立体几何中轨迹问题的解题策略
立体几何中的动点轨迹问题

思路分析:根据题意,画出图形,在空间 中,AM ⊥ MC ,取 AC 的中点 O ,则点 M 的 轨迹是以 AC 为直径的球面 O .点 M 是侧面 BCC1B1 内的动点,所以点 M 是球面 O 与平 面 BCC1B1 的公共点.则点 M 在平面 BCC1B1 内 的 轨 迹 是 以 BC 为 直 径 的 半 圆(不 包 含 B,C 点).以下同解法 1.
思路分析:根据题意,画出图形,对于平 面 BCC1B1 来说,AM 是斜线,点 M 是斜足, AB 是垂线,点 B 是垂足,所以 BM 是射影, 因为 AM ⊥ MC ,得到 MC ⊥ BM ,所以点 M 在平面 BCC1B1 内的轨迹是以 BC 为直径的 半 圆(不 包 含 B,C 点). 因 为 A1B1⊥ 平 面 BCC1B1 ,所以 ∠A1MB1 为 A1M 与平面 BCC1B1 所成角.结合 B1M 的取值范围,即可得正切 值的取值范围.
与 平 面 BCC1B1 所 成 角. 在 RTA1MB1 中 ,
tan
∠A1 MB1
=
A1 B1 B1 M
.取
BC
的中点
N
,由已知
得
B1N
-
1 2
BC
B1 M
<
B1C
即
2
B1 M
<
2
7,
又 A1B1 = 4 ,所以 tan ∠A1MB1 的取值范围为
(
2
7 7
,
2]
.
归纳:降维法,即空间问题平面化法,利
求较高.本文以福建省泉州市 2020 届普通中
学高中毕业班质量检查理科卷第 12 题为例,
对这类问题的解法进行剖析,希望对大家有
例谈立体几何中轨迹问题

3根据截面图形求轨迹 . 例 3 正方体AB D— l E、 C A BCD ,
盼 别是A 、C的 中点 ,是 C 。 的 A, C P C上 动点 ( 括端点 )过E、 P 包 , D、 作正 方体
的截面 , 若截面 为四边形 , 点P 则 的轨
迹为( ) .
A直线 .
算题 , ) 略
2 3 5, × = . + = 2 3 6
解. 近年来 高考 中常见的题 型有 以下几类.
1利 用 圆锥 曲线 定 义 求轨 迹 . 点评 : 圆锥 曲 线 的 统 一 定 义 为 : 定 点 的距 离与 到 到
学思 想 与方法 , 综合性 强 , 能力 要求高 , 教师可集 中讲 定直线的距 离比为常数 的点的轨迹 , 该常数 叫做 圆锥 曲 线的 离心 率 , 表 示. < < 时 , 用e 当0 e l 为椭 圆; = 时, 当e l 为
点 评 : 面 图形确 定后 , 点 的轨 迹 也 是 确 定 的 , 截 动 此 4 立 函 数模 型 求 函数 解 析式 建
的轨迹是以c点 为焦点 , C 以B 为准线 的抛 物线 ( 在侧 面 线 与D 平 行 , E 由此 得 , 与c 当P 重合时 , 面过B 。 中 截 B的 点评 : 点在平 面 内运动的轨迹有 直线、 圆和 圆锥 曲 而 当截面过c时 , 。 截面也是四边形. 故选C .
抛 物 线 ; > 时 . 双 曲 线. 当e l 为
例 1 如 图 ,在 正 方 体A C B D— ABCD 中 , 侧 面 BB C 内一 动 1 P是 1C 点 ,若P 到直线B 与直线 CD的距离 C 。 相等 ,则动点J p 的轨迹所在 的曲线是
( ) . d
立体几何中的动点轨迹问题

同理,在平面 AA1D1D 内满足条件的点的轨迹长度为52π.在平面 A1B1C1D1 内满足条件 的点的轨迹为以 A1 为圆心,A1F 为半径的14圆弧,长度为 2π×4×14=2π.同理,在平 面 ABCD 内满足条件的点的轨迹为以 A 为圆心,AE 为半径的圆弧,长度为 2π×3×14 =32π.故轨迹的总长度为52π+52π+2π+32π=172π.
的长度最小.因为 B1N1=D1N1= 5,B1D1=2 2,所以△B1N1D1 的边 B1D1 上的高为
52- 22= 3,则 S△B1N1D1=12×2 2× 3= 6,则当 B1N⊥D1N1 时,B1N 最
小,即 B1Nmin=2S△DB1N1N1 1D1=2
6=2 5
530.
总结 提炼
与平行有关的轨迹问题的解题策略 (1)线面平行转化为面面平行得轨迹; (2)平行时可利用法向量垂直关系求轨迹.
模型 3 动点保持等距关系
3 (2023·湖北联考节选)已知正方体 ABCD-A1B1C1D1 的棱长为 3,P 为正方体表 53
面上的一个动点,A1P=2 3,则点 P 的轨迹长度为___2__π__.
【解析】 如图,点 P 的轨迹一部分是在平面 ABB1A1,A1B1C1D1, ADD1A1 三个面内以 2 3为半径,圆心角为π6的三段圆弧,另一部分是 在平面 BCC1B1,CDD1C1,ABCD 三个面内以 3为半径,圆心角为π2 的三段圆弧.故点 P 的轨迹的长度为112×2π×2 3×3+14×2π× 3×3=523π.
