催化剂与一般化学催化剂的共性及其个性? 共性:能显著的提高化学反应速率,是化学反应很快达到平衡 个性:酶对反应的平衡常数没有影响,而且酶具有高效性和专一性 6.简述TCA循环的在代谢途径中的重要意义。 1、TCA循环不仅是给生物体的能量,而且它还是糖类、脂质、蛋白质三大物质转化的枢纽 2、三羧酸循环所产生的各种重要的中间产物,对其他化合物的生物合成具有重要意义。 3、三羧酸循环课供应多种化合物的碳骨架,以供细胞合成之用。 7.何为必需氨基酸和非必需氨基酸?哺乳动物体内所需的必需氨基酸有哪些? 必需氨基酸:自身不能合成,必须由膳食提供的氨基酸。(苏氨酸、赖氨酸、甲硫氨酸、色氨酸、苯丙氨酸、缬氨酸、亮氨酸、异亮氨酸) 8.简述蛋白质一级、二级、三级和四级结构。 一级:指多肽链中的氨基酸序列,氨基酸序列的多样性决定了蛋白质空间结构和功能的多样性。 二级:指多肽主链有一定周期性的,由氢键维持的局部空间结构。 三级:球状蛋白的多肽链在二级结构、超二级结构和结构域等结构层次的基础上,组装而成的完整的结构单元。 四级:指分子中亚基的种类、数量以及相互关系。 9.脂肪酸氧化和合成途径的主要差别? β-氧化:细胞内定位(发生在线粒体)、脂酰基载体(辅酶A)、电子受体/供体(FAD、NAD+)、羟脂酰辅酶A构型(L型)、生成和提供C2单位的形式(乙酰辅酶A)、酰基转运的形式(脂酰肉碱) 脂肪酸的合成:细胞内定位(发生在细胞溶胶中)、脂酰基载体(酰基载体蛋白(ACP))、电子受体/供体(NADPH)、羟脂酰辅酶A构型(D型)、生成和提供C2单位的形式(丙二酸单酰辅酶A)、酰基转运的形式(柠檬酸) 10.酮体是如何产生和氧化的?为什么肝中产生酮体要在肝外组织才能被利用? 生成:脂肪酸β-氧化所生成的乙酰辅酶A在肝中氧化不完全,二分子乙酰辅酶A可以缩合成乙酰乙酰辅酶A:乙酰辅酶A再与一分子乙酰辅酶A缩合成β-羟-β-甲戊二酸单酰辅酶A(HMG-CoA),后者分裂成乙酰乙酸;乙酰乙酸在肝线粒体中可还原生成β-羟丁酸,乙酰乙酸还可以脱羧生成丙酮。 氧化:乙酰乙酸和β-羟丁酸进入血液循环后送至肝外组织,β-羟丁酸首先氧化成乙酰乙酸,然后乙酰乙酸在β-酮脂酰辅酶A转移酶或乙酰乙酸硫激酶的作用下,生成乙酰乙酸内缺乏β-酮脂酰辅酶A转移酶和乙酰乙酸硫激酶,所以肝中产生酮体要在肝外组织才能被

生物化学超全复习资料

第一章蛋白质的结构与功能 1.20种基本氨基酸中,除甘氨酸外,其余都是L-α-氨基酸. 2.支链氨基酸(人体不能合成:从食物中摄取):缬氨酸亮氨酸异亮氨酸 3.两个特殊的氨基酸:脯氨酸:唯一一个亚氨基酸甘氨酸:分子量最小,α-C原子不是手性C原子,无旋光性. 4.色氨酸:分子量最大 5.酸性氨基酸:天冬氨酸和谷氨酸碱性氨基酸:赖氨酸、精氨酸和组氨酸 6.侧链基团含有苯环:苯丙氨酸、酪氨酸和色氨酸 7.含有—OH的氨基酸:丝氨酸、苏氨酸和酪氨酸 8.含有—S的氨基酸:蛋氨酸和半胱氨酸 9.在近紫外区(220—300mm)有吸收光能力的氨基酸:酪氨酸、苯丙氨酸、色氨酸 10.肽键是由一个氨基酸的α—羧基与另一个氨基酸的α—氨基脱水缩合形成的酰胺键 11.肽键平面:肽键的特点是N原子上的孤对电子与碳基具有明显的共轭作用。使肽键中的C-N键具有部分双键性质,不能自由旋转,因此。将C、H、O、N原子与两个相邻的α-C 原子固定在同一平面上,这一平面称为肽键平面 12.合成蛋白质的20种氨基酸的结构上的共同特点:氨基都接在与羧基相邻的α—原子上 13.是天然氨基酸组成的是:羟脯氨酸、羟赖氨酸,但两者都不是编码氨基酸 14.蛋白质二级结构的主要形式:①α—螺旋②β—折叠片层③β—转角④无规卷曲。α—螺旋特点:以肽键平面为单位,α—C为转轴,形成右手螺旋,每3.6个氨基酸残基螺旋上升一圈,螺径为0.54nm,维持α-螺旋的主要作用力是氢键 15.举例说明蛋白质结构与功能的关系 ①蛋白质的一级结构决定它的高级结构 ②以血红蛋白为例说明蛋白质结构与功能的关系:镰状红细胞性贫血患者血红蛋白中有一个氨基酸残基发生了改变。可见一个氨基酸的变异(一级结构的改变),能引起空间结构改变,进而影响血红蛋白的正常功能。但一级结构的改变并不一定引起功能的改变。 ③以蛋白质的别构效应和变性作用为例说明蛋白质结构与功能的关系:a.别构效应,某物质与蛋白质结合,引起蛋白质构象改变,导致功能改变。协同作用,一个亚基的别构效应导致另一个亚基的别构效应。氧分子与Hb一个亚基结合后引起亚基构象变化的现象即为Hb的别构(变构)效应。蛋白质空间结构改变随其功能的变化,构象决定功能。b.变性作

