51单片机复位电路有关问题

51单片机复位电路有关问题
51单片机复位电路有关问题

想问一下单片机复位电路问题

复位过程我明白,RST接高电平复位,接低电平单片机正常工作

但电路连接不太理解什么意思,

想知道图中电解电容的作用,既然是按键高电平复位为什么要加电解电容呢不加可以吗如果一定要加原因是什么

另外想知道电容作用是隔直流通交流,是绝对的直流不通过还是什么充电过程无电流放电过程有电流,求指教

我认为绛红的蓝同学说的不太好。

电容确实可以起到按键去除抖动的作用,但是这里的电容还有一个更重要的作用就是上电复位,因为考虑到芯片刚刚上电时由于供电不稳定而做出错误的计算,所以增加一个上电复位以达到延时启动CPU的目的,使芯片能够正常工作。虽然现在很多芯片自带了上电延时功能,但是我们一般还是会增加额外的上电复位电路,提高可靠性。

上电复位是如此工作的,此时不用考虑按键和你图中1K电阻的作用。上电瞬间,电压VCC短时间内从0V上升到5V(比方说5V),这一瞬间相当于交流电,电容相当于导线,5V的电压全部加在10K电阻上,也就是说,这时RST的电平状态为高电平。但是从上电开始,电容自己就慢慢充电,其两端电压呈曲线上升,最终达到5V,也就是说其正端电位为5V,负端电位为0V,其负端也就正好是RST,此时RST为低电平,单片机开始正常工作。

添加按键是为了手动复位,一般那个1K电阻可以不加。当按键按下时,电容两端构成回路并放电,使RST端重新变为高电平,按键抬起时电容又充电使RST 变回低电平。

#

复位电路的作用

在上电或复位过程中,控制CPU的复位状态:这段时间内让CPU保持复位状态,而不是一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁兼容性能。

无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。而单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性。许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的。

基本的复位方式

单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始工作。89系列单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。当系统处于正常工作状态时,且振荡器稳定后,如果RST引脚上有一个高电平并维持2个机器周期(24个振荡周期)以上,则CPU就可以响应并将系统复位。单片机系统的复位方式有:手动按钮复位和上电复位

1、手动按钮复位

手动按钮复位需要人为在复位输入端RST上加入高电平(图1)。一般采用的办法是在RST端和正电源Vcc之间接一个按钮。当人为按下按钮时,则Vcc的+5V电平就会直接加到RST端。手动按钮复位的电路如所示。由于人的动作再快也会使按钮保持接通达数十毫秒,所以,完全能够满足复位的时间要求。

图1 图2

2、上电复位

|

AT89C51的上电复位电路如图2所示,只要在RST复位输入引脚上接一电容至Vcc端,下接一个电阻到地即可。对于CMOS型单片机,由于在RST端内部有一个下拉电阻,故可将外部电阻去掉,而将外接电容减至1μF。上电复位的工作过程是在加电时,复位电路通过电容加给RST端一个短暂的高电平信号,此高电平信号随着Vcc对电容的充电过程而逐渐回落,即RST端的高电平持续时间取决于电容的充电时间。为了保证系统能够可靠地复位,RST端的高电平信号必须维持足够长的时间。上电时,Vcc的上升时间约为10ms,而振荡器的起振时间取决于振荡频率,如晶振频率为10MHz,起振时间为1ms;晶振频率为1MHz,起振时间则为10ms。在图2的复位电路中,当Vcc掉电时,必然会使RST端电压迅速下降到0V以下,但是,由于内部电路的限制作用,这个负电压将不会对器件产生损害。另外,在复位期间,端口引脚处于随机状态,复位后,系统将端口置为全“l”态。如果系统在上电时得不到有效的复位,则程序计数器PC将得不到一个合适的初值,因此,CPU可能会从一个未被定义的位置开始执行程序。

2、积分型上电复位

常用的上电或开关复位电路如图3所示。上电后,由于电容C3的充电和反相门的作用,使RST持续一段时间的高电平。当单片机已在运行当中时,按下复位键K后松开,也能使RST为一段时间的高电平,从而实现上电或开关复位的操作。

根据实际操作的经验,下面给出这种复位电路的电容、电阻参考值。

图3中:C:=1uF,Rl=lk,R2=10k

图3 积分型上电复位电路

专用芯片复位电路:

上电复位电路在控制系统中的作用是启动单片机开始工作。但在电源上电以及在正常工作时电压异常或干扰时,电源会有一些不稳定的因素,为单片机工作的稳定性可能带来严重的影响。因此,在电源上电时延时输出给芯片输出一复位信号。上复位电路另一个作用是,监视正常工作时电源电压。若电源有异常则会进行强制复位。复位输出脚输出低电平需要持续三个(12/fc s)或者更多的指令周期,复位程序开始初始化芯片内部的初始状态。等待接受输入信号(若如遥控器的信号等)。

^

图4 上电复位电路原理图

上电复位电路原理分析

5V电源通过MC34064的2脚输入,1脚便可输出一个上升沿,触发芯片的复位脚。电解电容C13是调节复位延时时间的。当电源关断时,电解电容C13上的残留电荷通过D13和MC34064内部电路构成回路,释放掉电荷。以备下次复位启用。

四、上电复位电路的关键性器件

关键性器件有:MC34064 。

图6 内部结构框图

输入输出特性曲线:

`

上电复位电路关键点电气参数

MC34064的输出脚1脚的输出(稳定之后的输出)如下图所示:

三极管欠压复位电路

欠压复位电路工作原理(图6)w 接通电源,+5V电压从“0V”开始上升,在升至之前,稳压二极管DH03都处于截止状态,QH01(PNP管)也处于截止状态,无复位电压输出。w 当+5V电源电压高于以后,稳压二极管DH03反向击穿,将其两端电压“箝位”于。当+5V电源电压高于以后,QH01开始导通,复位电压开始形成,当+5V电源电压接近+5V时,QH01已经饱和导通,复位电压达到稳定状态。

图6 欠压复位电路图

看门狗型复位电路

看门狗型复位电路主要利用CPU正常工作时,定时复位计数器,使得计数器的值不超过某一值;当CPU 不能正常工作时,由于计数器不能被复位,因此其计数会超过某一值,从而产生复位脉冲,使得CPU恢复正常工作状态。典型应用的Watchdog复位电路如图7所示。此复位电路的可靠性主要取决于软件设计,即将定时向复位电路发出脉冲的程序放在何处。一般设计,将此段程序放在定时器中断服务子程序中。然而,有时这种设计仍然会引起程序走飞或工作不正常。原因主要是:当程序“走飞”发生时定时器初始化以及开中断之后的话,这种“走飞”情况就有可能不能由Watchdog复位电路校正回来。因为定时器中断一真在产生,即使程序不正常,Watchdog也能被正常复位。为此提出定时器加预设的设计方法。即在初始化时压入堆栈一个地址,在此地址内执行的是一条关中断和一条死循环语句。在所有不被程序代码占用的地址尽可能地用子程序返回指令RET代替。这样,当程序走飞后,其进入陷阱的可能性将大大增加。而一旦进入陷阱,定时器停止工作并且关闭中断,从而使Watchdog复位电路会产生一个复位脉冲将CPU复位。当然这种技术用于实时性较强的控制或处理软件中有一定的困难