点击对应数字即可跳转到对应题目
1
2
3
4
5
6
7
8
9
配套精练
2 . 如 图 , 正 方 体 ABCD - A1B1C1D1 的 棱 长 为 2 , E , F 分 别 为
立体几何中的轨迹交汇问题解析

立体几何中的轨迹问题以立体图形为载体的轨迹问题,将立体几何和解析几何巧妙地整合在一起,立意新颖,综合性强,是新课程高考命题的一大趋势。
解答这类问题的关键是把空间问题转化为平面问题,一般可从两个方面考虑:一是利用曲线的定义,二是用解析法求出轨迹方程。
例1. 已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( )A. 一个圆B. 两条平行直线C. 四个点D. 两个点简析:如图1,设点P 在平面β内的射影是O ,则OP 是α、β的公垂线,OP=4。
在β内到点P 的距离等于5的点到O 的距离等于3,可知所求点的轨迹是β内在以O 为圆心,3为半径的圆上。
又在β内到直线l 的距离等于29的点的集合是两条平行直线m 、n ,它们到点O 的距离都等于32174)29(22<=-,所以直线m 、n 与这个圆均相交,共有四个交点。
因此所求点的轨迹是四个点,故选C 。
例2. 如图2,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点。
且AC PC ⊥,那么动点C 在平面α内的轨迹是( ) A. 一条线段,但要去掉两个点B. 一个圆,但要去掉两个点C. 一个椭圆,但要去掉两个点D. 半圆,但要去掉两个点简析:因为PC AC ⊥,且PC 在α内的射影为BC ,所以BC AC ⊥,即︒=∠90ACB 。
所以点C 的轨迹是以AB 为直径的圆且去掉A 、B 两点,故选B 。
例3 (04年北京高考题)在正方体ABCD A B C D -1111中,P 是侧面BB C C 11内一动点,若P 到直线BC 与直线C D 11的距离相等,则动点P 的轨迹所在的曲线是( )A . 直线B .圆C .双曲线D .抛物线 分析 如图1,由C D 11⊥平面BB C C 11,得1PC ⊥C D 11,所以1PC 就是点P 到直线C D 11的距离,因此条件转化为点P 到BC 的距离等于点P 到点1C 的距离.根据抛物线的定义,点P 的轨迹所在的曲线是抛物线.选D .变式1:. 已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( ) A. 抛物线 B. 双曲线C. 椭圆 D. 直线简析:以A 为原点,AB 为x 轴、AD 为y 轴,建立平面直角坐标系。
2023年高考数学----轨迹问题规律方法与典型例题讲解

2023年高考数学----轨迹问题规律方法与典型例题讲解【规律方法】解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.【典型例题】例1.(2022·北京·昌平一中高三阶段练习)设正方体1111ABCD A B C D −的棱长为1,E ,F 分别为AB ,1BD 的中点,点M 在正方体的表面上运动,且满足FM DE ⊥,则下列命题:①点M 可以是棱AD 的中点; ②点M 的轨迹是菱形; ③点M 轨迹的长度为2④点M . 其中正确的命题个数为( ) A .1 B .2 C .3 D .4【答案】B【解析】连接,AC BD ,交于O ,则O 为,AC BD 中点,因为F 为1BD 的中点,所以1//FO DD , 由正方体的性质可知1DD ⊥平面ABCD , 所以FO ⊥平面ABCD , 因为DE ⊂平面ABCD , 所以FO DE ⊥,过点O 作PQ DE ⊥,分别交,BC AD 于,P Q ,过点,P Q 分别作11//,//PH BB QG AA ,分别交1111,B C A D 于点,H G ,连接GH , 所以,PQGH 四点共面,且//,GQ PH GQ PH =, 所以,四边形PQGH 为平行四边形, 因为1AA ⊥平面ABCD ,所以PH ⊥平面ABCD ,PQ ⊂平面ABCD , 所以PH PQ ⊥所以,四边形PQGH 为矩形,因为PQ FO O =,,PQ FO ⊂平面PQGH , 所以DE ⊥平面PQGH ,因为点M 在正方体的表面上运动,且满足FM DE ⊥ 所以,当FM ⊂面PQGH 时,始终有FM DE ⊥, 所以,点M 的轨迹是矩形PQGH ,如下图,因为2DQO QDE QDE AED π∠+∠=∠+∠=,所以,DQO AED ∠=∠, 所以,AQO BED ∠=∠, 因为4OAQ EBD π∠=∠=,所以AOQ △∽BDE △,所以AQ AO BE BD =,即12AQ=,即14AQ = 所以14CP AQ ==,PQ =, 所以,点M 不可能是棱AD 的中点,点M 的轨迹是矩形PQGH ,轨迹长度为矩形PQGH的周长212⎫⎪⎪⎝⎭,1 故正确的命题为③④.个数为2个. 故选:B例2.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D −的边长为2,点E ,F 分别为棱CD ,1DD 的中点,点P 为四边形11CDD C 内(包括边界)的一动点,且满足1B P ∥平面BEF ,则点P 的轨迹长为( )A B .2CD .1【答案】A【解析】画出示意图如下:取1CC 中点N ,取11D C 中点M ,连接11,,,B M B N MN ME ,则11,ME B B ME B B =∥,则四边形1MEBB 为平行四边形,所以1B M ∥BE , 连接1D C ,则11,MN D C EF D C ∥∥,故MN ∥EF ,又1B M MN M BE EF E ⋂=⋂=, ,1,B M MN ⊂平面1B MN ,BE EF ⊂平面BEF, 所以平面BEF ∥平面B 1MN ,平面1B MN ∩平面11CDD C =MN ,所以P 点轨迹即为MN ,长度为11||||2MN D C == 证明:因为平面BEF ∥平面1B MN ,P 点是MN 上的动点,故1B P ⊂平面1B MN ,所以1B P ∥平面BEF ,满足题意. 故选:A .例3.(2022·全国·模拟预测(理))如图,在四棱锥P ABCD −中,底面ABCD 是边长为2的正方形,PA ⊥平面ABCD ,且2PA =,点E ,F ,G 分别为棱AB ,AD ,PC 的中点,下列说法错误的是( )A .AG ⊥平面PBDB .