贝克曼dxc600全自动生化分析仪操作规程

1.目的:规范贝克曼DXC600操作 2.适用范围:贝克曼DXC600检测过程 3.支持性文件:《全国临床检验操作规程》(第三版)、《临床检验操作规程编写要求》(WS/T227-2002) 4.操作规程: Ⅰ仪器开机程序 1.开机运行 开机检查MC部分试剂量是否充足,真空压力,水压,空气压力是否处在正常范围。 注意事项:日程维护保养(详见贝克曼保养手册) 例:每日保养工作:开机前用70%酒精擦洗试剂针和搅拌针。 2.安装试剂 a.首先检查试剂状态。在主菜单选定Rgts/Cal。 b.安装试剂 从主菜单选择Rgts/Cal,显示试剂状态屏幕 ↓ 点击试剂名称旁的Pos(1,2,3……),选定试剂放置的位置 ↓ 按F1 Load键,打开试剂舱闸门 ↓ 放入试剂,扫描试剂条码,关闭试剂舱闸门 ↓ 仪器自动检测试剂液面、较准日期等,并显示相应信息。 注意事项: a.AST、ALT、CK试剂需预处理:步骤将C孔试剂全部加打入A孔然后充分混匀。b.TBIL试剂需预处理:将C孔试剂吸取200微升到B孔然后充分混匀。 Ⅱ样品前运行程序 1.清除昨天的测试结果:

选Sample ↓ 选Clear F7 ↓ 输入昨天的日/月/年 ↓ 确定,即清除样品结果 2.冲洗仪器管道: 选Utils ↓ 选Prime F1 ↓ Prime all,清洗5次 Ⅲ仪器校准程序 定标: 选择Rgts/Cal,显示试剂状态屏幕 ↓ 点击试剂名称旁的Pos(1,2,3……),选择需要定标的项目 ↓ 按F7 Assign,选择定标液的类型,并输入试剂架号及位置 ↓ Cancel退出保存,放入定标液架,RUN。 注意事项: a.注有“*”的试剂都需要定标 b.K、Na、Cl、Ca离子项目每隔24小时需要定标一次。 C.贝克曼原装试剂校准周期严格参照贝克曼试剂说明书规定。 *如有项目校准失败必须查找分析原因并要快速解决问题* Ⅳ生化室内质控 取贝克曼高低两个浓度水平质控品,室温放置10-20分钟,摇匀后进行测定,随后将质控值输入质控分析软件进行质控分析。要质控在控后才能开机检测病人标本。 每天做二次质控,开机运行后做一次,中午仪器运行时再做一次。 注意事项: 如有项目失控首先要根该项目的失控类型判断是系统误差还是随机误差引起的,再查找失控原因,解决问题,最后必需重做质控在控后才能做该项目。 Ⅴ样本运行程序

