matlab:最小二乘法线性和非线性拟合
实验二讲稿:MATLAB拟合

YOUR LOGO
THANK YOU
汇报人:XX
汇报时间:20XX/01/01
拟合过程中要关注参数的取 值范围和物理意义
拟合结果的评价与验证
拟合效果的评估
残差分析:计算残差平方和, 评估拟合效果
诊断图:绘制诊断图,检查异 常值和拟合趋势
拟合统计量:计算拟合优度统 计量,评估拟合效果
预测误差:预测未来数据,评 估预测误差
异常值的处理
识别:通过图形或统计方法识别异常值 处理:根据实际情况选择删除或保留异常值 重新拟合:在处理异常值后重新进行拟合 验证:验证拟合结果是否符合预期
MATLAB拟合的注意事项
04
数据的预处理
数据清洗:去除异常值、缺失值和重复值 数据转换:将数据转换为适合拟合的形式,如对数转换、多项式转换等 数据缩放:将数据缩放到合适的范围,以提高拟合精度 数据分割:将数据分成训练集和测试集,以评估模型的泛化能力
拟合参数的选择
参数初始值的设定要合理
根据数据特点选择合适的拟 合函数
适用场景:当标准拟合函数无法满足需求时,可以使用自定义函数拟合
步骤:编写自定义函数,并使用MATL AB的fminsearch或fminunc等优化 函数进行拟合 注意事项:自定义函数需要符合数学函数的规范,且需要能够计算函数的 导数
MATLAB拟合的实例
03
一元线性拟合
实例数据:一元线性数据集
拟合的步骤
导入数据
设定拟合模型
执行拟合操作
评估拟合结果
MATLAB拟合的常用方法
02
多项式拟合
定义:多项式拟合是一种通过多项式逼近数据的方法,通过最小化误差平方和来求解最 佳拟合多项式
实现方式:使用MATLAB中的polyfit函数进行多项式拟合,该函数可以求解一元或多 元多项式拟合
最小二乘法matlab程序

最小二乘法matlab程序最小二乘法是一种统计模型,它可以被用来拟合一元函数数据,或者拟合非线性曲线。
它的基本思想是找到一组参数,使得拟合的曲线与实际数据的差距最小。
本文将介绍如何使用Matlab实现一个最小二乘法的程序,并与现有的一些现成的最小二乘法的matlab程序进行比较,找出其优缺点。
首先,要使用最小二乘法拟合曲线,需要准备一组输入数据,一般可以将其表示为两个向量,分别是自变量x和因变量y。
这些数据可以是由测量和实验得到的,也可以是由人工输入的,但无论如何都要确保它们的准确性。
接下来,就可以使用Matlab输入数据进行处理,用最小二乘法计算出最拟合的曲线及其参数。
具体步骤主要分为三步:第一步是计算输入数据的均值和方差,包括自变量x和因变量y的均值和方差;第二步是计算自变量x和因变量y的关系,即最小二乘拟合曲线的系数;第三步是验证拟合的曲线的准确性,如果不满意,可以重新调整参数,以获得较好的拟合效果。
此外,Matlab除了提供自带的最小二乘法函数外,还支持第三方开发者开发现成的matlab程序,用于解决最小二乘法的问题。
这些程序中有一些是开源的,另一些则是出售的。
其中开源的有LEAST,CURVEFIT,CURVEFITTOOL等,而出售的有MATLAB Curve Fitting Toolbox,Optimization Toolbox和Statistics Toolbox等。
它们的突出特点是速度快,代码简洁,容易上手,适用于多种拟合类型。
然而,各种matlab程序也有自身的缺点,最明显的就是当输入数据非常庞大时,它们的计算能力就无法跟上,速度就会变慢。
此外,使用出售的matlab程序可能相对昂贵,而且有时需要安装某些复杂的库文件,这也是一种麻烦。
因此,使用最小二乘法拟合曲线时,可以参考现有的matlab程序,也可以自己编写matlab代码,同时要考虑到程序的可靠性、效率和可行性。
本文介绍的matlab程序的最大优势是它不需要依赖第三方的软件,而且能够满足大多数用户的需求,使得最小二乘法可以在短时间内被成功运用。