直线FG 和直线AC 所成的角为π3C .过点E ,F ,G 的平面截四棱锥P ABCD −所得的截面为五边形D .当点T 在平面ABCD 内运动,且满足AGT △的面积为12时,动点T 的轨迹是圆 【答案】D【解析】可将四棱锥P ABCD −补形成正方体ABCD PB CD ''−,如图①,直线AG 即体对角线AC ',易证AC '⊥平面PDB ,A 选项正确; 如图②,取CD 的中点H ,连接FH ,可知FH AC //,所以GFH ∠ (或其补角)与直线FG 和直线AC 所成的角相同,在FGH 中,FG GH FG ==,所以π3GFH ∠=,B 选项正确;如图③,延长EF 交直线CD 于点H ,交直线BC 于点I ,连接GI 交PB 于点M ,连接GH 交PD 于点N ,则五边形EFNGM 即为平面EFG 截 四棱锥P ABCD −所得的截面,C 选项正确;当12AGT S =△时,因为AG 所以点T 到AG 点T 在以AC 为轴,底面半径r =T 在平面ABCD 上,所以点T 的轨迹是椭圆.D 选项错误. 故选:D例4.(2022·浙江温州·高三开学考试)如图,正方体1AC ,P 为平面11B BD 内一动点,设二面角11A BD P −−的大小为α,直线1A P 与平面11BD A 所成角的大小为β.若cos sin βα=,则点P 的轨迹是( )A .圆B .抛物线C .椭圆D .双曲线【答案】D【解析】连接AC 交BD 于O ,取11B D 中点1O ,连接1OO以O 为原点,分别以OA 、OB 、1OO 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,如图:令正方体边长为2,则11(,)A C A B ,(0,,)P y z =面11BD A 的一个法向量为1(2,AB =−,面11BB D 的一个法向量为(AC =− 则1(co 1s 2,AC AB −==,故二面角111A BD B −−的大小为π3又二面角11A BD P −−的大小(]0,παÎ,则π3α=或2π3α=由cos sin βα=,,可得π6β=又1(,)y z A P =−1111(1sin 2A P AB A P AB β⋅−===⋅整理得240z z +++= 即3)1y z z =−+,是双曲线. 故选:D例5.(2022·全国·高三专题练习)如图,正方体ABCD A B C D −''''中,M 为BC 边的中点,点P 在底面A B C D ''''和侧面CDD C ''上运动并且使MAC PAC ''∠=∠,那么点P 的轨迹是( )A .两段圆弧B .两段椭圆弧C .两段双曲线弧D .两段抛物线弧【答案】C【解析】由P 点的轨迹实际是一个正圆锥面和两个平面的交线,其中这个正圆锥面的中心轴即为AC ',顶点为A ,顶角的一半即为MAC '∠, 以A 点为坐标原点建立空间直角坐标系,则1(0,0,1),(1,1,0),(,1,1)2AC M ,可得1(1,1,1),(,1,0)2ACAM '=−=,1111cos MAC ⨯+⨯'∠===,设AC '与底面A BC D ''''所成的角为θ,则A C cos AC θ''===>',所以MAC θ'<∠,''''的交线是双曲线弧,所以该正圆锥面和底面A B C D同理可知,P点在平面CDD C''的交线是双曲线弧,故选:C.。
立体几何中的轨迹问题获奖科研报告论文

立体几何中的轨迹问题获奖科研报告论文近几年高考命题改革的一个重要方向是“在知识网络交汇点处设计试题”.轨迹问题往往是在解析几何中所涉及的,那么立体几何中的轨迹问题应该如何处理呢?它与解析几何中的轨迹问题有什么联系吗?下面从不同的解题途径来看立体几何中的轨迹问题.一、常见轨迹立体几何中的常见轨迹有:(1)到一个定点的距离等于定长的点的轨迹是球面.(2)到一条定直线的距离为定长的点的轨迹是底面半径为定长的圆柱面.(3)到一个平面的距离为定值的点的轨迹是两个平行平面.例1 直线m与平面α间距离为h,那么到直线m与平面α的距离都为2h的点的集合为().A.一个平面B.一条直线C.空集D.两条直线分析:到直线m的距离为2h的点的集合是一个圆柱面,而到平面α的距离为2h的点的集合是两个平行平面,所求轨迹就是两曲面相交所得的两条直线.故答案选D.例2 已知平面α∥平面β,直线m在平面α内,点P∈m,α,β间的距离为8,则在平面β内到点P的距离为10且到直线m的距离为9的点的轨迹是().A.一个圆B.两条直线C.四个点D.两个点分析:答案为C.平面β内到点P的距离为10的点的轨迹是一个圆,β内到直线m的距离是9的点的轨迹是两条平行直线,所以所求点的轨迹是他们的交点的集合.二、空间轨迹平面化“以空间图形为载体的轨迹问题”将立体几何,解析几何,平面几何巧妙而自然的交汇在一起,立意新颖,构思巧妙,极富思考性和挑战性.例3 (2004北京高考题)如图1,在正方体ABCD-A1B1C1D1中,P 是侧面BB1C1C内一动点,若P到直线BC与直线C1D1的距离相等,则动点P的轨迹所在的曲线是().A.直线B.圆C.双曲线D.抛物线分析:因为C1D1⊥平面BC1,所以PC1即为点P到直线C1D1的距离,于是问题转化为在平面BC1内,点P到定点C1的距离与点P到直线BC的距离相等,根据抛物线的定义,动点P的轨迹应为过CC1的中点的抛物线.故应选D.评注:本题主要考查抛物线的定义,线面垂直关系及点到直线的距离概念.立意新,角度好,有创意.解决此问题的关键要善于把立体几何中的距离问题转化到同一平面上的距离,再应用解析几何的知识.例4 两根直立的旗杆相距10m,高分别是6m和8m,地面上的点P到两旗杆顶的仰角相等,求P在地面上的轨迹.分析:如图2,BD=6,AC=8,∠BPD=∠APC,∴PD∶PC=BD∶AC=3∶4,以直线DC为x轴,线段DC的中垂线为y轴建立直角坐标系,则D(-5,0),C(5,0).设点P(x,y),则(x+5)2+y2(x-5)2+y2=34,化简整理得:7x2+7y2+250x+175=0,此方程对应的曲线为圆.评注:求解“以空间图形为载体的轨迹问题”的基本思路是:要善于把立体几何问题转化到平面上,再联合运用平面几何、立体几何、解析几何等知识去求解,实现立体几何到解析几何的过渡.例5 设异面直线a,b成60°角,他们的公垂线段为EF,且|EF|=2,线段AB的长为4,两端点A,B分别在a,b上移动.