生物化学知识点总整理

一、蛋白质 1.蛋白质的概念:由许多氨基酸通过肽键相连形成的高分子含氮化合物,由C、H、O、N、S元素组成,N的含量为16%。 2.氨基酸共有20种,分类:非极性疏水R基氨基酸、极性不带电荷R基氨基酸、带正电 荷R基氨基酸(碱性氨基酸)、带负电荷R基氨基酸(酸性氨基酸)、芳香族氨基酸。 3.氨基酸的紫外线吸收特征:色氨酸和酪氨酸在280纳米波长附近存在吸收峰。 4.氨基酸的等电点:在某一PH值条件下,氨基酸解离成阳离子和阴离子的趋势及程度相同,溶液中氨基酸的净电荷为零,此时溶液的PH值称为该氨基酸的等电点;蛋白质等电点: 在某一PH值下,蛋白质的净电荷为零,则该PH值称为蛋白质的等电点。 5.氨基酸残基:氨基酸缩合成肽之后氨基酸本身不完整,称为氨基酸残基。 6.半胱氨酸连接用二硫键(—S—S—) 7.肽键:一个氨基酸的α-羧基与另一个氨基酸α-氨基脱水缩合形成的化学键。 8.N末端和C末端:主链的一端含有游离的α氨基称为氨基端或N端;另一端含有游离的 α羧基,称为羧基端或C端。 9.蛋白质的分子结构:(1)一级结构:蛋白质分子内氨基酸的排列顺序,化学键为肽键和二硫键;(2)二级结构:多肽链主链的局部构象,不涉及侧链的空间排布,化学键为氢键, 其主要形式为α螺旋、β折叠、β转角和无规则卷曲;(3)三级结构:整条肽链中,全部氨基 酸残基的相对空间位置,即肽链中所有原子在三维空间的排布位置,化学键为疏水键、离子键、氢键及范德华力;(4)四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和 相互作用。 10.α螺旋:(1)肽平面围绕Cα旋转盘绕形成右手螺旋结构,称为α螺旋;(2).螺旋上升一圈,大约需要3.6个氨基酸,螺距为0.54纳米,螺旋的直径为0.5纳米;(3).氨基酸的R基分布在 螺旋的外侧;(4).在α螺旋中,每一个肽键的羰基氧与从该羰基所属氨基酸开始向后数第五个氨基酸的氨基氢形成氢键,从而使α螺旋非常稳定。 11.模体:在许多蛋白质分子中可发现两个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,被称为模体。 12.结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区域,折叠得较为紧密,各行使其功能,称为结构域。 13.变构效应:蛋白质空间结构的改变伴随其功能的变化,称为变构效应。 14.蛋白质胶体结构的稳定因素:颗粒表面电荷与水化膜。 15.什么是蛋白质的变性、复性、沉淀?变性与沉淀关系如何?导致蛋白质的变性因素?举 例说明实际工作中应用和避免蛋白质变性的例子? 蛋白质的变性:在理化因素的作用下,蛋白质的空间构象受到破坏,其理化性质发生改变,生物活性丧失,其实质是蛋白质的次级断裂,一级结构并不破坏。 蛋白质的复性:当变性程度较轻时,如果除去变性因素,蛋白质仍能恢复或部分恢复其原 来的构象及功能,这一现象称为蛋白质的复性。