图7 看门狗型复位电路

比较器型复位电路

比较器型复位电路的基本原理如图8所示。上电复位时,由于组成了一个RC低通网络,所以比较器的正相输入端的电压比负相端输入电压延迟一定时间。而比较器的负相端网络的时间常数远远小于正相端RC 网络的时间常数,因此在正端电压还没有超过负端电压时,比较器输出低电平,经反相器后产生高电平。复位脉冲的宽度主要取决于正常电压上升的速度。由于负端电压放电回路时间常数较大,因此对电源电压的波动不敏感。但是容易产生以下二种不利现象:(1)电源二次开关间隔太短时,复位不可靠;(2)当电源电压中有浪涌现象时,可能在浪涌消失后不能产生复位脉冲。为此,将改进比较器重定电路,如图9所示。这个改进电路可以消除第一种现象,并减少第二种现象的产生。为了彻底消除这二种现象,可以利用数字逻辑的方法与比较器配合,设计如图9所示的比较器重定电路。此电路稍加改进即可作为上电复位与看门狗复位电路共同复位的电路,大大提高了复位的可靠性。

图8 比较器型复位电路

图9 改进型比较器型复位电路

51单片机复位电路有关问题

想问一下单片机复位电路问题 复位过程我明白,RST接高电平复位,接低电平单片机正常工作 但电路连接不太理解什么意思, 想知道图中电解电容的作用,既然是按键高电平复位为什么要加电解电容呢不加可以吗?如果一定要加原因是什么? 另外想知道电容作用是隔直流通交流,是绝对的直流不通过还是什么充电过程无电流放电过程有电流,求指教 我认为绛红的蓝同学说的不太好。 电容确实可以起到按键去除抖动的作用,但是这里的电容还有一个更重要的作用就是上电复位,因为考虑到芯片刚刚上电时由于供电不稳定而做出错误的计算,所以增加一个上电复位以达到延时启动CPU的目的,使芯片能够正常工作。虽然现在很多芯片自带了上电延时功能,但是我们一般还是会增加额外的上电复位电路,提高可靠性。 上电复位是如此工作的,此时不用考虑按键和你图中1K电阻的作用。上电瞬间,电压VCC短时间内从0V上升到5V(比方说5V),这一瞬间相当于交流电,电容相当于导线,5V的电压全部加在10K电阻上,也就是说,这时RST的电平状态为高电平。但是从上电开始,电容自己就慢慢充电,其两端电压呈曲线上升,最终达到5V,也就是说其正端电位为5V,负端电位为0V,其负端也就正好是RST,此时RST为低电平,单片机开始正常工作。 添加按键是为了手动复位,一般那个1K电阻可以不加。当按键按下时,电容两端构成回路并放电,使RST端重新变为高电平,按键抬起时电容又充电使RST 变回低电平。 复位电路的作用 在上电或复位过程中,控制CPU的复位状态:这段时间内让CPU保持复位状态,而不是一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁兼容性能。 无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。而单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性。许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的。 基本的复位方式 单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始工作。89系列单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。当系统处于正常工作状态时,且振荡器稳定后,如果RST引脚上有一个高电平并维持2个机器周期(24个振荡周期)以上,则CPU就可以响应并将系统复位。单片机系统的复位方式有:手动按钮复位和上电复位 1、手动按钮复位 手动按钮复位需要人为在复位输入端RST上加入高电平(图1)。一般采用的办法是在RST端和正电源Vcc之间接一个按钮。当人为按下按钮时,则Vcc的+5V电平就会直接加到RST端。手动按钮复位的电路如所示。由于人的动作再快也会使按钮保持接通达数十毫秒,所以,完全能够满足复位的时间要求。

51单片机的若干电路原理图

51单片机的若干电路原理图 单片机 2007-10-23 20:36:31 阅读198 评论0 字号:大中小订阅 利用下面这些原理图,就可以自己动手做个简单的实验板啦~~~~ 1 外接电源供电电路及电源指示灯 在单片机实训板上为系统设计了一个外接电源供电电路,这个电源电路具备两种电源供电方式:一种是直接采用PC的USB接口5V直流电源给实训板供电,然后在电源电路中加入一个500mA电流限制的自恢复保险丝给PC的USB电源提供了保护的作用;另一种是采用小型直流稳压电源供电,输出的9V直流电源加入到电源电路中,通过LM7805稳压芯片的降压作用,给实训板提供工作所需的5V电源。 如图2.4所示为采用LM7805稳压芯片进行降压供电的电源电路。 图2.4 外接电源供电电路 同时,为了显示外接电源给实训板提供了电源,在系统中增加了电源指示灯电路,如图2.5。 发光二极管工作在正常工作状态时,流过LED的电流只需要5~10mA左右就行,在电路中采用白发红高亮LED,所以可以取5mA左右

的电流值,通过计算,可知:连接LED的限流电阻的阻值可以采用680Ω。 图2.5 电源指示灯电路 2 系统复位电路 复位是单片机的初始化操作,只要给RESET引脚加上2个机器周期以上的高电平信号,即可使单片机复位。除了进入系统的正常初始化之外,当程序运行出错或是操作错误使系统处于死锁状态时,为了摆脱死锁状态,也需要按复位键重新复位。 在系统中,为了实现上述的两项功能,采用常用的按键电平复位电路,如图2.6所示。 2.6 按键电平复位电路 从途中可以看出,当系统得到工作电压的时候,复位电路工作在上电自动复位状态,通过外部复位电路的电容充电来实现,只要Vcc