(1)指出AB中点P的轨迹所在位置;(2)求AB的中点P的轨迹.分析:(1)如图3,设EF的中点为O,而P为AB中点,故O,P 在EF的中垂面上,从而P点轨迹一定在EF的中垂面上.(2)设A,B在面α的射影为C,D.则由AP=PB=2得AC=BD=1.因为a∥OC,b∥OD,所以∠COD=60°.如图4,在平面α内,以O为原点,∠COD的角平分线为x轴的正半轴建立直角坐标系.令C(3t1,t1),D(3t2,-t2),则P点坐标(x,y)满足x=32(t1+t2),y=t1-t22.因为CD=23,所以(3t1-3t2)2+(t1+t2)2=12,即x29+y2=1,故P点轨迹是EF的中垂面上以O为中心,长轴长为6,短轴长为2的椭圆.评注:本题的关键是如何将动点在空间所满足的条件转化为动点在某个平面内所满足的条件,再利用解析法求轨迹.若把条件中“异面直线a,b成60°角”改成“异面直线a,b成90°角”,则P点的轨迹为圆.三、空间问题向量化我们知道,在空间直角坐标系下,直线l的标准方程为:x-x0X=y-y0Y=z-z0Z,平面的一般方程为:Ax+By+Cz+D=0(A,B,C不全为零),以原点为球心的球面方程为:x2+y2+z2=r2.例6 求到A(1,2,3)和B(2,-1,4)距离相等的点M的轨迹.分析:由|AM|=|BM|,所以(x-1)2+(y-2)2+(z-3)2=(x-2)2+(y+1)2+(z-4)2,化简整理得:2x-6y+2z-7=0,所求点M 的轨迹为一平面,而且是AB的垂直平分面.例7 已知A(1,2,-1),B(2,0,2),在xOz平面内的点P到A 与B的距离相等,求点P的轨迹方程.分析:因为点P在xOz平面内,设P点坐标为(x,0,z),由AP=BP 有:(x-1)2+(-2)2+(z+1)2=(x-2)2+02+(z+2)2,整理得:x+3z-1=0,即点P在xOz平面上的轨迹方程为x+3z-1=0,轨迹为一条直线.评注:本题也可利用上题的结论,到两定点距离相等的点的轨迹是一个平面,又在xOz平面上,所以点P的轨迹是两个平面的交线,即直线.通过这类问题的解决,有利于培养学生综合运用数学知识的能力,也有利于培养学生分类讨论、化归等数学意识及创新意识.注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。
微专题19 立体几何中的动点及其轨迹问题
微专题19立体几何中的动点及其轨迹问题求空间图形中点的轨迹既是中学数学学习中的一个难点,也是近几年高考的一个热点,是立体几何与解析几何相交汇的问题,既考查空间想象能力,同时又考查如何将空间几何的轨迹问题转化为平面几何的轨迹问题来处理的数学思想,常用方法主要有:(1)定义法(如圆锥曲线定义);(2)解析法;(3)交轨法.类型一定性的研究动点的轨迹立体几何中与动点轨迹有关的问题归根还是利用线面的平行、垂直关系,在此类问题中要么容易看出动点符合什么样的轨迹(定义),要么通过计算(建系)求出具体的轨迹表达式.例1 (1)如图,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P 满足∠P AB=30°,则点P的轨迹是()A.直线B.抛物线C.椭圆D.双曲线的一支(2)(多选)(2022·济南质检)已知正方体ABCD-A1B1C1D1的棱长为4,M为DD1的中点,N为ABCD所在平面上一动点,则下列命题正确的是()A.若MN与平面ABCD所成的角为π4,则点N的轨迹为圆B.若MN=4,则MN的中点P的轨迹所围成图形的面积为2πC.若点N到直线BB1与直线DC的距离相等,则点N的轨迹为抛物线D.若D1N与AB所成的角为π3,则点N的轨迹为双曲线答案(1)C(2)ACD解析(1)由题可知,当P点运动时,在空间中,满足条件的AP绕AB旋转形成一个圆锥,用一个与圆锥高成60°角的平面截圆锥,所得图形为椭圆.(2)如图所示,对于A,根据正方体的性质可知,MD⊥平面ABCD,所以∠MND为MN与平面ABCD所成的角,所以∠MND=π4,所以DN=DM=12DD1=12×4=2,所以点N的轨迹为以D为圆心,2为半径的圆,故A正确;对于B,在Rt△MDN中,DN=MN2-MD2=42-22=23,取MD的中点E,因为P为MN的中点,所以PE∥DN,且PE=12DN=3,DN⊥ED,所以PE⊥ED,即点P在过点E且与DD1垂直的平面内,又PE=3,所以点P的轨迹为以3为半径的圆,其面积为π·(3)2=3π,故B 不正确; 对于C ,连接NB ,因为BB 1⊥平面ABCD , 所以BB 1⊥NB ,所以点N 到直线BB 1的距离为NB ,所以点N 到点B 的距离等于点N 到定直线CD 的距离, 又B 不在直线CD 上,所以点N 的轨迹为以B 为焦点,CD 为准线的抛物线,故C 正确;对于D ,以D 为原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,则A (4,0,0),B (4,4,0),D 1(0,0,4),设N (x ,y ,0), 则AB →=(0,4,0),D 1N →=(x ,y ,-4), 因为D 1N 与AB 所成的角为π3, 所以|cos 〈AB →,D 1N →〉|=cos π3, 所以|4y |4x 2+y 2+16=12,整理得3y 216-x 216=1,所以点N 的轨迹为双曲线,故D 正确.训练1 (1)如图,AB 是平面α的斜线段,A 为斜足,若点P 在平面α内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( )A.圆B.椭圆C.一条直线D.两条平行直线(2)已知在平行六面体ABCD -A 1B 1C 1D 1中,AA 1与底面A 1B 1C 1D 1垂直,且AD =AB ,E 为CC 1的中点,P 在对角面BB 1D 1D 内运动,若EP 与AC 成30°角,则点P的轨迹为()A.圆B.抛物线C.双曲线D.椭圆答案(1)B(2)A解析(1)由题意知,点P到线段AB的距离为定值,则点P为在以AB为旋转轴的圆柱表面上一点,故平面α斜截圆柱,所得图形为椭圆.(2)因为在平行六面体ABCD-A1B1C1D1中,AA1与底面A1B1C1D1垂直,且AD=AB,所以该平行六面体ABCD-A1B1C1D1是一个底面为菱形的直四棱柱,所以对角面BB1D1D⊥底面ABCD,AC⊥对角面BB1D1D.