海南大学生物化学复习资料

蛋白质的高级结构即蛋白质的构象问题。(构型的改变伴随着共价键的短裂和重新形成,构象的改变不需要共价键的短裂和重新形成。) 肽键C-N键介于单键和双键之间,具有部分双键性质,不能自由旋转,其中绝大多数都形成刚性的酰胺平面(由肽键周围的6个原子组成的刚性平面)结构。虽是单键却有双键性质,周边六个原子在同一平面上,前后两个a-carbon在对角(trans) α-螺旋结构的主要特点(P53): 1)肽链中的酰胺平面绕Cα相继旋转一定角度形成α-螺旋,并盘绕前进。每隔3.6个氨基酸残基,螺旋上升一圈;每圈间距0.54nm,即每个氨基酸残基沿螺旋中心轴上升0.15nm,旋转100°。 2)螺旋体中所有氨基酸残基侧链都伸向外侧;肽链上所有的肽键都参与氢键的形成,链中的全部C=O和N-H几乎都平行于螺旋轴,氢键几乎平行于中心轴; 3)绝大多数天然蛋白质都是右手螺旋。每个氨基酸残基的N-H都与前面第四个残基C=O形成氢键。 侧链在a-螺旋结构中的作用: 4)* α-螺旋遇到Pro就会被中断而拐弯,因为脯氨酸是亚氨基酸。 * R为Gly时,由于Ca上有2个氢,使Ca-C、Ca-N的转动的自由度很大,即刚性很小,所以使螺旋的稳定性大大降低。 * 带相同电荷的氨基酸残基连续出现在肽链上时,螺旋的稳定性降低。 β-折叠是由两条或多条伸展的多肽链靠氢键联结而成的锯齿状片状结构。侧链基团与Cα间的键几乎垂直于折叠平面,R基团交替地分布于片层平面两侧。 ①β-折叠分平行式(N端在同一端。氨基酸之间沿轴相距0.325nm)和反平行式(N端不在同一端。氨基酸之间沿轴相距0.35nm),后者更为稳定。 ②维持β-折叠结构稳定性的力——氢键由一条链上的羰基和另一条链上的氨基之间形成,即氢键是在链与链之间形成的。 β-转角存在于球状蛋白中,β-转角都在蛋白质分子的表面。其特点是肽链回折180°,使得氨基酸残基的C=O和与第四个残基的N-H形成氢键。 无规则卷曲是指没有一定规律的松散肽链结构。酶的功能部位常常处于这种构象区域。无规卷曲常出现在α-螺旋与α-螺旋、α-螺旋与β-折叠、β-折叠与β-折叠之间。它是形成蛋白质三级结构所必需的。 ⑶超二级结构指蛋白质中相邻的二级结构单位(即单个α-螺旋或β-转角、β折叠)组合在一起,形成有规则的在空间上能辩认的二级结构组合体。基本组合形式为αα,βαβ,βββ 结构域指多肽链在二级结构或超二级结构的基础上形成三级结构的局部折叠区,它是相对独立的紧密球状实体,称为结构域(domain)或功能域。结构域之间有一段肽链相连——铰链区;各个结构域可以相似或不相同;结构域一般为酶活性中心 ⑷三级结构指的是多肽链在二级结构、超二级结构和结构域的基础上,主链构象和侧链构象相互作用,进一步盘曲折叠形成球状分子结构。球状蛋白的三级的结构特怔:蛋白质的三级结构具有明显的折叠层次;大多数非极性侧链埋在分子部,形成疏水核;而极性侧链在分子表面,形成亲水面;分子表面往往有一个陷的空隙,它常常是蛋白质的活性中心。 维持三级结构的作用力:二硫键——共价键;(疏水作用,氢键,离子键,德华力)——非共价键(次级键) 肌红蛋白由—条多肽链和一个血红素(heme)辅基构成,分子量为16700,含153个氨基酸残基。血红素能与O2,CO,NO,H2S结合 ⑸四级结构由两条或两条以上具有三级结构的多肽链聚合而成、有特定三维结构的蛋白质构象。每条多肽链又称为亚基。 血红蛋白由四条多肽链形成,是一种寡聚蛋白质。这四条链主要通过非共价键相互作用缔合在一起。血红蛋白分子上有四个氧的结合部位,因为每条链上含有一个血红素辅基。 维持四级结构的作用力:疏水作用,氢键,离子键,德华力 9、蛋白质结构与功能关系 1)一级结构与功能的关系 ①一级结构与细胞进化以细胞色素C为例:细胞色素C广泛存在于真核生物细胞的线粒体中,是一种含有血红素辅基的单链蛋白质。在生物氧化时,细胞色素C在呼吸链的电子传递系统中起传递电子的作用,使血红素上铁原子的价数发生变化。在分子进化过程中,细胞色素C分子中保持氨基酸残基不变的区域称为保守部位。保守部位的氨基酸都是细胞色素C完成其生物学功能所必需的。 ②一级结构变异与分子病所谓分子病是指由于遗传基因突变导致蛋白分子中某些氨基酸残基被更换所造成的一种遗传病。镰刀状细胞贫血病是因病人的红细胞在氧气不足的情况下变形而呈镰刀状。Glu 和Val 分子的侧链在性质上有很大的不同。Glu 侧链带负电荷,而Val侧链是一个非极性基团,所以使得HbS分子表面的负电荷减少,这种变化使患者的血红蛋白容易发生聚集并形成杆状多聚体,这就是导致红细胞变形的原因。

生物化学复习资料

生物化学 一、名词解释 1.蛋白质变性与复性: 蛋白质分子在变性因素的作用下,高级构象发生变化,理化性质改变,失去生物活性的现象称为蛋白质的变性作用。 变性蛋白质在除去变性因素后,可缓慢地重新自发折叠成原来构象,并恢复原有的理化性质和生物活性,这种现象称为蛋白质的复性。 2.盐析与盐溶: 在蛋白质的水溶液中,加入大量高浓度的强电解质如硫酸铵、氯化钠、硝酸铵等,使蛋白质凝聚而从溶液中析出的现象叫盐析。 在蛋白质的水溶液中,加入低浓度的盐离子,会使蛋白质分子散开,溶解性增大的现象叫盐溶。 3.激素与受体: 激素是指机体内一部分细胞产生,通过扩散、体液运送至另一部分细胞,并起代谢调节控制作用的一类微量化学信息分子。 受体是指细胞中能识别特异配体(神经递质、激素、细胞因子)并与其结合,从而引起各种生物效应的分子,其化学本质为蛋白质。 4.增色效应与减色效应: 增色效应是指DNA变性后,溶液紫外吸收作用增强的效应。 减色效应是指DNA复性过程中,溶液紫外吸收作用减小的效应。 5.辅酶与辅基: 根据辅因子与酶蛋白结合的紧密程度分为辅酶和辅基, 与酶蛋白结合较松、用透析法可以除去的辅助因子称辅酶。 与酶蛋白结合较紧、用透析法不易除去的辅因子称辅基。 6.构型与构象: 构型是指一个分子由于其中各原子特有的固定空间排布,使该分子所具有的特定的立体化学形式。 构象是指分子中,不改变共价键结构,仅单键周围的原子旋转所产生的空间排布。即分子中原子的三维空间排列称为构象。 7.α-螺旋与β-折叠: α-螺旋是指多肽链的主链原子沿一中心轴盘绕,借助链内氢键维持的右手螺旋的稳定构象。