单片机复位电路参数计算

系统上电时,随着Vcc 电压由0V 增加到5V ,电容C1的上极板电位随之增加,电容的内电场增强,使C1能吸引更多的电子通过R 到达下极板,从外面看就电流通过C1 和R10入地。按电压在随着电流方向逐惭降低的原则,电流的出现会在R10端形成一大于0的电位。由于电容的充电逐渐饱和,所以电流会逐渐减小,电位也会逐渐减小。该电位的大小和持续的时间将直接影响到我们的系统能否上电复位。在AT89C51的规格书中有这么一段描述: 如果当Reset Pin 有两个机器周期的时间是高电平,那么就会系统就会被复位。 震荡频率震荡周期1 = 12*震荡周期机器周期= 所以对于12M 晶振做为“原动力”的系统来说,使系统复位的时间t 应大于: us M t 212*121 *2== 两个机器周期的时间求出来了,但是多高的电平才算是高电平呢?由AT89C51是规格书中关于其DC 特性的描述中可以知道,当Reset Pin 上的电压超过Min=0.7Vcc 时Reset Pin 就会认为是高电平。事先假设的系统电压为5V ,Vcc 在这里可以看成5V ,所以如果Reset Pin 上的电压超过0.7Vcc=3.5V ,就可以看成Reset Pin 为高电平,如果这超过3.5V 的电平持续时间超过2uS ,那么系统就会复位。 最后一步就是计算RST_H 处的电位了。不考虑流入Reset Pin 内电流,该电路就是一阶RC 电路。电容两端暂态电流与电压的关系式如下:

()()()()[]RC t C C C C U U U t U -+∞-+∞=e 因为()V U C 5=∞;()V U C 00=+;所以 ()RC t C t U --= 55 设Reset pin 电压为()t U R ,那么: ()()t U V t U C CC R -= 所以, ()RC t R t U -= 5, 当()V t U R 4.3=的时, RC t 357.0= 当且仅当 us RC t 2357.0≥=时,系统才会复位,即满足条件 610*6.5-≥RC 所以用R=1K Ω、C=22μF 符合要求

51单片机的基本端口操作

第一章51单片机的基本端口操作 主要对单片机最简系统在实际应用中的使用方法,从简单到复杂地实现单片机最简系统的基本功能。 “点亮最简单的单片机系统”从单片机原理上介绍单片机的基本组成和最简单系统的典型电路,以及有关单片机C51编程方法和例程。 “更加明亮的小灯”从功能上介绍如何使LED发光稳定,从原理上介绍单片机I/O口的电气特性和使用方法。 “定时亮灭的小灯”介绍如何使LED灯定时亮、灭,从单片机原理上介绍定时器的使用和编程方法。 “小灯亮灭的人工控制”从功能上介绍如何通过按键控制LED灯的亮灭,从单片机原理上介绍单片机中断的使用和编程方法。 先复习下Keil 51的操作。 1.1点亮最简单的单片机系统 常用MCS-51系列单片机引脚功能说明 引脚定义引脚功能功能说明 Vcc +5V电源电源电压 Vss 地电路接地端 P0.0-P0.7 通道0 8位漏极开路的双向I/O通道 P1.0-P1.7 通道1 8位拟双向I/O通道

P2.0-P2.7 通道2 8位拟双向I/O通道 P3.0 RXD 串行输入口 P3.1 TXD 串行输出口 P3.2 INT0 外部中断0输入口 P3.3 INT1 外部中断1输入口 P3.4 T0 定时器/计数器0外部时间脉冲 输入端 P3.5 T1 定时器/计数器1外部时间脉冲 输入端 P3.6 WR 外部数据存储器写脉冲 P3.7 RD 外部数据存储器读脉冲 RST/VPD 复位输入信号该引脚上有2个机器周期的高电 平可以实现复位操作,在掉电情 况下将只给片内RAM供电 ALE/PROG 地址锁存有效 信号主要作用是提供一个适当的定时信号 PSEN 程序选通有效 信号低电平时,指令寄存器的内容读到数据总线上 EA/Vpp 片选使能当保持TTL高电平时,8051执行 内部ROM的指令;当使TTL为低 电平时,从外部程序存储器取出 所有指令

单片机各种复位电路原理

单片机各种复位电路原理 复位电路的作用 在上电或复位过程中,控制CPU的复位状态:这段时间内让CPU保持复位状态,而不是 一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁 兼容性能。 无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。而单片机复位电路设 计的好坏,直接影响到整个系统工作的可靠性。许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可 靠引起的。 基本的复位方式 单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始 工作。89系列单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。当系统处于正常工作状态时,且振荡器稳定后,如果RST引脚上有一个高电平并维持2个机器周期(24个振荡周期)以上,则CPU就可以响应并将系统复位。单片机系统的复位方式有:手动按钮复位和上电复位 1、手动按钮复位 手动按钮复位需要人为在复位输入端RST上加入高电平(图1)。一般采用的办法是在RST 端和正电源Vcc之间接一个按钮。当人为按下按钮时,则Vcc的+5V电平就会直接加到RST端。手动按钮复位的电路如所示。由于人的动作再快也会使按钮保持接通达数十毫秒, 所以,完全能够满足复位的时间要求。

图1 图2 2 、上电复位 AT89C51 的上电复位电路如图 2 所示,只要在RST 复位输入引脚上接一电容至Vcc 端,下接一个电阻到地即可。对于CMOS 型单片机,由于在RST 端内部有一个下拉电阻,故可将外部电阻去掉,而将外接电容减至1μF。上电复位的工作过程是在加电时,复位电路通 过电容加给RST 端一个短暂的高电平信号,此高电平信号随着Vcc 对电容的充电过程而 逐渐回落,即RST 端的高电平持续时间取决于电容的充电时间。为了保证系统能够可靠地 复位,RST 端的高电平信号必须维持足够长的时间。上电时,Vcc 的上升时间约为10ms ,而振荡器的起振时间取决于振荡频率,如晶振频率为10MHz ,起振时间为1ms ;晶振频率为1MHz ,起振时间则为10ms 。在图 2 的复位电路中,当Vcc 掉电时,必然会使RST 端电压迅速下降到0V 以下,但是,由于内部电路的限制作用,这个负电压将不会对器件产生 损害。另外,在复位期间,端口引脚处于随机状态,复位后,系统将端口置为全“l态”。如果系统在上电时得不到有效的复位,则程序计数器PC 将得不到一个合适的初值,因此,CPU 可能会从一个未被定义的位置开始执行程序。 2 、积分型上电复位 常用的上电或开关复位电路如图 3 所示。上电后,由于电容C3 的充电和反相门的作用,使RST 持续一段时间的高电平。当单片机已在运行当中时,按下复位键K 后松开,也能使RST 为一段时间的高电平,从而实现上电或开关复位的操作。 根据实际操作的经验,下面给出这种复位电路的电容、电阻参考值。 图3 中:C:=1uF ,Rl=lk ,R2=10k

单片机复位电路理图解

单片机复位电路原理图解 复位电路的作用 在上电或复位过程中,控制CPU的复位状态:这段时间内让CPU保持复位状态,而不是一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁兼容性能。 无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。而单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性。许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的。 基本的复位方式 单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始工作。89系列单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。当系统处于正常工作状态时,且振荡器稳定后,如果RST引脚上有一个高电平并维持2个机器周期(24个振荡周期)以上,则CPU就可以响应并将系统复位。单片机系统的复位方式有:手动按钮复位和上电复位 1、手动按钮复位 手动按钮复位需要人为在复位输入端RST上加入高电平(图1)。一