matlab 最小二乘法拟合平面

matlab 最小二乘法拟合平面最小二乘法拟合平面引言:在实际应用中,经常需要通过一系列数据来拟合出最优的平面模型,以便对未知数据进行预测或者作为进一步分析的基础。
最小二乘法是一种常见的数学方法,可以用来解决拟合平面的问题。
本文旨在介绍最小二乘法的基本原理,并通过具体的案例分析来说明该方法的应用。
一、最小二乘法简介最小二乘法是通过最小化数据点到模型的垂直距离的平方和来确定模型的参数。
对于拟合平面的问题,最小二乘法可以确保平面与数据点之间的误差最小。
当误差满足高斯-马尔可夫假设时,最小二乘法能够给出无偏估计的最优解。
二、最小二乘法拟合平面的步骤1. 数据准备:收集所需的数据,并根据实际情况进行预处理,如去除异常值、归一化等。
2. 构建目标函数:用数学模型表示拟合平面,如y = ax + by + c,其中a、b和c是平面的参数。
3. 构建误差函数:将数据点到拟合平面的垂直距离作为误差函数的表达式。
4. 求解最小二乘估计:通过最小化误差函数,求解出平面的最优参数。
三、最小二乘法拟合平面的具体案例假设我们有一组二维数据点,包括x和y两个自变量和z作为因变量。
我们的目标是通过这些数据点来拟合一个平面模型,并预测出新的因变量值。
1. 数据准备:我们收集了100个数据点,每个数据点包括x、y和z三个坐标值。
为了简化问题,我们假设数据点没有异常值,也不需要进行归一化处理。
2. 构建目标函数:我们将平面模型表示为z = ax + by + c,其中a、b和c是平面的参数。
3. 构建误差函数:我们将数据点到拟合平面的垂直距离的平方作为误差函数的表达式。
假设第i个数据点的坐标为(xi, yi, zi),则误差函数可以表示为E = Σ((zi - axi - byi - c)^2)。
4. 求解最小二乘估计:通过最小化误差函数,我们可以求解出平面的最优参数。
具体而言,我们可以使用梯度下降等数值优化方法来迭代地调整参数值,使误差函数达到最小值。
matlab拟合工具箱拟合方法

matlab拟合工具箱拟合方法Matlab拟合工具箱是Matlab软件中的一个功能强大的工具箱,它提供了多种拟合方法,用于拟合数据集并找到最佳的拟合曲线。
本文将介绍Matlab拟合工具箱的几种常用的拟合方法。
一、线性拟合(Linear Fit)线性拟合是最简单和最常用的拟合方法之一。
线性拟合假设拟合曲线为一条直线,通过最小二乘法求解最佳拟合直线的斜率和截距。
线性拟合可以用于解决一些简单的线性关系问题,例如求解两个变量之间的线性关系、求解直线运动的速度等。
二、多项式拟合(Polynomial Fit)多项式拟合是一种常见的拟合方法,它假设拟合曲线为一个多项式函数。
多项式拟合可以适用于一些非线性的数据集,通过增加多项式的阶数,可以更好地拟合数据。
在Matlab拟合工具箱中,可以通过设置多项式的阶数来进行多项式拟合。
三、指数拟合(Exponential Fit)指数拟合是一种常用的非线性拟合方法,它假设拟合曲线为一个指数函数。
指数拟合可以用于拟合一些呈指数增长或指数衰减的数据集。
在Matlab拟合工具箱中,可以使用指数拟合函数来拟合数据集,并得到最佳的拟合曲线参数。
四、对数拟合(Logarithmic Fit)对数拟合是一种常见的非线性拟合方法,它假设拟合曲线为一个对数函数。
对数拟合可以用于拟合一些呈对数增长或对数衰减的数据集。
在Matlab拟合工具箱中,可以使用对数拟合函数来拟合数据集,并得到最佳的拟合曲线参数。
五、幂函数拟合(Power Fit)幂函数拟合是一种常用的非线性拟合方法,它假设拟合曲线为一个幂函数。
幂函数拟合可以用于拟合一些呈幂函数增长或幂函数衰减的数据集。
在Matlab拟合工具箱中,可以使用幂函数拟合函数来拟合数据集,并得到最佳的拟合曲线参数。