取AA1的中点F,连接EF,则EF∥AC.因为EP与AC成30°角,所以EP与EF成30°角.设EF与对角面BB1D1D的交点为O,则EO⊥对角面BB1D1D,所以点P的轨迹是以EO为轴的一个圆锥的底面圆周,故选A.类型二定量的研究动点的轨迹当涉及动点轨迹的长度、图形的面积和图形的体积以及体积的最值,一般要用未知变量表示轨迹,然后借助于函数的性质求解.例2 (1)在棱长为22的正方体ABCD-A1B1C1D1中,E,F分别为棱AB,AD的中点,P为线段C1D上的动点,则直线A1P与平面D1EF的交点Q的轨迹长度为()A.2153 B.433C.2133 D.423(2)(多选)(2022·南京质检)如图,在正方体ABCD -A 1B 1C 1D 1中,P 为线段A 1B 上的动点(不包含端点),若正方体棱长为1,则下列结论正确的有( )A.直线D 1P 与AC 所成角的取值范围是⎣⎢⎡⎦⎥⎤π6,π2B.存在P 点,使得平面APD 1∥平面C 1BDC.三棱锥D 1-CDP 的体积为16D.平面APD 1截正方体所得的截面可能是直角三角形 答案 (1)C (2)BC解析 (1)如图,连接B 1D 1,因为E ,F 分别为棱AB ,AD 的中点, 所以B 1D 1∥EF ,则B 1,D 1,E ,F 四点共面.连接A 1C 1,A 1D ,设A 1C 1∩B 1D 1=M ,A 1D ∩D 1F =N ,连接MN , 则点Q 的轨迹为线段MN , 易得A 1D =A 1D 21+DD 21=4,△A 1ND 1∽△DNF ,且A 1D 1FD =2,所以A 1N =23A 1D =83. 易知A 1C 1=C 1D =A 1D =4,所以∠C 1A 1D =60°,又A 1M =2,所以在△A 1MN 中,由余弦定理可得MN 2=A 1N 2+A 1M 2-2A 1N ·A 1M cos ∠MA 1N =529,所以MN =2133,即点Q 的轨迹长度为2133.(2)对于A 选项,如图①,连接AC ,D 1P ,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D -xyz ,则A (1,0,0),B (1,1,0),A 1(1,0,1),D (0,0,0),D 1(0,0,1),C (0,1,0).则有AC →=(-1,1,0),D 1P →=D 1A 1→+λA 1B →=(1,0,0)+λ(0,1,-1)=(1,λ,-λ),λ∈(0,1), 所以|cos 〈AC →,D 1P →〉|=|-1+λ|2·2λ2+1=(1-λ)24λ2+2.令f (λ)=(1-λ)24λ2+2,λ∈(0,1), f ′(λ)=8λ2-4λ-4(4λ2+2)2=4(2λ+1)(λ-1)(4λ2+2)2<0,所以f (λ)=(1-λ)24λ2+2在(0,1)上单调递减.因为f (0)=12,f (1)=0,所以0<|cos 〈AC →,D 1P →〉|<22,又〈AC →,D 1P →〉∈⎣⎢⎡⎦⎥⎤0,π2, 故〈AC →,D 1P →〉∈⎝ ⎛⎭⎪⎫π4,π2,故A 选项错误.图①对于B选项,当P为A1B的中点时,有AP∥C1D,AD1∥C1B,易证平面APD1∥平面C1BD,故B选项正确.对于C选项,三棱锥D1-CDP的体积VD1-CDP=VP-CDD1=13×S△CDD1×AD=1 3×12×1×1×1=16,故C选项正确.对于D选项,设A1B的中点为O,连接AP,AD1,D1P.当P点在线段OB(不包含端点)上时,此时平面APD1截正方体所得的截面为梯形AEFD1,如图②;当P点在O点时,此时平面APD1截正方体所得的截面为正三角形AB1D1;当P点在线段OA1(不包含端点)上时,此时平面APD1截正方体所得的截面为等腰三角形AD1G,如图③,且AG2+D1G2≠AD21,所以该三角形不可能为直角三角形,故D选项错误.故选BC.训练2 (1)如图所示,正方体ABCD-A1B1C1D1的棱长为2,E,F为AA1,AB的中点,点M是正方形ABB1A1内的动点,若C1M∥平面CD1E,则点M的轨迹长度为()A.22 B.1C. 2D.3(2)(多选)(2022·重庆诊断)如图,点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,则下列四个结论中,正确的结论是()A.三棱锥A-D1PC的体积不变B.A1P与平面ACD1所成的角大小不变C.DP⊥BC1D.DB1⊥A1P答案(1)C(2)ABD解析(1)如图所示,取A1B1的中点H,B1B的中点G,连接EF,FC,GH,C1H,C1G,EG,HF可得四边形EGC1D1是平行四边形,∴C1G∥D1E,又D1E⊂平面CD1E,C1G⊄平面CD1E,∴C1G∥平面CD1E,同理可得C1H∥CF,又CF⊂平面CD1E,C1H⊄平面CD1E,∴C1H∥平面CD1E,又C1H∩C1G=C1,∴平面C1GH∥平面CD1E,又M点是正方形ABB1A1内的动点,若C1M∥平面CD1E,∴点M在线段GH上,∴M点轨迹的长度GH=12+12= 2.(2)如图,因为BC1∥AD1,AD1⊂平面D1AC,BC1⊄平面D1AC,所以BC1∥平面D1AC,故点P在BC1上运动时,点P到平面D1AC的距离d是定值,所以V A-D1PC =V P-AD1C=13S△AD1C×d是定值,A项正确.连接A1B,A1C1,如图所示.易知平面A1BC1∥平面ACD1,A1P⊂平面A1BC1,所以A1P∥平面ACD1,故A1P与平面ACD1所成的角大小不变,B项正确.易知DP在平面BCC1B1内的射影是CP,若DP⊥BC1,则CP⊥BC1,故点P在BC1上运动时,不一定有DP⊥BC1,C项错误.易知DB1⊥平面A1BC1,而A1P⊂平面A1BC1,所以DB1⊥A1P,D项正确.故选ABD.一、基本技能练1.如图,在正方体ABCD-A1B1C1D1中,P是侧面BB1C1C内一动点,若P到直线BC与到直线C1D1的距离相等,则动点P的轨迹为()A.直线B.圆C.双曲线D.抛物线答案D解析点P到直线C1D1的距离即为点P到点C1的距离,所以在平面BB1C1C中,点P到定点C1的距离与到定直线BC的距离相等,由抛物线的定义可知,动点P的轨迹为抛物线,故选D.2.