般采用的办法是在RST端和正电源Vcc之间接一个按钮。当人为按下按钮时,则Vcc的+5V电平就会直接加到RST端。手动按钮复位的电路如所示。由于人的动作再快也会使按钮保持接通达数十毫秒,所以,完全能够满足复位的时间要求。 图1 图2 2、上电复位 AT89C51的上电复位电路如图2所示,只要在RST复位输入引脚上接一电容至Vcc端,下接一个电阻到地即可。对于CMOS型单片机,由于在RST端内部有一个下拉电阻,故可将外部电阻去掉,而将外接电

容减至1µF。上电复位的工作过程是在加电时,复位电路通过电容加给RST端一个短暂的高电平信号,此高电平信号随着Vcc对电容的充电过程而逐渐回落,即RST端的高电平持续时间取决于电容的充电时间。为了保证系统能够可靠地复位,RST端的高电平信号必须维持足够长的时间。上电时,Vcc的上升时间约为10ms,而振荡器的起振时间取决于振荡频率,如晶振频率为10MHz,起振时间为1ms;晶振频率为1MHz,起振时间则为10ms。在图2的复位电路中,当Vcc 掉电时,必然会使RST端电压迅速下降到0V以下,但是,由于内部电路的限制作用,这个负电压将不会对器件产生损害。另外,在复位期间,端口引脚处于随机状态,复位后,系统将端口置为全“l”态。如果系统在上电时得不到有效的复位,则程序计数器PC将得不到一个合适的初值,因此,CPU可能会从一个未被定义的位置开始执行程序。 2、积分型上电复位 常用的上电或开关复位电路如图3所示。上电后,由于电容C3的充电和反相门的作用,使RST持续一段时间的高电平。当单片机已在运行当中时,按下复位键K后松开,也能使RST为一段时间的高电平,从而实现上电或开关复位的操作。 根据实际操作的经验,下面给出这种复位电路的电容、电阻参考值。图3中:C:=1uF,Rl=lk,R2=10k

51单片机复位电路

51单片机复位电路 单片机在可靠的复位之后,才会从0000H地址开始有序的执行应用程序。同时,复位电路也是容易受到外部噪声干扰的敏感部分之一。因此,复位电路应该具有两个主要的功能: 1.必须保证系统可靠的进行复位; 2.必须具有一定的抗干扰的能力; 一、复位电路的RC选择 复位电路应该具有上电复位和手动复位的功能。以MCS-51单片机为例,复位脉冲的高电平宽度必须大于2个机器周期,若系统选用6MHz晶振,则一个机器周期为2us,那么复位脉冲宽度最小应为4us。在实际应用系统中,考虑到电源的稳定时间,参数漂移,晶振稳定时间以及复位的可靠性等因素,必须有足够的余量。图1是利用RC充电原理实现上电复位的电路设计。实践证明,上电瞬间RC电路充电,RESET引脚出现正脉冲。只要RESET端保持10ms以上的高电平,就能使单片机有效的复位。

二.供电电源稳定过程对复位的影响 单片机系统复位必须在CPU得到稳定的电源后进行,一次上电复位电路RC参数设计应考虑稳定的过渡时间。 为了克服直流电源稳定过程对上电自动复位的影响,可采用如下措施: (1)将电源开关安装在直流侧,合上交流电源,待直流电压稳定后再合供电开关K,如图3所示。 (2)采用带电源检测的复位电路,如图4所示。合理配置电阻R3、R4的阻值和选择稳压管DW的击穿电压,使VCC未达到额定值之前,三极管BG截止,VA点电平为低,电容器C不充电;当VCC稳定之后,DW击穿,三极管BG饱和导通,致使VA点位高电平,对电容C充电,RESET为高电平,单片机开始复位过程。当电容C上充电电压达到2V 时,RESET为低电平,复位结束。

51单片机 晶振与复位常用典型电路

51 单片机晶振与复位常用典型电路 1.内部振荡典型电路。理论上来说,振荡频率越高表示单片机运行速度越快,但同时对存储器的速度和印刷电路板的要求也就越高。如同木桶原理。同 时单片机性能的好坏,不仅与CPU 运算速度有关,而且与存储器的速度、外 设速度等都有很大关系。因此一般选用6~12MHZ。并联谐振电路对电容的值 没有严格要求,但会影响振荡器的稳定、振荡器频率高低、起振快速性等。所 以一般C1、C2 选值20~100pF,在60~70pF 时振荡器有较高的频率稳定性。陶瓷封装电容可以进一步提高温度稳定性。内部振荡典型电路 2.上电复位与按键复位典型电路。(摘自百度知道的解答)51 单片机是高电平复位,所以先看给 单片机加5V 电源(上电)启动时的情况:这时电容充电相当于短路(电容特性:通交流,隔直流,上电瞬间相当于交流),你可以认为RST 上的电压就是VCC,这是单片机就是复位状态。随着时间推移电容两端电压升高,即造成RST 上的电压降低,当低至阈值电压时,即完成复位过程。如果按下SW(按 键复位中的帽子按键),的确就是按钮把C 短路了,这时电容放电,两端电压 都是VCC,即RST 引脚电压为VCC,如果超过规定的复位时间,单片机就复 位了。当按钮弹起后,RST 引脚的电压为0,单片机处于运行状态。51 单片机复位要求是:RST 上加高电平时间大于2 个机器周期,你用的12MHz 晶振, 所以一个机器周期就是1us,要复位就加2us 的高电平即可。图中的RC 常数是51K 乘以1uF=51ms(这是百度的配图计算,能够推算R 和C 的取值,取值仅供参考,以元件常见值为佳),即51 毫秒,这个常数足够大了。上电复位典型 电路按键复位典型电路(似乎R2 小于R1 即可?)tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!