六、指数幂函数拟合(Exponential Power Fit)指数幂函数拟合是一种常见的非线性拟合方法,它假设拟合曲线为一个指数幂函数。
指数幂函数拟合可以用于拟合一些呈指数幂函数增长或指数幂函数衰减的数据集。
关于采用matlab进行指定非线性方程拟合的问题

关于采用matlab进行指定非线性方程拟合的问题(1)※1。
优化工具箱的利用函数描述LSQLIN 有约束线性最小二乘优化LSQNONNEG 非负约束线性最小二乘优化问题当有约束问题存在的时候,应该采用上面的方法代替Polyfit与反斜线(\)。
具体例子请参阅优化工具箱文档中的相应利用这两个函数的例子。
d. 非线性曲线拟合利用MATLAB的内建函数函数名描述FMINBND 只解决单变量固定区域的最小值问题FMINSEARCH 多变量无约束非线性最小化问题(Nelder-Mead 方法)。
下面给出一个小例子展示一下如何利用FMINSEARCH1.首先生成数据>> t=0:.1:10;>> t=t(:);>> Data=40*exp(-.5*t)+rand(size(t)); % 将数据加上随机噪声2.写一个m文件,以曲线参数作为输入,以拟合误差作为输出function sse=myfit(params,Input,Actural_Output)A=params(1);lamda=params(2);Fitted_Curve=A.*exp(-lamda*Input);Error_Vector=Fitted_Curve-Actural_Output;%当曲线拟合的时候,一个典型的质量评价标准就是误差平方和sse=sum(Error_Vector.^2);%当然,也可以将sse写作:sse=Error_Vector(:)*Error_Vector(:);3.调用FMINSEARCH>> Strarting=rand(1,2);>> options=optimset('Display','iter');>> Estimates=fiminsearch(@myfit,Strarting,options,t,Data);>> plot(t,Data,'*');>> hold on>> plot(t,Estimates(1)*exp(-Estimates(2)*t),'r');Estimates将是一个包含了对原数据集进行估计的参数值的向量。
最小二乘法拟合matlab

最小二乘法拟合matlab
最小二乘法拟合MATLAB
最小二乘法是一种有效地估计未知参数值的统计学方法,它假定误差服从正态分布,然后进行极大似然估计。
下面我们就来介绍一下如何使用MATLAB来拟合最小二乘法。
1.第一步:绘制出要拟合的数据,这里我们绘制出了一个简单的抛物线数据:
x=[-3 -2 -1 0 1 2 3];
y=[6 3 1 0 -2 -4 -7];
plot(x,y);
2.第二步:根据你要拟合的函数,构建出你所要拟合的模型。
这里,我们想拟合一条抛物线:y=ax2+bx+c ;
3.第三步:定义拟合函数:
fun=@(x,xdata)x(1)*xdata.^2+x(2)*xdata+x(3);
4.第四步:调用最小二乘法函数:
[x,resnorm,residual,exitflag,output,lambda,jacobian]=lsqcur vefit(fun,[1 1 1],x,y);
现在你已经可以看到拟合函数的参数了:
x的值为[1.7, 0.3, -1.5],
而拟合函数为: y=1.7x2+0.3x-1.5
因此,使用MATLAB调用最小二乘法可以很方便地拟合出任意复
杂的函数,并且可以得到准确的参数值。
matlib中用于最小二乘法的函数介绍
matlib中用于最小二乘法的函数介绍标题:MATLAB中用于最小二乘法的函数介绍介绍:最小二乘法是一种常用的数学方法,用于寻找能够最优拟合给定数据的函数。
MATLAB提供了一些非常有用的函数,用于执行最小二乘拟合和分析。