如图,正方体ABCD-A1B1C1D1中,P为底面ABCD上的动点.PE⊥A1C于E,且P A=PE,则点P的轨迹是()A.线段B.圆弧C.椭圆的一部分D.抛物线的一部分答案A解析由题意知,△A1AP≌△A1EP,则点P为在线段AE的中垂面上运动,从而与底面ABCD 的交线为线段.3.如图,圆锥的底面直径AB =2,母线VA =3,点C 在母线VB 上,且VC =1,有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是( )A.13B.7C.433D.332答案 B解析 在圆锥侧面的展开图中,AA ′=2π,所以∠AVA ′=AA ′︵VA =23π, 所以∠AVB =12∠AVA ′=π3,由余弦定理得AC 2=VA 2+VC 2-2VA ·VC ·cos ∠AVB =32+12-2×3×1×12=7, 所以AC =7.所以这只蚂蚁爬行的最短距离是7,故选B.4.如图所示,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,长为2的线段MN 的一个端点M 在棱DD 1上运动,另一端点N 在正方形ABCD 内运动,则MN 中点轨迹的面积为( )A.4πB.2πC.πD.π2答案 D解析 易知DD 1⊥平面ABCD ,∠MDN =90°,取线段MN 的中点P ,则DP =12MN =1,所以点P 的轨迹是以D 为球心,1为半径的18球面,故S =18×4π×12=π2. 5.已知MN 是长方体外接球的一条直径,点P 在长方体表面上运动,长方体的棱长分别是1,1,2,则PM →·PN →的取值范围为( )A.⎣⎢⎡⎦⎥⎤-12,0B.⎣⎢⎡⎦⎥⎤-34,0 C.⎣⎢⎡⎦⎥⎤-12,1 D.⎣⎢⎡⎦⎥⎤-34,1 答案 B解析 根据题意,以D 为坐标原点,DA →为x 轴正方向,DC →为y 轴正方向,DD 1→为z 轴正方向,建立空间直角坐标系,如图所示.设长方体外接球球心为O , 则DB 1为外接球的一条直径,设O 为DB 1的中点,不妨设M 与D 重合,N 与B 1重合. 则外接球的直径长为12+12+(2)2=2,所以半径r =1,所以PM →·PN →=(PO →+OM →)·(PO →+ON →)=(PO →+OM →)·(PO →-OM →)=|PO →|2-|OM →|2=|PO →|2-1,由P 在长方体表面上运动,所以|PO →|∈⎣⎢⎡⎦⎥⎤12,1,即|PO →|2∈⎣⎢⎡⎦⎥⎤14,1,所以|PO→|2-1∈⎣⎢⎡⎦⎥⎤-34,0, 即PM →·PN →∈⎣⎢⎡⎦⎥⎤-34,0.6.点P 为棱长是25的正方体ABCD -A 1B 1C 1D 1的内切球O 球面上的动点,点M 为B 1C 1的中点,若满足DP ⊥BM ,则动点P 的轨迹的长度为( ) A.π B.2π C.4π D.25π答案 C解析 根据题意知,该正方体的内切球半径为r =5, 如图,取BB 1的中点N ,连接CN ,则CN ⊥BM , 在正方体ABCD -A 1B 1C 1D 1中,CN 为DP 在平面B 1C 1CB 中的射影,∴点P 的轨迹为过D ,C ,N 的平面与内切球的交线, ∵正方体ABCD -A 1B 1C 1D 1的棱长为25, ∴O 到过D ,C ,N 的平面的距离为1, ∴截面圆的半径为(5)2-1=2,∴点P 的轨迹的长度为2π×2=4π.7.(2022·北京卷)已知正三棱锥P -ABC 的六条棱长均为6,S 是△ABC 及其内部的点构成的集合.设集合T ={Q ∈S |PQ ≤5},则T 表示的区域的面积为( ) A.3π4 B.π C.2π D.3π答案 B解析 设顶点P 在底面上的投影为O ,连接BO ,则O 为△ABC 的中心, 且BO =23×6×32=23, 故PO =36-12=2 6.因为PQ =5,故OQ =1,故Q 的轨迹为以O 为圆心,1为半径的圆,而△ABC 内切圆的圆心为O ,半径为2×34×363×6=3>1,故Q 的轨迹圆在△ABC 内部, 故其面积为π.8.如图,三角形P AB 所在的平面α和四边形ABCD 所在的平面β垂直,且AD ⊥α,BC ⊥α,AD =4,BC =8,AB =6,∠APD =∠CPB ,则点P 在平面α内的轨迹是( )A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案 A解析 由条件易得AD ∥BC ,且∠APD =∠CPB ,AD =4,BC =8, 可得tan ∠APD =AD P A =CBPB =tan ∠CPB , 即PB P A =CBAD =2,在平面P AB 内以AB 所在的直线为x 轴,AB 的中点O 为坐标原点,建立直角坐标系(图略),则A (-3,0),B (3,0), 设P (x ,y ),则有PBP A =(x -3)2+y 2(x +3)2+y2=2, 整理可得x 2+y 2+10x +9=0(x ≠0). 由于点P 不在直线AB 上,故此轨迹为圆的一部分,故答案选A.9.已知正方体ABCD -A ′B ′C ′D ′的棱长为1,点M ,N 分别为线段AB ′,AC 上的动点,点T 在平面BCC ′B ′内,则MT +NT 的最小值是( ) A. 2 B.233 C.62 D.1答案 B解析 A 点关于BC 的对称点为E ,M 关于BB ′的对称点为M ′,记d 为直线EB ′与AC 之间的距离,则MT +NT =M ′T +NT ≥M ′N ≥d ,由B ′E ∥D ′C ,d 为E 到平面ACD ′的距离,因为V D ′-ACE =13×1×S △ACE =13×1×1=13,而V D ′-ACE =V E -ACD ′=13×d ×34×(2)2=36d =13,故d =233.10.如图,长方体ABCD -A ′B ′C ′D ′中,AB =BC =2,AA ′=3,上底面A ′B ′C ′D ′的中心为O ′,当点E 在线段CC ′上从C 移动到C ′时,点O ′在平面BDE 上的射影G 的轨迹长度为( )A.2π3B.3π3C.π3D.3π6答案 B解析 如图,以CA ,CC ′分别为x 轴,y 轴正方向建立平面直角坐标系,则有C (0,0),O (1,0),O ′(1,3),设G (x ,y ), 由O ′G ⊥OG ,可得y x -1·y -3x -1=-1,整理可得⎝⎛⎭⎪⎫y -322+(x -1)2=34,所以点O ′在平面BDE 上的射影G 的轨迹是以F ⎝ ⎛⎭⎪⎫1,32为圆心,半径为32的OG ︵.