β-折叠是指两条或多条几乎完全伸展的多肽链(或同一肽链的不同肽段)侧向聚集在一起,相邻肽链主链上的NH和C=0之间形成氢链,这样的多肽构象即β-折叠。 8.超二级结构与结构域: 超二级结构是指蛋白质中相邻的二级结构单位(α-螺旋、β-折叠、β-转角及无规卷曲)组合在一起,形成有规则的在空间上能辩认的二级结构组合体。又称为花样或模体称为基元。 结构域是指多肽链在二级结构或超二级结构的基础上形成三级结构的局部折叠区,它是相对独立的紧密球状实体。 9.酶原与酶原激活: 酶原是指某些活性酶的无活性前体蛋白。 酶原激活是指无活性的酶原形成活性酶的过程。 10.Tm值与Km值: 通常把增色效应达到一半时的温度或DNA双螺旋结构失去一半时的温度叫DNA的熔点或熔解温度,用Tm 表示。 Km是酶促反应动力学中间产物理论中的一个常数,Km值的物理意义在于它是当酶促反应速度达到最大反应速度一半时的底物浓度。 二、填空题 1、20世纪50年代,Chargaff等人发现各种生物体DNA碱基组成有种的特异性,而没有组织的特异性。 2、DNA变性后,紫外吸收能力增强,生物活性丧失。 3、构成核酸的单体单位称为核苷酸,构成蛋白质的单体单位氨基酸。 4、嘌呤核苷有顺式、反式两种可能,但天然核苷多为反式。 5、X射线衍射证明,核苷中碱基与糖环平面相互垂直。 6、双链DNA热变性后,或在pH2以下,或pH12以上时,其OD260增加,同样条件下,单链DNA的OD260不变。 7、DNA样品的均一性愈高,其熔解过程的温度范围愈窄。 8、DNA所处介质的离子强度越低,其熔解过程的温度范围越宽。熔解温度越低。 9、双链DNA螺距为3.4nm,每匝螺旋的碱基数为10,这是B型DNA的结构。 10、NAD+,FAD和CoA都是的腺苷酸(AMP)衍生物。 11、酶活力的调节包括酶量的调节和酶活性的调节。 12、T.R.Cech和S.Altman因各自发现了核酶而共同获得1989年的诺贝尔化学奖。 13、1986年,R.A.Lerner和P.G.Schultz等人发现了具有催化活性的抗体,称为抗体酶。 14、解释别构酶作用机理的假说有齐变模型和序变模型。 15、固定化酶的理化性质会发生改变,如Km增大,Vmax减小等。 16、脲酶只作用于尿素,而不作用于其他任何底物,因此它具有绝对专一性,甘油激酶可以催化甘油磷酸

生物化学复习资料

什么是蛋白质的变性作用?引起蛋白质变性的因素有哪些?有何临床意义?在某些理化因素作用下, 使蛋白质严格的空间结构破坏,引起蛋白质理化性质改变和生物学活性丧失的现象称为蛋白质变性。引起蛋白质变性的因素有:物理因素,如紫外线照射、加热煮沸等;化学因素,如强酸、强碱、重金属盐、有机溶剂等。临床上常常利用加热或某些化学士及使病原微生物的蛋白质变性,从而达到消毒的目的,在分离、纯化或保存活性蛋白质制剂时,应采取防止蛋白质变性的措施。 比较蛋白质的沉淀与变性 蛋白质的变性与沉淀的区别是:变性强调构象破坏,活性丧失,但不一定沉淀;沉淀强调胶体溶液稳定因素破坏,构象不一定改变,活性也不一定丧失,所以不一定变性。 试述维生素B1的缺乏可患脚气病的可能机理 在体内Vit B1 转化成TPP,TPP 是α-酮酸氧化脱羧酶系的辅酶之一,该酶系是糖代谢过程的关键酶。维生素B1 缺乏则TPP 减少,必然α-酮酸氧化脱羧酶系活性下降,有关代谢反应受抑制,导致ATP 产生减少,同时α-酮酸如丙酮酸堆积,使神经细胞、心肌细胞供能不足、功能障碍,出现手足麻木、肌肉萎缩、心力衰竭、下肢水肿、神经功能退化等症状,被通称为“脚气病”。 简述体内、外物质氧化的共性和区别 共性①耗氧量相同。②终产物相同。③释放的能量相同。