51单片机复位电路的设计

51单片机复位电路的设计- 懵懂者的日志- 网易博客(转载) 大白菜的书馆收藏 于 2011-11-12 阅读 数:1 被转藏: 1 公众 公开 原文 来源 修改如何标记批注? 51单片机复位电路的设计 默认分类2009-10-12 10:05:16 阅读1955 评论1 字号:大中小订阅 单片机在可靠的复位之后,才会从0000H地址开始有序的执行应用程序。同时,复位电路也是容易受到外部噪声干扰的敏感部分之一。因此,复位电路应该具有两个主要的功能: 1. 必须保证系统可靠的进行复位; 2. 必须具有一定的抗干扰的能力; 一、复位电路的RC选择 复位电路应该具有上电复位和手动复位的功能。以MCS-51单片机为例,复位脉冲的高电平宽度必须大于2个机器周期,若系统选用6MHz晶振,则一个机器周期为2us,那么复位脉冲宽度最小应为4us。在实际应用系统中,考虑到电源的稳定时间,参数漂移,晶振稳定时间以及复位的可靠性等因素,必须有足够的余量。图1是利用RC充电原理实现上电复位的电路设计。实践证明,上电瞬间RC电路充电,RESET引脚出现正脉冲。只要RESET端保持10ms以上的高电平,就能使单片机有效的复位。 图1 对于图1-a中的电容C两端的电压(即复位信号)是一个时间的函数:

u(t)=VCC*[1-exp(-t/RC)] 对于图1-b中的电阻R两端的电压(即复位信号)也是一个时间的函数: u(t)=VCC*exp(-t/RC) 其中的VCC为电源电压,RC为RC电路的时间常数=1K*22uF=22ms。有了这个公式,我们可以更方便的对以上电路进行透彻的分析。 图1-a中非门的最小输入高电平UIH=2.0v,当充电时间t=0.6RC时,则充电电压u(t)=0.45VCC=0.45*5V,约等于2V,其中t即为复位时间。图a中时间常数=22ms,则t=22ms*0.6=13ms。 二、复位电路的可靠性与抗干扰性分析 单片机复位电路端口的干扰主要来自电源和按钮传输线串入的噪声。这些噪声虽然不会完全导致系统复位,但有时会破坏CPU内的程序状态字的某些位的状态,对控制产生不良影响。 1.电路结构形式与抗干扰性能 以图1为例,电源噪声干扰过程示意图如图2种分别绘出了A点和B点的电压扰动波形。 有图2可以看出,图2(a)实质上是个低通滤波环节,对于脉冲宽度小于3RC的干扰有很好的抑制作用;图2(b)实质上是个高通滤波环节,对脉冲干扰没有抑制作用。由此可见,对于图1所示的两种复位电路,a的抗干扰电源噪声的能力要优于b。 2. 复位按钮传输线的影响 复位按钮一般都是安装在操作面板上,有较长的传输线,容易引起电磁感应干扰。按钮传输线应采用双绞线(具有抑制电磁感应干扰的性能),并远离交流用电设备。在印刷电路板上,单片机复位端口处并联0.01-0.1uF的高频电容,或配置使密特电路,将提高对串入噪声的抑制能力。

单片机复位电路

单片机在启动运行时都需要复位,复位使CPU 和系统中的其他部件都处于一个确定的工作状态,并从这个状态开始工作。在系统中,有时也会出现显示不正常,也为了调试方便,需要设计一个复位电路,复位电路主要完成系统的上电复位和系统在运行时用户的按键复位功能。 在此系统中单片机的复位靠外部电路实现的,AT89C51单片机有一个复位引脚RST ,高电平有效。只要RST 保持高电平,单片机便保持复位状态。此时,ALE/PSEN 、P0、P1、P2、P3口都输出高电平。RST 变成低电平后,退出复位状态,CPU 开始正常工作。需要注意的是,复位操作不影响片内RAM 的内容。 复位电路的基本功能是系统上电时提供复位信号,直至系统电源稳定后,撤销复位信号。图1为基本RC 复位电路,其电路为高电平复位有效, SW1为手动复位开关,可以实现上述基本功能。 图1基本RC 复位电路 对于图1中的电阻10R 两端的电压R u (即复位信号)是一个时间的函数。上电复位时R u 和t 有以下函数关系,波形图如图2(a )所示。 ) 2.2.3(V u C R R 10a e cc t - ?= 按键复位时设t 在0~0t 之间时SW1合上,t 0t ≥ 时,SW1断开,则R u 和t 有以下函数关系,波形图如图2(b )所示。 ) 2.2.3()1(0)1(2 1 0110 11010 110b t t e e V R R R t t e V R R R u o t t CC o t CC R ????? ??≥-+<<-+=- --τττ 其中,C R //1011?=R τ,C R 102?=τ,Vcc 为电源电压(+5V )。

单片机上电复位延时

80C51单片机的上电复位POR(Pmver On Reset)实质上就是上电延时复位,也就是在上电延时期间把单片机锁定在复位状态上。为什么在每次单片机接通电源时,都需要加入一定的延迟时间呢?分析如下。 1 上电复位时序 在单片机及其应用电路每次上电的过程中,由于电源同路中通常存在一些容量大小不等的滤波电容,使得单片机芯片在其电源引脚VCC和VSS之间所感受到的电源电压值VDD,是从低到高逐渐上升的。该过程所持续的时间一般为1~100ms(记作tsddrise)。上电延时taddrise的定义是电源电压从lO%VDD上升到90%VDD所需的时间,如图1所示。 在单片机电源电压上升到适合内部振荡电路运行的范围并且稳定下来之后,时钟振荡器开始了启动过程(具体包括偏置、起振、锁定和稳定几个过程)。该过程所持续的时间一般为1~50 ms(记作tOSC)。起振延时tOSC的定义是时钟振荡器输出信号的高电平达到Vih1所需的时间。从图1所示的实际测量图中也可以看得很清楚。这里的Vih1是单片机电气特性中的一个普通参数,代表XTALl和RST引脚上的输入逻辑高电平。例如,对于常见的单片机型号AT89C5l和AT89S5l,厂家给出的Vih1值为0.7VDD~VDD+0.5V。 从理论上讲,单片机每次上电复位所需的最短延时应该不小于treset。这里,treset等于上电延时taddrise与起振延时tOSC之和,如图1所示。从实际上讲,延迟一个treset 往往还不够,不能够保障单片机有--一个良好的工作开端。 在单片机每次初始加电时,首先投入工作的功能部件是复位电路。复位电路把单片机锁定在复位状态上并且维持一个延时(记作TRST),以便给予电源电压从上升到稳定的一个等待时间;在电源电压稳定之后,再插入一个延时,给予时钟振荡器从起振到稳定的一个等待时间;在单片机开始进入运行状态之前,还要至少推迟2个机器周期的延时,如图2所示。

CPU与单片机的复位电路的作用及基本复位方式

在上电或复位过程中,控制CPU的复位状态:这段时间内让CPU保持复位状态,而不是一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁兼容性能。 无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。而单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性。许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的。 基本的复位方式 单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始工作。89系列单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。当系统处于正常工作状态时,且振荡器稳定后,如果RST引脚上有一个高电平并维持2个机器周期(24个振荡周期)以上,则CPU就可以响应并将系统复位。单片机系统的复位方式有:手动按钮复位和上电复位。 1、手动按钮复位 手动按钮复位需要人为在复位输入端RST上加入高电平(图1)。一般采用的办法是在RST 端和正电源Vcc之间接一个按钮。当人为按下按钮时,则Vcc的+5V电平就会直接加到RST 端。手动按钮复位的电路如所示。由于人的动作再快也会使按钮保持接通达数十毫秒,所以,完全能够满足复位的时间要求。 图1 2、上电复位