因为tan ∠GOF =O ′C ′OO ′=33, 所以O ′G =O ′O ·sin ∠GOF =32, 所以△O ′GF 是等边三角形, 即∠GFO =2π3,所以圆弧OG 的长l =2π3×32=3π3.11.如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD (只要填写一个你认为是正确的条件即可).答案 DM ⊥PC (或BM ⊥PC )解析 连接AC ,BD ,则AC ⊥BD ,因为P A ⊥底面ABCD ,BD ⊂平面ABCD ,所以P A ⊥BD .又P A ∩AC =A ,所以BD ⊥平面P AC ,PC ⊂平面P AC , 所以BD ⊥PC ,所以当DM ⊥PC (或BM ⊥PC )时,有PC ⊥平面MBD ,PC ⊂平面PCD ,所以平面MBD⊥平面PCD.12.如图,P是棱长为1的正方体ABCD-A1B1C1D1表面上的动点,且AP=2,则动点P的轨迹的长度为________.答案3π2解析由已知AC=AB1=AD1=2,在平面BC1,平面A1C1中,BP=A1P=DP=1,所以动点P的轨迹是在平面BC1,平面A1C1,平面DC1内分别以B,D,A1为圆心,1为半径的三段圆弧,且长度相等,故轨迹长度和为π2×3=3π2.二、创新拓展练13.在棱长为3的正方体ABCD-A1B1C1D1中,E是AA1的中点,P是底面ABCD 所在平面内一动点,设PD1,PE与底面ABCD所成的角分别为θ1,θ2(θ1,θ2均不为0),若θ1=θ2,则三棱锥P-BB1C1体积的最小值是()A.92 B.52C.32 D.54答案C解析以D为坐标原点建立如图所示空间直角坐标系,因为正方体的棱长为3, 则E ⎝ ⎛⎭⎪⎫3,0,32,D 1(0,0,3),设P (x ,y ,0)(x ≥0,y ≥0),则PE →=⎝ ⎛⎭⎪⎫3-x ,-y ,32,PD 1→=(-x ,-y ,3). 因为θ1=θ2,平面ABCD 的一个法向量z =(0,0,1), 所以|PE →·z ||PE →|·|z |=|PD 1→·z ||PD 1→|·|z |,得32(3-x )2+y 2+94=3x 2+y 2+9,整理得x 2+y 2-8x +12=0, 即(x -4)2+y 2=4(0≤y ≤2), 则动点P 的轨迹为圆的一部分, 所以点P 到平面BB 1C 1的最小距离为1,所以三棱锥P -BB 1C 1体积的最小值是13×12×3×3×1=32.14.(多选)(2022·武汉模拟)如图,设正方体ABCD -A 1B 1C 1D 1的棱长为2,E 为A 1D 1的中点,F 为CC 1上的一个动点,设由点A ,E ,F 构成的平面为α,则( )A.平面α截正方体的截面可能是三角形B.当点F 与点C 1重合时,平面α截正方体的截面面积为26C.当点D 到平面α的距离的最大值为263D.当F 为CC 1的中点时,平面α截正方体的截面为五边形 答案 BCD解析 如图,建立空间直角坐标系,延长AE 与z 轴交于点P ,连接PF 并延长与y 轴交于点M , 则平面α由平面AEF 扩展为平面APM . 由此模型可知A 错误.当点F 与点C 1重合时,截面是一个边长为5的菱形,该菱形的两条对角线长度分别AC 1=22+22+22=23和22+22=22,则此时截面的面积为12×23×22=2 6.当F 为CC 1的中点时,平面α截正方体的截面为五边形,B ,D 正确.D (0,0,0),A (2,0,0),P (0,0,4),设点M 的坐标为(0,t ,0)(t ∈[2,4]), DA →=(2,0,0),AM →=(-2,t ,0),P A →=(2,0,-4), 则可知点P 到直线AM 的距离为d =|P A →|2-⎪⎪⎪⎪⎪⎪⎪⎪P A →·AM →|AM →|2=20t 2+644+t2, S △APM =12t 2+4·d =5t 2+16.S △P AD =12×2×4=4, 设点D 到平面α的距离为h ,利用等体积法V D -APM =V M -P AD ,即13·S △APM ·h =13·S △P AD ·t ,可得h =4t 5t 2+16,则h =45+16t 2, 由h =45+16t 2在t ∈[2,4]上单调递增,所以当t =4时,h 取到最大值为263.故选BCD.15.已知面积为23的菱形ABCD 如图①所示,其中AC =2,E 是线段AD 的中点.现沿AC 折起,使得点D 到达点S 的位置,此时二面角S -AC -B 的大小为120°,连接SB ,得到三棱锥S -ABC 如图②所示,则三棱锥S -ABC 的体积为________;若点F 在三棱锥的表面运动,且始终保持EF ⊥AC ,则点F 的轨迹长度为________.答案 32 3+32解析 依题意,12AC ·BD =BD =23,点S 到平面ABC 的距离为3sin 60°=32,△ABC 的面积为12×23=3,则三棱锥S-ABC的体积为13×3×32=32.如图,取AC边上靠近点A的四等分点G,取BA的中点为H,连接EH,EG,GH,故点F的轨迹长度即为△EHG的周长,又EG=GH=32,EH=12SB=32,故点F的轨迹长度为3+32.16.如图,三棱锥S-ABC的所有棱长均为1,SH⊥底面ABC,点M,N在直线SH上,且MN=33,若动点P在底面ABC内,且△PMN的面积为212,则动点P的轨迹长度为________.答案6π12解析设P到直线MN的距离为d,由题易得d=6 6,易知H为△ABC的中心,又MN⊥平面ABC,当点P在平面ABC内时,其轨迹是以H为圆心,66为半径的圆.∵△ABC内切圆的半径为3 6,∴圆H的一部分位于△ABC外,结合题意得,点P的轨迹为圆H位于底面△ABC 内的三段相等的圆弧(利用正三角形的性质判断出圆H有一部分在△ABC外,才能正确得到点P的轨迹),如图,过点H作HO⊥AC,垂足为O,则HO=36,记圆H与线段OC的交点为K,连接HK,可得HK=66,∴cos∠OHK=OHHK=3666=22,∴∠OHK=π4,∴点P的轨迹长度为圆H周长的14(利用圆及正三角形的对称性分析求解),∴点P的轨迹长度为14×2π×66=6π12.。
空间轨迹问题的求解策略
高 中 生 之 友 2 0 1 0 1 2 上 半 月 刊 】4
. .