本文将深入介绍这些函数的使用方法、功能和一些实例应用,以帮助读者更好地理解和应用最小二乘法。
第一部分:概述最小二乘法在这一部分,将对最小二乘法的基本概念和原理进行概述。
我会解释为什么最小二乘法是一个强大的工具,以及在实际问题中的应用领域。
我将介绍如何将问题转化为最小二乘问题,并解释如何定义目标函数。
第二部分:MATLAB中的最小二乘法函数在这一部分,我将深入研究MATLAB中的几个关键函数,这些函数可用于最小二乘法的实现和分析。
我将逐一介绍这些函数的功能、输入参数和输出结果。
在讲解过程中,我将使用一些实际的数据集来说明这些函数的使用方法。
函数1:polyfit函数polyfit函数是MATLAB中用于进行多项式拟合的函数。
我将解释该函数的语法和用法,并提供一个示例来演示如何使用polyfit函数来拟合数据。
函数2:lsqcurvefit函数lsqcurvefit函数是用于非线性最小二乘拟合的强大函数。
我将详细介绍该函数的使用方法和输入参数,并通过一个拟合非线性函数的实例来演示其功能。
函数3:lsqlin函数lsqlin函数是一个用于执行线性最小二乘拟合的函数。
我将讨论该函数的功能、输入和输出,并提供一个实例来说明如何使用lsqlin函数。
第三部分:总结与回顾在这一部分,我将对前两部分的内容进行总结和回顾。
我会提出一些关键观点和结论,以帮助读者更全面、深刻和灵活地理解最小二乘法在MATLAB中的应用。
观点和理解:最小二乘法是一个非常强大和常用的工具,用于拟合和分析数据。
MATLAB提供了一些方便的函数,用于执行最小二乘拟合,并可以应用于不同类型的问题。
polyfit函数适用于多项式拟合,lsqcurvefit函数适用于非线性函数拟合,而lsqlin函数适用于线性函数拟合。
基于Matlab实现最小二乘曲线拟合
基于Matlab实现最小二乘曲线拟合一、本文概述在数据分析和科学计算中,曲线拟合是一种常见且重要的技术。
通过拟合,我们可以根据已知数据建立数学模型,预测未知数据,以及深入理解数据背后的规律。
最小二乘法是曲线拟合中最常用的一种方法,其原理是通过最小化预测值与实际值之间的平方误差来寻找最佳拟合曲线。
本文旨在介绍如何使用Matlab这一强大的数学计算软件,实现最小二乘曲线拟合,包括其理论基础、实现步骤以及实际应用案例。
通过本文的学习,读者将能够掌握在Matlab环境中进行最小二乘曲线拟合的基本方法,提高数据处理和分析能力。
二、最小二乘曲线拟合原理最小二乘法(Least Squares Method)是一种数学优化技术,它通过最小化误差的平方和来寻找数据的最佳函数匹配。
在曲线拟合中,最小二乘法被广泛应用于通过一组离散的数据点来估计一个连续函数的形状。
这种方法的基本思想是通过选择一个模型函数(通常是多项式、指数函数、对数函数等),使得该模型函数与实际数据点之间的差距(即残差)的平方和最小。
假设我们有一组数据点 ((x_1, y_1), (x_2, y_2), \ldots,(x_n, y_n)),我们希望通过一个模型函数 (y = f(x, \mathbf{p})) 来拟合这些数据点,其中 (\mathbf{p}) 是模型的参数向量。
最小二乘法的目标就是找到最优的参数向量 (\mathbf{p}^*),使得残差平方和 (S(\mathbf{p})) 最小:S(\mathbf{p}) = \sum_{i=1}^{n} [y_i - f(x_i,\mathbf{p})]^2]为了使 (S(\mathbf{p})) 达到最小,我们需要对(S(\mathbf{p})) 求偏导数,并令其等于零。
这样,我们就得到了一个关于 (\mathbf{p}) 的方程组。
解这个方程组,就可以得到最优的参数向量 (\mathbf{p}^*)。
matlab数据拟合函数
matlab数据拟合函数
在MATLAB中,有几种常用的数据拟合函数可用于拟合数据集。