AT89C51的上电复位电路如图2所示,只要在RST复位输入引脚上接一电容至Vcc端,下接一个电阻到地即可。对于CMOS型单片机,由于在RST端内部有一个下拉电阻,故可将外部电阻去掉,而将外接电容减至1?F。上电复位的工作过程是在加电时,复位电路通过电容加给RST端一个短暂的高电平信号,此高电平信号随着Vcc对电容的充电过程而逐渐回落,即RST端的高电平持续时间取决于电容的充电时间。为了保证系统能够可靠地复位,RST端的高电平信号必须维持足够长的时间。上电时,Vcc的上升时间约为10ms,而振荡器的起振时间取决于振荡频率,如晶振频率为10MHz,起振时间为1ms;晶振频率为1MHz,起振时间则为10ms。在图2的复位电路中,当Vcc掉电时,必然会使RST端电压迅速下降到0V以下,但是,由于内部电路的限制作用,这个负电压将不会对器件产生损害。另外,在复位期间,端口引脚处于随机状态,复位后,系统将端口置为全“l”态。如果系统在上电时得不到有效的复位,则程序计数器PC将得不到一个合适的初值,因此,CPU可能会从一个未被定义的位置开始执行程序。 图2 3、积分型上电复位 常用的上电或开关复位电路如图3所示。上电后,由于电容C3的充电和反相门的作用,使RST持续一段时间的高电平。当单片机已在运行当中时,按下复位键K后松开,也能使RST为一段时间的高电平,从而实现上电或开关复位的操作。 根据实际操作的经验,下面给出这种复位电路的电容、电阻参考值。 图3中:C:=1uF,Rl=lk,R2=10k

51单片机复位电路设计方案

51单片机复位电路设计 单片机在可靠的复位之后,才会从0000H地址开始有序的执行应用程序。同时,复位电路也是容易受到外部噪声干扰的敏感部分之一。因此,复位电路应该具有两个主要的功能: 1.必须保证系统可靠的进行复位; 2.必须具有一定的抗干扰的能力; 复位电路应该具有上电复位和手动复位的功能。以MCS-51单片机为例,复位脉冲的高电平宽度必须大于2个机器周期,若系统选用6MHz 晶振,则一个机器周期为2us,那么复位脉冲宽度最小应为4us。在实际应用系统中,考虑到电源的稳定时间,参数漂移,晶振稳定时间以及复位的可靠性等因素,必须有足够的余量。图1是利用RC充电 原理实现上电复位的电路设计。实践证明,上电瞬间RC电路充电,RESET引脚出现正脉冲。只要RESET端保持10ms以上的高电平,就能使单片机有效的复位。

单片机在可靠的复位之后,才会从0000H地址开始有序的执行应用程 序。同时,复位电路也是容易受到外部噪声干扰的敏感部分之一。 因此,复位电路应该具有两个主要的功能: 1.必须保证系统可靠的进行复位; 2.必须具有一定的抗干扰的能力; 一、复位电路的RC选择 复位电路应该具有上电复位和手动复位的功能。以MCS-51单片机为例,复位脉冲的高电平宽度必须大于2个机器周期,若系统选用6MHz 晶振,则一个机器周期为2us,那么复位脉冲宽度最小应为4us。在实际应用系统中,考虑到电源的稳定时间,参数漂移,晶振稳定时间以及复位的可靠性等因素,必须有足够的余量。图1是利用RC充电 原理实现上电复位的电路设计。实践证明,上电瞬间RC电路充电,RESET引脚出现正脉冲。只要RESET端保持10ms以上的高电平,就能使单片机有效的复位。

单片机的复位电路

单片机的复位 复位是单片机的初始化操作,其主要功能是将程序计数器PC初始化为0000H, 使单片机从0000H单元开始执行程序。除了进入系统的正常初始化外,当程序运行出错或操作错误使系统处于死锁状态时,也须重新启动单片机,使其复位。 单片机复位后,除P3~P0的端口锁存器被设置成FFH、堆栈指针SP设置成07H 和串行口的SBUF无确定值外,其它各专用寄存器包括程序计数器PC均被设置成00H。片内RAM不受复位的影响,上电后RAM中的内容是随机的。 单片机的复位操作有上电自动复位和手动按键复位两种方式。 上电自动复位操作要求接通电源后自动实现复位操作。如图1-1所示。 图(a)所示为最简单的复位电路。上电瞬间由于电容C上无储能,其端电压近似为零,RST获得高电平,随着电容器C的充电,RST引脚上的高电平将逐渐下降,当RST引脚上的电压小于某一数值后,单片机就脱离复位状态,进入正常工作模式。只要高电平能保持复位所需要的时间(约两个机器周期),单片机就能实现复位。 相比于图(a),图(b)所示的电路只是增加了外接二极管V D 和电阻R。其 优越性在于停电后,二极管V D 给电容C提供了快速放电通路,保证再上电时RST 为高电平,从而保证单片机可靠复位。正常工作时,二极管反偏,对电路没影响。 断电后,V CC 逐渐下降,当V CC =0时,电容C通过V D 迅速放电,恢复到无电量的初 始状态,为下次上电复位做好准备。 V D (a) (b) 图1-1 上电自动复位电路 手动按键复位要求在电源接通的条件下,用按钮开关操作使单片机复位,如图1-2所示。其工作原理为:复位键按下后,电容C通过R2放电,放电结束后,

51单片机复位电路及复位后寄存器的状态

51单片机复位电路及复位后寄存器的状态 51单片机复位电路 当MCS-5l系列单片机的复位引脚RST(全称RESET)出现2个机器周期以上的高电平时,单片机就执行复位操作。如果RST持续为高电平,单片机就处于循环复位状态。 根据应用的要求,复位操作通常有两种基本形式:上电复位和上电或开关复位。 上电复位要求接通电源后,自动实现复位操作。常用的上电复位电路如下图A中左图所示。图中电容C1和电阻R1对电源十5V来说构成微分电路。上电后,保持RST一段高电平时间,由于单片机内的等效电阻的作用,不用图中电阻R1,也能达到上电复位的操作功能,如下图(A)中右图所示。 上电或开关复位要求电源接通后,单片机自动复位,并且在单片机运行期间,用开关操作也能使单片机复位。常用的上电或开关复位电路如上图(B)所示。上电后,由于电容C3的充电和反相门的作用,使RST持续一段时间的高电平。当单片机已在运行当中时,按下复位键K 后松开,也能使RST为一段时间的高电平,从而实现上电或开关复位的操作。 根据实际操作的经验,下面给出这两种复位电路的电容、电阻参考值。 上图(A)中:Cl=10-30uF,R1=1kO 上图1.27(B)中:C:=1uF,Rl=lkO,R2=10kO 单片机复位后的状态: 单片机的复位操作使单片机进入初始化状态,其中包括使程序计数器PC=0000H,这表明程序从0000H地址单元开始执行。单片机冷启动后,片内RAM为随机值,运行中的复位操作不改变片内RAM区中的内容,21个特殊功能寄存器复位后的状态为确定值,见下表。 值得指出的是,记住一些特殊功能寄存器复位后的主要状态,对于了解单片机的初态,减少应用程序中的韧始化部分是十分必要的。 说明:表中符号*为随机状态; A=00H,表明累加器已被清零;