区别:体外燃烧是有机物的C 和H 在高温下直接与O2 化合生成CO2 和H2O,并以光和热的形式瞬间放能;而生物氧化过程中能量逐步释放并可用于生成高能化合物,供生命活动利用。 简述生物体内二氧化碳和水的生成方式 ⑴CO2 的生成:体内CO2 的生成,都是由有机酸在酶的作用下经脱羧反应而生成的。根据释放CO2 的羧基在有机酸分子中的位置不同,将脱羧反应分为: α-单纯脱羧、α-氧化脱羧、β-单纯脱羧、β-氧化脱羧四种方式。 ⑵水的生成:生物氧化中的H2O 极大部分是由代谢物脱下的成对氢原子(2H),经一系列中间传递体(酶和辅酶)逐步传递,最终与氧结合产生的。 试述体内两条重要呼吸链的排练顺序,并分别各举两种代谢物氧化脱氢 NADH 氧化呼吸链:顺序:NADH→FMN/(Fe-S)→CoQ→Cytb→c1→c→aa3 如异柠檬酸、苹果酸等物质氧化脱氢,生成的NADH+H+均分别进入NADH 氧化呼吸链进一步氧化,生成2.5 分子ATP。 琥珀酸氧化呼吸链:FAD·2H/(Fe-S)→CoQ→Cytb→c1→c→aa3 如琥珀酸、脂酰CoA 等物质氧化脱氢,生成的FAD·2H 均分别进入琥珀酸氧化呼吸链进一步氧化,生成1.5 分子ATP。 试述生物体内ATP的生成方式 生物体内生成ATP 的方式有两种:底物水平磷酸化和氧化磷酸化。

生物化学复习资料(人卫7版)汇总讲解

生化复习资料 第一章 一、蛋白质的生理功能 蛋白质是生物体的基本组成成分之一,约占人体固体成分的45%左右。蛋白质在生物体内分布广泛,几乎存在于所有的组织器官中。蛋白质是一切生命活动的物质基础,是各种生命功能的直接执行者,在物质运输与代谢、机体防御、肌肉收缩、信号传递、个体发育、组织生长与修复等方面发挥着不可替代的作用。 二、蛋白质的分子组成特点 蛋白质的基本组成单位是氨基酸 ?编码氨基酸:自然界存在的氨基酸有300余种,构成人体蛋白质的氨基酸只有20种,且具有自己的遗传密码。各种蛋白质的含氮量很接近,平均为16%。 ?每100mg样品中蛋白质含量(mg%):每克样品含氮质量(mg)×6.25×100。 氨基酸的分类 ?所有的氨基酸均为L型氨基酸(甘氨酸)除外。 ?根据侧链基团的结构和理化性质,20种氨基酸分为四类。 1.非极性疏水性氨基酸:甘氨酸(Gly)、丙氨酸(Ala)、缬氨酸(Val)、亮氨酸(Leu)、异亮氨酸(Ile)、苯丙氨酸(Phe)、脯氨酸(Pro)。 2.极性中性氨基酸:色氨酸(Trp)、丝氨酸(Ser)、酪氨酸(Tyr)、半胱氨酸(Cys)、蛋氨酸(Met)、天冬酰胺(Asn)、谷胺酰胺(gln)、苏氨酸(Thr)。 3.酸性氨基酸:天冬氨酸(Asp)、谷氨酸(Glu)。 4.碱性氨基酸:赖氨酸(Lys)、精氨酸(Arg)、组氨酸(His)。 ?含有硫原子的氨基酸:蛋氨酸(又称为甲硫氨酸)、半胱氨酸(含有由硫原子构成的巯基-SH)、胱氨酸(由两个半胱氨酸通过二硫键连接而成)。 ?芳香族氨基酸:色氨酸、酪氨酸、苯丙氨酸。 ?唯一的亚氨基酸:脯氨酸,其存在影响α-螺旋的形成。 ?营养必需氨基酸:八种,即异亮氨酸、甲硫氨酸、缬氨酸、亮氨酸、色氨酸、苯丙氨酸、苏氨酸、赖氨酸。可用一句话概括为“一家写两三本书来”,与之谐音。 氨基酸的理化性质 ?氨基酸的两性解离性质:所有的氨基酸都含有能与质子结合成NH4+的氨基;含有能与羟基结合成为COO-的羧基,因此,在水溶液中,它具有两性解离的特性。在某一pH环境溶液中,氨基酸解离生成的阳郭子及阴离子的趋势相同,成为兼性离子。此时环境的pH值称为该氨基酸的等电点(pI), 氨基酸带有的净电荷为零,在电场中不泳动。pI值的计算如下:pI=1/2(pK 1 + pK 2 ),(pK 1 和pK 2 分 别为α-羧基和α-氨基的解离常数的负对数值)。 ?氨基酸的紫外吸收性质 ?吸收波长:280nm ?结构特点:分子中含有共轭双键 ?光谱吸收能力:色氨酸>酪氨酸>苯丙氨酸 ?呈色反应:氨基酸与茚三酮水合物共加热,生成的蓝紫色化合物在570nm波长处有最大吸收峰;蓝紫色化合物=(氨基酸加热分解的氨)+(茚三酮的还原产物)+(一分子茚三酮)。 肽的相关概念 ?寡肽:小于10分子氨基酸组成的肽链。 ?多肽:大于10分子氨基酸组成的肽链。 ?氨基酸残基:肽链中因脱水缩合而基团不全的氨基酸分子。 ?肽键:连接两个氨基酸分子的酰胺键。 ?肽单元:参与肽键的6个原子Cα1、C、O、N、H、Cα2位于同一平面,组成肽单元。