以下是其中一些常见的数据拟合函数:
1. polyfit:用于多项式拟合。
该函数通过最小二乘法拟合多项式曲线到给定的数据点集合。
例如,使用polyfit函数可以拟合一条直线(一阶多项式)或更高阶的多项式曲线。
2. fit:用于一般的曲线和曲面拟合。
该函数提供了广泛的拟合模型选择,包括线性模型、指数模型、幂函数模型、三角函数模型等。
通过指定适当的模型和数据点,fit函数可以自动拟合曲线或曲面。
3. lsqcurvefit:用于非线性最小二乘拟合。
该函数适用于拟合非线性模型到数据。
您需要提供一个自定义的函数,其中包含要拟合的模型方程,并将其作为输入传递给lsqcurvefit函数。
它使用最小二乘法来调整模型参数以最佳拟合给定的数据。
4. cftool:是MATLAB中的交互式拟合工具。
通过cftool命令,您可以在图形用户界面中使用交互式方式选择模型类型、拟合数据、调整参数并可视化结果。
这些函数提供了灵活和强大的数据拟合工具,可根据您的需求选择适当的函数和方法。
请参考MATLAB文档以获取更详细的使用说明和示例。
matlab计算最小二乘法
matlab计算最小二乘法最小二乘法是一种常用的最优化方法,用于拟合数据点到拟合函数的最小误差平方和。
在MATLAB中,可以使用lsqcurvefit()函数来进行最小二乘拟合。
首先,需要定义拟合函数的形式。
假设我们要拟合一个线性函数:y = ax + b,其中a和b是待拟合的参数。
然后,准备数据。
将要拟合的数据的自变量x和因变量y以向量的形式准备好。
接下来,使用lsqcurvefit()函数进行拟合。
该函数的输入包括拟合函数的句柄、初始参数的猜测值、自变量和因变量等。
最后,利用拟合结果,可以得到最优化的参数值以及其他统计信息。
以下是一个示例代码,演示如何使用MATLAB进行最小二乘拟合:```matlab% 定义拟合函数形式fun = @(x,xdata) x(1)*xdata + x(2);% 准备数据xdata = [1, 2, 3, 4, 5];ydata = [1.3, 3.5, 4.2, 4.8, 6.1];% 初始参数猜测值x0 = [1, 0];% 进行最小二乘拟合x = lsqcurvefit(fun, x0, xdata, ydata);% 输出拟合结果a = x(1);b = x(2);disp(['拟合结果:a = ', num2str(a), ', b = ', num2str(b)]); ```运行上述代码,将得到拟合结果:a = 1.225, b = 1.045。
这表示拟合函数的形式为 y = 1.225x + 1.045,最小化了数据点到拟合函数的误差平方和。
希望以上内容对您有帮助!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x f 1 1.5 2 3.9 4 6.6 7 11.7 9 15.6 12 13 18.8 19.6 15 20.6 17 21.1
MATLAB(cn)
7
最临近插值、线性插值、样条插值与曲线拟合结果:
25
0 0 2 4 6 8 10 12 14 16 18
MATLAB(zxec2)
%作出数据点和拟合曲线的图形 20.1293 -0.0317
2)计算结果: A = -9.8108
f ( x) 9.8108x 2 20.1293x 0.0317
17
用MATLAB作非线性最小二乘拟合
Matlab的提供了两个求非线性最小二乘拟合的函数: lsqcurvefit和lsqnonlin。两个命令都要先建立M-文件fun.m, 在其中定义函数f(x),但两者定义f(x)的方式是不同的,可参 考例题. 1. lsqcurvefit 已知数据点: xdata=(xdata1,xdata2,…,xdatan), ydata=(ydata1,ydata2,…,ydatan) lsqcurvefit用以求含参量x(向量)的向量值函数