单片机复位电路原理介绍

单片机复位电路原理介绍 在书本上有介绍,51单片机要复位只需要在第9引脚接个高电平持续2us就可以实现,那这个过程是如何实现的呢?在单片机系统中,系统上电启动的时候复位一次,当按键按下的时候系统再次复位,如果释放后再按下,系统还会复位。所以可以通过按键的断开和闭合在运行的系统中控制其复位。 开机的时候为什么为复位 在电路图中,电容的的大小是10uf,电阻的大小是10k。所以根据公式,可以算出电容充电到电源电压的0.7倍(单片机的电源是5V,所以充电到0.7倍即为3.5V),需要的时间是10K*10UF=0.1S。也就是说在电脑启动的0.1S内,电容两端的电压时在0~3.5V增加。这个时候10K电阻两端的电压为从5~1.5V减少(串联电路各处电压之和为总电压)。所以在0.1S内,RST引脚所接收到的电压是5V~1.5V。在5V正常工作的51单片机中小于1.5V的电压信号为低电平信号,而大于1.5V的电压信号为高电平信号。所以在开机0.1S内,单片机系统自动复位(RST引脚接收到的高电平信号时间为0.1S左右)。 按键按下的时候为什么会复位 在单片机启动0.1S后,电容C两端的电压持续充电为5V,这是时候10K电阻两端的电压接近于0V,RST处于低电平所以系统正常工作。当按键按下的时候,开关导通,这个时候电容两端形成了一个回路,电容被短路,所以在按键按下的这个过程中,电容开始释放之前充的电量。随着时间的推移,电容的电压在0.1S 内,从5V释放到变为了1.5V,甚至更小。根据串联电路电压为各处之和,这个时候10K电阻两端的电压为3.5V,甚至更大,所以RST引脚又接收到高电平。单片机系统自动复位。 总结: 1、复位电路的原理是单片机RST引脚接收到2US以上的电平信号,只要保证电容的充放电时间大于2US,即可实现复位,所以电路中的电容值是可以改变的。 2、按键按下系统复位,是电容处于一个短路电路中,释放了所有的电能,电阻两端的电压增加引起的。

51单片机几种实用的复位电路设计

129 1、引言 随着模块化设计方法在各种大型工程设计中的广泛应用,由单片计算机构成的嵌入式控制系统已经成为工控领域重要的组成部分,51系列单片机凭借其结构简单、性能稳定、易于开发、种类丰富、成本较低被广泛应用于该领域。众所周知,单片机上电后要进行复位,如果复位不成功,则单片机就无法正常工作。可见,稳定、可靠的复位电路设计是设计一个优秀单片机控制系统的重要基础。本文结合作者多年的工程应用,由浅入深的讲解了几种实用的51单片机系统复位电路的设计方法及工作特性。 2、单片机系统组成及复位电路的工作原理 2.1 系统组成原理框图 图1为51系列单片机构成的小型控制系统的典型硬件原理框 图。由单片机、复位电路、时钟电路、 工作电路(总线指示灯)、电源(VCC)、地(VSS)组成。 图1 最简单的单片机控制系统组成框图[1] 其中,AT89S51为单片计算机,LED1 ̄LED8为总线工作指示灯,R1 ̄R8为总线限流电阻,C3、R9及开关构成单片机复位电路,12MHz晶体和C1、C2组成外部时钟振荡电路,VCC是电源,VSS为数字地。 2.2 单片机复位电路的工作原理 单片机复位电路的基本功能是系统上电时为单片机提供一 定脉宽(两个机器周期以上)的复位信号,直至系统电源稳定后撤销复位信号。为可靠起见,电源稳定后还要经一定的延时才撤销复位信号,以防电源开关或电源插头分合过程中引起的抖动而影响单片机的正常复位。另外在工业控制领域中,由于设备工作环境复杂,干扰源数量较多,若由单片机构成的控制系统屏蔽不够严密或者电源、地不够干净的情况下,控制系统也容易出现复位异常的现象。 一个好的复位电路在能够提供单片机复位所需要的脉宽的基础上,更应该根据使用环境的不同具有优良的适应性。 3、几种实用的51单片机复位电路设计 3.1 简单的RC复位电路设计 如下图2,是最简单的RC复位电路: 图2 单片机最简单的RC复位电路图 设计说明: (1)左图为高电平有效,右图为低电平有效;(2)电路设计简单、延时可以通过阻容调节, 驱动能力、温度适应性、抗干扰能力差; (3)适用于实验室等干净无干扰的场所。 3.2 带比较电路的复位电路设计 如下图3,是带比较电路的复位电路: 图3 带比较电路的复位电路图 设计说明: (1)当VCC*(R3/(R3+R2))=0.7V时Q1截止,使系统复位。Q1的放大作用也能改善电路的负载特性; (2)跳变门槛电压Vt受VCC影响是该电路的突出缺点,另外RC 电路对温度的适应性较差,抗干扰能力一般; (3)适用于电源固定、有独立控制空间、温差要求不严苛的场所。 3.3 带稳压的复位电路设计 如下图4,是带稳压的复位电路: 图4 带稳压的复位电路图 51单片机几种实用的复位电路设计 柳建光 李德峰 (中国电子科技集团公司第二十七研究所 河南郑州 450015) 摘要:本文结合作者多年的工程应用,根据使用环境的不同,由浅入深的讲解了几种实用的51单片机的复位电路的设计方法及工作特性。关键词:单片机 复位电路 看门狗电路中图分类号:TP311文献标识码:A 文章编号:1007-9416(2012)03-0129-02