1
奠学导学 i 盆 s 。 m
( B ) 一个 圆, 但要 去掉 两个 点 ( C ) 一个椭 圆, 但 要去掉两个点 ( D) 半圆 , 但要去掉两个点
点拨 : 因 为 要 判 断 动 点 C在 平 面 a 内 的 轨 迹 , 故 例4 ( 2 0 0 6年 北京 高考 题 ) 平 面 仅的 斜 线 A B 交
系, 再结合平面中判 断轨迹 的方法进 行判 断是处 理这
类问题最基本 的方 法.
二 交 轨 法
’
点评 : 这类 问题求 解的关 键是 找出动点 在空 间 的 几何性质 , 使动点满足某种空 间几何 图形 的定义 , 借此
例3 ( 2 0 0 8年 浙 江 高 考 题 ) 分析其轨迹构成 。 如 图, A B是 平 面 a的斜 线 段 , A
( 去 掉 两个 点 A、 B) , 即选 B 。 点评 : 将空间的位置关 系转化 为平面 中的位 置关
轨迹应是直线 A B的垂直 平面 1 3 。再 结合点 C一定 在 平面 内 , 所 以点 C的轨 迹 应该 是 两平 面 O t , 1 3的交
线, 所 以 点 C的轨 迹 是 一条 直线 。故 选 A 。
间 的 轨 迹 是 一个 以直 线 A B为 中轴 线 的圆 柱 面 , 动点 P 在 平 面 内 的 轨 迹 就 是 圆 柱 面 与 平 面 的 交 线 。 又
系, 设 出动点坐标 , 列 出关系式 , 将抽 象 的空间 图形关
系 转 化 为 数 据 的处 理 。
解析 : 如图所示建 立 空间坐标 系 , 设侧面 B B 1 C C 及其 边 界 上 点 M( , a, z ) 。 由 题 设 知 A( a , 0 , 0 ) ,
高考专题 立体几何中轨迹、翻折、探索性问题
12
解析:如图所示,连接 AC1 交平面 A1BD 于 O,连接 EO, 由题意可知 AC1⊥平面 A1BD, 所以∠AEO 是 AE 与平面 A1BD 所成的角,所以∠AEO=α.
返回导航
13
由 sin α=255可得 tan α=2,即AEOO=2. 在四面体 A-A1BD 中,BD=A1D=A1B=2 6, AB=AD=AA1=2 3,所以四面体 A-A1BD 为正三棱锥,O 为△BDA1 的重心,
返回导航
17
∴平面 BCE∥平面 MND,即平面 MND 为平面 α, 则点 G 到平面 DMN 的距离 d 即为点 G 到直线 DQ 的距离, ∵D→G=0, 33,- 36,D→Q=(0,-2 3,- 6), ∴D→G·D→Q=-2+2=0,即 DG⊥DQ, ∴点 G 到直线 DQ 的距离 d=|D→G|=1, ∴截面圆的半径 r= 22-12= 3,∴球被平面 α 截得的截面圆周长为 2πr=2 3π, 即平面 α 截点 P 的轨迹所形成的图形的周长为 2 3π.
返回导航
19
解: (1)证明:在△ABD 中,由余弦定理得,BD= AB2+AD2-2AB·ADcos A= 4+1-2×2×1×12= 3,
∴AD2+BD2=AB2,得 AD⊥DB,翻折后有 A′D⊥DB, 又平面 A′BD⊥平面 BCD,且平面 A′BD∩平面 BCD=DB, 根据平面与平面垂直的性质定理可得 A′D⊥平面 BCD, 又∵BC⊂平面 BCD,∴A′D⊥BC. 在平行四边形 ABCD 中,AD⊥DB,BC∥AD,∴BC⊥DB, ∵A′D∩DB=D,∴BC⊥平面 A′DB, ∵BC⊂平面 A′BC,∴平面 A′BC⊥平面 A′BD.
返回导航
15
立体几何中点的轨迹问题
PF⊥于ABC于F,连接FG,则∠PGF是二面角V—AB—C的平面角, 由题设知VP=PF,
而sin∠PGF是一个小于1的正常数,即动点P到定点V和到 定直线AB的距离之比为一个小于1的正常数,所以P点的轨迹是 椭圆的一部分。
二、动点为空间中的动点 动点为空间的点,它的轨迹就可能是直线、平面或曲面, 在中学最大的可能是球面,例如到正方体相连三个面的距离都 相等的点的轨迹就是正方体的对角线;到空间两点距离相等的点 构成一个平面;在平面同侧且到平面距离相等的点在一个与已知 平面平行的平面上;到一条直线的距离相等的点构成一个圆柱 面;当然,到一定点距离为定值的点构成一个球面,等等。 例5.在正方体ABCD—EFGH中,棱长为2,M在DH上,N在面 ABCD上,MN=2,P点为MN的中点,求P点的轨迹与正方体的面围 成的几何体的体积。
数学教研
立体几何中点的轨迹问题
◇ 杜永明
点的轨迹问题是平面解析几何中的一个重要内容,对于大 多数学生来讲都是很难解决的,如果把问题与立体几何结合即 探求空间某点的轨迹,可以说是难上加难!在此本文仅以几个 例子说明空间点的轨迹问题的解决方法,以期能抛砖引玉,给 广大学生一些启示。
一、动点在几何体的某个面上 如果动点在几何体的某个面上,则它的轨迹就与平面解析 几何中的轨迹问题相同,就可能是直线和圆锥曲线等,不过往 往是其中的一部分而已。 例1.动点P在正方体ABCD-A1B1C1D1的ABB1A1面上,且 PB=PB1,则P点的轨迹是 线段BB1的垂直平分线。 例2.如图ABCD 为直角梯形,∠ ABC=90°,AD⊥面PAB, AD=4,BC=8,∠APD=∠ BPC,求P点的轨迹。
(作者单位:重庆市涪陵区第七中学校)
⊥AB于G,
解析:连结DN,则三角形MDN为直角三角形,于是 ,即点P到定点D的距离为定值1,所以P点的轨