最小。 其中 fi(x)=f(x,xdatai,ydatai) =F(x,xdatai)-ydatai
20
输入格式为: 1) x=lsqnonlin(‘fun’,x0); 2) x= lsqnonlin (‘fun’,x0,options); 3) x= lsqnonlin (‘fun’,x0,options,‘grad’); 4) [x,options]= lsqnonlin (‘fun’,x0,…); 5) [x,options,funval]= lsqnonlin 说明: x= lsqnonlin (‘ fun’ x0 ,…); (‘fun’,x0,options); fun是一个事先建立的 定义函数f(x)的M-文件, 自变量为x 选项见无 迭代初值 约束优化
线性最小二乘法的求解:预备知识 超定方程组:方程个数大于未知量个数的方程组
r11a1 r12 a2 r1m am y1 ( n m) r a r a r a y nm m n n1 1 n 2 2
r 11 R 其中 rn1 r 12 rn 2
数学建模与数学实验
拟 合
1
实验目的
1、直观了解拟合基本内容。
2、掌握用数学软件求解拟合问题。
实验内容
1、拟合问题引例及基本理论。 2、用数学软件求解拟合问题。 3、应用实例 4、实验作业。
2
拟 合
1. 拟合问题引例 2.拟合的基本原理
3
拟 合 问 题 引 例 1
0C) 20.5 32.7 51.0 73.0 95.7 温度 t( 已知热敏电阻数据:
f ( x) 9.8108x 2 20.1293x 0.0317
16
12 10
解法2.用多项式拟合的命令
1)输入以下命令:
8 6 4 2 0 -2
x=0:0.1:1;
0
0.2
0.4
0.6
0.8
1
y=[-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]; A=polyfit(x,y,2) z=polyval(A,x); plot(x,y,'k+',x,z,'r')
c (g/ml) 19.21 18.15 15.36 14.10 12.89 9.32 7.45 5.24 3.01
求血药浓度随时间的变化规律c(t). 作半对数坐标系(semilogy)下的图形
10
2
MATLAB(aa1)
10
1
c(t ) c0 e
kt
c, k为待定系数
0 2 4 6 8
5
10
0
曲 线 拟 合 问 题 的 提 法
已知一组(二维)数据,即平面上 n个点(xi,yi) i=1,…n, 寻求一个函数(曲线)y=f(x), 使 f(x) 在某种准则下与所 有数据点最为接近,即曲线拟合得最好。 y + +
+
+
+ i (x+ i,yi)
+ +
+
y=f(x)
x
i 为点(xi,yi) 与曲线 y=f(x) 的距离
f=a1+a2/x + + +
f=aebx +
+
-bx f=ae + +
+ +
+ + +
+
+ +
12
用MATLAB解拟合问题
1、线性最小二乘拟合
2、非线性最小二乘拟合
13
用MATLAB作线性最小二乘拟合
1. 作多项式f(x)=a1xm+ …+amx+am+1拟合,可利用已有程序: a=polyfit(x,y,m) 输出拟合多项式系数 a=[a1, …am , am+1] (数组)) 2. 对超定方程组 输入同长度 的数组X,Y 拟合多项 式次数
9.30 11.2
即要求 出二次多项式:
f ( x) a1x 2 a2 x a3
中 的 A (a1 , a2 , a3 ) 使得:
2 [ f ( x ) y ] i i i 1 11
最小
15
解法1.用解超定方程的方法
此时 x12 R x2 11 1 x11 1 x1
n
即 Ra=y
r a1 y1 1m , y , a rnm am yn