51单片机最小系统电路介绍

51单片机最小系统电路介绍 单片机最小系统复位电路的极性电容C1的大小直接影响单片机的复位时间,一般采用10~30uF,51单片机最小系统容值越大需要的复位时间越短。 单片机最小系统晶振Y1也可以采用6MHz或者,在正常工作的情况下可以采用更高频率的晶振,51单片机最小系统晶振的振荡频率直接影响单片机的处理速度,频率越大处理速度越快。 单片机最小系统起振电容C2、C3一般采用15~33pF,并且电容离晶振越近越好,晶振离单片机越近越好 口为开漏输出,作为输出口时需加上拉电阻,阻值一般为10k。其他接口内部有上拉电阻,作为输出口时不需外加上拉电阻。 设置为定时器模式时,加1计数器是对内部机器周期计数(1个机器周期等于12个振荡周期,即计数频率为晶振频率的1/12)。计数值N乘以机器周期Tcy就是定时时间t。 设置为计数器模式时,外部事件计数脉冲由T0或T1引脚输入到计数器。在每个机器周期的S5P2期间采样T0、T1引脚电平。当某周期采样到一高电平输入,而下一周期又采样到一低电平时,则计数器加1,更新的计数值在下一个机器周期的S3P1期间装入计数器。由于检测一个从1到0的下降沿需要2个机器周期,因此要求被采样的电平至少要维持一个机器周期。当晶振频率为12MHz时,最高计数频率不超过1/2MHz,即计数脉冲的周期要大于2 ms。 标识符号地址寄存器名称 P3 0B0H I/O口3寄存器 PCON 87H 电源控制及波特率选择寄存器 SCON 98H 串行口控制寄存器 SBUF 99H 串行数据缓冲寄存器 TCON 88H 定时控制寄存器 TMOD 89H 定时器方式选择寄存器 TL0 8AH 定时器0低8位 TH0 8CH 定时器0高8位 TL1 8BH 定时器1低8位 TH1 8DH 定时器1高8位

单片机复位电路分析

单片机的时钟信号用来提供单片机片内各种微操作的时间基准,复位操作则使单片机的片内电路初始化, 使单片机从一种确定的初态开始运行。 时钟电路: 8031单片机的时钟信号通常用两种电路形式得到:内部振荡方式和外部振荡方式。 在引脚XTAL1和XTAL2外接晶体振荡器(简称晶振)或陶瓷谐振器,就构成了内部振荡方式。由于单片机内部有一个高增益反相放大器,当外接晶振后,就构成了自激振荡器并产生振荡时钟脉冲。内部振荡方式的 外部电路如下图所示。 图中,电容器Col,C02起稳定振荡频率、快速起振的作用,其电容值一般在5-30pF。晶振频率的典型值为12MH2,采用6MHz的情况也比较多。内部振荡方式所得的时钟情号比较稳定,实用电路中使用较多。外部振荡方式是把外部已有的时钟信号引入单片机内。这种方式适宜用来使单片机的时钟与外部信号保持 同步。外部振荡方式的外部电路如下图所示。 由上图可见,外部振荡信号由XTAL2引入,XTAL1接地。为了提高输入电路的驱劝能力,通常使外部信号 经过一个带有上拉电阻的TTL反相门后接入XTAL2。 基本时序单位: 单片机以晶体振荡器的振荡周期(或外部引入的时钟周期)为最小的时序单位,片内的各种微操作都以此周 期为时序基准。 振荡频率二分频后形成状态周期或称s周期,所以,1个状态周期包含有2个振荡周期。振荡频率foscl2分频后形成机器周期MC。所以,1个机器周期包含有6个状态周期或12个振荡周期。1个到4个机器周期确定一条指令的执行时间,这个时间就是指令周期。8031单片机指令系统中,各条指令的执行时间都在1 个到4个机器周期之间。 4种时序单位中,振荡周期和机器周期是单片机内计算其它时间值(例如,波特率、定时器的定时时间等)的基本时序单位。下面是单片机外接晶振频率12MHZ时的各种时序单位的大小: 振荡周期=1/fosc=1/12MHZ= 复位电路: 当MCS-5l系列单片机的复位引脚RST(全称RESET)出现2个机器周期以上的高电平时,单片机就执行复位操作。如果RST持续为高电平,单片机就处于循环复位状态。 根据应用的要求,复位操作通常有两种基本形式:上电复位和上电或开关复位。 上电复位要求接通电源后,自动实现复位操作。常用的上电复位电路如下图A中左图所示。图中电容C1和电阻R1对电源十5V来说构成微分电路。上电后,保持RST一段高电平时间,由于单片机内的等效电阻的作用,不用图中电阻R1,也能达到上电复位的操作功能,如下图(A)中右图所示。 上电或开关复位要求电源接通后,单片机自动复位,并且在单片机运行期间,用开关操作也能使单片机复位。常用的上电或开关复位电路如上图(B)所示。上电后,由于电容C3的充电和反相门的作用,使RST持

51单片机复位电路工作原理

51单片机复位电路工作原理 在书本上有介绍,51单片机要复位只需要在第9引脚接个高电平持续2us就可以实现,那这个过程是如何实现的呢?在单片机系统中,系统上电启动的时候复位一次,当按键按下的时候系统再次复位,如果释放后再按下,系统还会复位。所以可以通过按键的断开和闭合在运行的系统中控制其复位。 开机的时候为什么为复位 在电路图中,电容的的大小是10uf,电阻的大小是10k。所以根据公式,可以算出电容充电到电源电压的0.7倍(单片机的电源是5V,所以充电到0.7倍即为3.5V),需要的时间是10K*10UF=0.1S。也就是说在电脑启动的0.1S内,电容两端的电压时在0~3.5V增加。这个时候10K电阻两端的电压为从5~1.5V减少(串联电路各处电压之和为总电压)。所以在0.1S内,RST引脚所接收到的电压是5V~1.5V。在5V正常工作的51单片机中小于1.5V的电压信号为低电平信号,而大于1.5V的电压信号为高电平信号。所以在开机0.1S内,单片机系统自动复位(RST引脚接收到的高电平信号时间为0.1S左右)。 按键按下的时候为什么会复位 在单片机启动0.1S后,电容C两端的电压持续充电为5V,这是时候10K电阻两端的电压接近于0V,RST处于低电平所以系统正常工作。

当按键按下的时候,开关导通,这个时候电容两端形成了一个回路,电容被短路,所以在按键按下的这个过程中,电容开始释放之前充的电量。随着时间的推移,电容的电压在0.1S内,从5V释放到变为了1.5V,甚至更小。根据串联电路电压为各处之和,这个时候10K电阻两端的电压为3.5V,甚至更大,所以RST引脚又接收到高电平。单片机系统自动复位。 总结: 1、复位电路的原理是单片机RST引脚接收到2US以上的电平信号,只要保证电容的充放电时间大于2US,即可实现复位,所以电路中的电容值是可以改变的。 2、按键按下系统复位,是电容处于一个短路电路中,释放了所有的电能,电阻两端的电压增加引起的。

相关文档
最新文档