贝克曼流水线PP的介绍

自动化流水线 所属系列:贝克曼 PP 实验室自动化产品 美国贝克曼库尔特公司的实验室自动化系统是目前市场上唯一具有完备的前处理和后处理系统的生产厂家,完整的自动化流水线和相应的信息系统拥有全世界唯一符合NCCLS实验室自动化系统全部标准的荣耀。在美国实验室自动化产品市场中占有率第一,达到了55%(第二名仅为27%,CAP TODAY,2008年3月)。自从1994年第一条自动化流水线安装以来,贝克曼库尔特公司为临床实验室提供了最全面、最有质量保证的产品和服务。 贝克曼库尔特流水线采用创新的整体解决方案,使流程简单化、自动化,消除“瓶颈”,提高效率,保证质量,为临床提供及时、可靠、稳定的检测结果。使临床实验室达到国际一流水平。 简而言之,可从以下方面获得最大的收益: λ简化测试步骤,消除耗时、易出错的人工操作 λ降低潜在标本识别错误 λ有效的进行人力资源分配 λ缩短出报告时间(TAT),减少可变因素为临床提供最及时的检测结果 λ对当今信息技术完美应用 λ提供新的测试参数和可扩展的测试项目菜单 λ将各种新的特点如真正的随机任选上样,自动重检和折返测试,以及自动数据解释

进行完美结合 λ提高检测的连续性和可靠性,获得最高的生产效率 λ消除操作中的出错机会,提高病人安全性,减少医疗纠纷 λ提高管理质量,同时增加实验人员的生物安全性 整体特点: 完整性系统性: 具有完整的自动化流水线和相应的信息系统,是目前市场上唯一具有完备的前处理和后处理系统的生产厂家。 灵活性:根据实验室布局、场地进行各种方式的连接,达到最大化的美观和实用。并可随着发展的需要进行扩充。 智能化:在线和离线两种操作模式。急诊样品随时插入、优先分析。实现智能化自动重检、追加、反射项目的检测。 完善的售前、售后服务:从流程的分析、设计,仪器的配置、安装、调试,流水线的使用、培训,到售后维护保养、评估。贝克曼库尔特将提供全程一系列的高品质服务。 实验室自动化给您带来…… 您的管理目标是顺畅的工作流程, 缩短样品周转时间(TAT)医生更快速的得到更准确的检测报告, 提高工作人员的效率。 下图表明使用我司的实验室自动化产品将简化70%的操作步骤,对改善检验科的工作流程产生了超乎想象的影响力。 简化无效步骤加强增值步骤 无效率的步骤:等待 " 1.传送 " 2.常规步骤--样品收集、分类、离心、开盖、上样、存储样品 增值步骤:严格评价结果λ " 1.检查--样品外观 " 2.判断--复检、REFLEX检测

生物化学深刻复习资料(全)

生物化学复习资料 第一章蛋白质化学 第一节蛋白质的基本结构单位——氨基酸 凯氏定氮法:每克样品蛋白质含量(g)=每克样品中含氮量x 6.25 氨基酸结构通式: 蛋白质是由许多不同的α-氨基酸按一定的序列通过肽键缩合而成的具有生物学功能的生物大分子。 氨基酸分类:(1)脂肪族基团:丙氨酸、缬氨酸、亮氨酸、异亮氨酸、甘氨酸、脯氨酸(2)芳香族基团:苯丙氨酸、色氨酸、酪氨酸(3)含硫基团:蛋氨酸(甲硫氨酸)、半胱氨酸(4)含醇基基团:丝氨酸、苏氨酸(5)碱性基团:赖氨酸、精氨酸、组氨酸(6)酸性基团:天冬氨酸、谷氨酸(7)含酰胺基团:天冬酰胺、谷氨酰胺 必需氨基酸(8种):人体必不可少,而机体内又不能合成,必需从食物中补充的氨基酸。蛋氨酸(甲硫氨酸)、缬氨酸、赖氨酸、异亮氨酸、苯丙氨酸、亮氨酸、色氨酸、苏氨酸 氨基酸的两性性质:氨基酸可接受质子而形成NH3+,具有碱性;羧基可释放质子而解离成COO-,具有酸性。这就是氨基酸的两性性质。 氨基酸等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH值。 蛋白质中的色氨酸和酪氨酸两种氨基酸具有紫外吸收特性,在波长280nm处有最大吸收值。镰刀形细胞贫血:血红蛋白β链第六位上的Glu→Val替换。 第二节肽 肽键:一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水综合而形成的酰胺键叫肽键。肽键是蛋白质分子中氨基酸之间的主要连接方式,它是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基缩合脱水而形成的酰胺键。 少于10个氨基酸的肽称为寡肽,由10个以上氨基酸形成的肽叫多肽。 谷胱甘肽(GSH)是一种存在于动植物和微生物细胞中的重要三肽,含有一个活泼的巯基。参与细胞内的氧化还原作用,是一种抗氧化剂,对许多酶具有保护作用。 化学性质:(1)茚三酮反应:生产蓝紫色物质(2)桑格反应 第三节蛋白质的分子结构 蛋白质的一级结构:是指氨基酸在肽链中的排列顺序。 蛋白质的二级结构:是指蛋白质分子中多肽链本身的折叠方式。二级结构有α-螺旋、β-折叠、β-转角和无规则卷曲。 蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。 蛋白质的四级结构:指数条具有独立的三级结构的多肽链通过非共价键相互连接而成的聚合体结构。 维持蛋白质一级结构的化学键有肽键和二硫键,维持二级结构靠氢键,维持三级结构和四级结构靠次级键,其中包括氢键、疏水键、离子键和范德华力。 第四节蛋白质的重要性质书P16 蛋白质的等电点:当蛋白质解离的阴阳离子浓度相等即净电荷为零,此时介质的pH即为蛋白质的等电点。