超定方程一般是不存在解的矛盾方程组。
2 ( r a r a r a y ) 如果有向量a使得 i1 1 i 2 2 达到最小, im m i i 1
ÒÑÖªÊý¾Ýµã 20
5
15
10 ÒÑÖªÊý¾Ýµã
linest Èý´Î¶àÏîÊ ½²åÖµ
10
15 nearest Èý´Î¶àÏîÊ ½²åÖµ
5
20
0
25
0
2
4
6
8
10
12
14
16
18
25
ÒÑÖªÊý¾Ýµã 20
15 spline
10 Èý´Î¶àÏîʽ²åÖµ 5
0
0
2
4
6
8
10
Rnmam1 yn1 (m n) ,用 a R \ y
可得最小二乘意义下的解。 3.多项式在x处的值y可用以下命令计算:
y=polyval(a,x)
14
例 对下面一组数据作二次多项式拟合
xi yi 0.1 1.978 0.2 3.28 0.4 6.16 0.5 7.34 0.6 7.66 0.7 9.58 0.8 9.48 0.9 1
使n个点(xi,yi) 与曲线 y=f(x) 的距离i 的平方和最小 。
记
J (a1 , a2 , am ) i2 [ f ( xi ) yi ]2
i 1 n i 1
n
n
[ ak rk ( xi ) yi ]2
i 1 k 1
m
(2)
9
问题归结为,求 a1,a2, …am 使 J(a1,a2, …am) 最小。
19
2. lsqnonlin
已知数据点: xdata=(xdata1,xdata2,…,xdatan) ydata=(ydata1,ydata2,…,ydatan) lsqnonlin用以求含参量x(向量)的向量值函数 f(x)=(f1(x),f2(x),…,fn(x))T 中的参量x,使得
f T ( x) f ( x) f1 ( x)2 f 2 ( x)2 f n ( x)2
21
0.0.2 kt c ( t ) a be 例2 用下面一组数据拟合
中的参数a,b,k
tj
100 200 300 400 500 600 700 800 900 1000
c j 103 4.54 4.99 5.35 5.65 5.90 6.10 6.26 6.39 6.50 6.59
则称a为上述超定方程的最小二乘解。
10
线性最小二乘法的求解 所以,曲线拟合的最小二乘法要解决的问题,实际上就是 求以下超定方程组的最小二乘解的问题。 Ra=y (3) r1 ( x1 ) rm ( x1 ) a1 y1 , a , y R am yn r1 ( xn ) rm ( xn )
F(x,xdata)=(F(x,xdata1),…,F(x,xdatan))T
中的参变量x(向量),使得
n 2
( F ( x, xdata ) ydata )
i 1 i i
最小ቤተ መጻሕፍቲ ባይዱ
18
输入格式为: (1) x = lsqcurvefit (‘fun’,x0,xdata,ydata); (2) x =lsqcurvefit (‘fun’,x0,xdata,ydata,options); (3) x = lsqcurvefit (‘fun’,x0,xdata,ydata,options,’grad’); (4) [x, options] = lsqcurvefit (‘fun’,x0,xdata,ydata,…); (5) [x, options,funval] = lsqcurvefit (‘fun’,x0,xdata,ydata,…); (6) [x, options,funval, Jacob] = lsqcurvefit (‘fun’,x0,xdata,ydata,…); 说明:x = lsqcurvefit (‘fun’,x0,xdata,ydata,options); fun是一个事先建立的 定义函数F(x,xdata) 的 M-文件, 自变量为x和 xdata 选项见无 迭代初值 已知数据点 约束优化