鲁东大学生物化学期末复习资料试题大题答案

蛋白质结构与功能的关系解答一 (1)蛋白质一级结构与功能的关系 ①一级结构是空间构象的基础 蛋白质一级结构决定空间构象,即一级结构是高级结构形成的基础。只有具有高级结构的蛋白质才能表现生物学功能。实际上很多蛋白质的一级结构并不是决定蛋白质空间构象的惟一因素。除一级结构、溶液环境外,大多数蛋白质的正确折叠还需要其他分子的帮助。这些参与新生肽折叠的分子,一类是分子伴侣,另一类是折叠酶。 ②一级结构是功能的基础 一级结构相似的多肽或蛋白质,其空间构象和功能也相似。相似的一级结构具有相似的功能,不同的结构具有不同的功能,即一级结构决定生物学功能。 ③蛋白质一级结构的种属差异与分子进化 对于不同种属来源的同种蛋白质进行一级结构测定和比较,发现存在种属差异。蛋白质一定的结构执行一定的功能,功能不同的蛋白质总是有不同的序列。如果一级结构发生变化,其蛋白质的功能可能发生变化。 ④蛋白质的一级结构与分子病 蛋白质的氨基酸序列改变可以引起疾病,人类有很多种分子病已被查明是某种蛋白质缺乏或异常。这些缺损的蛋白质可能仅仅有一个氨基酸发生异常所造成的,即所为的分子病。如镰状红细胞贫血症(HbS)。 (2)蛋白质高级结构与功能的关系 ①高级结构是表现功能的形式蛋白质一级结构决定空间构象,只有具有高级结构的蛋白质才能表现出生物学功能。 ②血红蛋白的空间构象变化与结合氧

血红蛋白(Hb)是由α2β2组成的四聚体。每个亚基的三级结构与肌红蛋白(Mb)相似,中间有一个疏水“口袋”,亚铁血红素位于“口袋”中间,血红素上的Fe2+能够与氧进行可逆结合。当第一个O2与Hb结合成氧合血红蛋白(HbO2)后,发生构象改变犹如松开了整个Hb分子构象的“扳机”,导致第二、第三和第四个O2很快的结合。这种带O2的Hb亚基协助不带O2亚基结合氧的现象,称为协同效应。O2与Hb结合后引起Hb构象变化,进而引起蛋白质分子功能改变的现象,称为别构效应。小分子的O2称为别构剂或协同效应剂。Hb则称为别构蛋白。 ③构象病因蛋白质空间构象异常变化——相应蛋白质的有害折叠、折叠不能,或错误折叠导致错误定位引起的疾病,称为蛋白质构象病。其中朊病毒病就是蛋白质构象病中的一种。 蛋白质结构与功能的关系解答二 (一)蛋白质一级结构与功能的关系要明白三点: 1.一级结构是空间构象和功能的基础,空间构象遭破坏的多肽链只要其肽键未断,一级结构未被破坏,就能恢复到原来的三级结构,功能依然存在。 2.即使是不同物种之间的多肽和蛋白质,只要其一级结构相似,其空间构象及功能也越相似。 3.物种越接近,其同类蛋白质一级结构越相似,功能也相似。 但一级结构中有些氨基酸的作用却是非常重要的,若蛋白质分子中起关键作用的氨基酸残基缺失或被替代,都会严重影响其空间构象或生理功能,产生某种疾病,这种由蛋白质分

相关文档
最新文档