九年级数学周测试卷

合集下载

2022-2023学年度九年级数学下册模拟 测试卷 (7596)

2022-2023学年度九年级数学下册模拟 测试卷 (7596)

2022-2023学年度九年级数学下册模拟测试卷考试范围:九年级下册数学;满分:100分;考试时间:100分钟;出题人;数学教研组题号 一 二 三 总分 得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 评卷人 得分一、选择题1.正三角形的内切圆半径与外接圆半径及高线长的比为( ) A .1:2:3B .2:3:4C .1:2:3D .1:3:22.如图,水平放置的甲、乙两区域分别由若干大小完全相同的黑色、白色正三角形组成,小明随意向甲、乙两个区域各抛一个小球,P (甲)表示小球停在甲中黑色三角形上的概率,P (乙)表示小球停在乙中黑色三角形上的概率,下列说法中正确的是( ) A .P (甲)>P (乙)B . P (甲)= P (乙)C . P (甲)< P (乙)D . P (甲)与P (乙)的大小关系无法确定3.一辆卡车沿倾斜角为 α的山坡前进了100米,那么这辆卡车上升的高度为 ( )A .l00 sin α米B . l00cos α米C .l00tan α米D .100tan米 4.在△ABC 中,∠C= Rt ∠,AC :BC=2:3,则 tanB 的值等于 ( )A .23B .13C .1313D .313135.某人沿坡度为 26°的斜坡行进了 100 米,他的垂直高度上升了( ) A .0100sin 6米B .0100cos 26米C .0100tan 26米 D .100tan 26米6.如图所示,从山顶A 望地面C 、D 两点,俯角分别为 45°、30°,如果CD= 100 m ,那么山高AB 为( )A .lOOmB . 50(31)+mC .502D .5037. 如图,在300 m 高的峭壁上测得一塔顶与塔基的俯角分别为 30°和 60°,则塔高 CD 约为( ) A .100mB .200mC .150mD .180m8.如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m (即小颖的眼睛距地面的距离),那么这棵树高是( ) A .(53332+)m B .(3532)m C .533m D .4m9.小明和五名女同学和另四名男同学玩丢手帕游戏,小明随意将手帕丢在一名同学的后面,那么这名同学是女生的概率是( ) A .59B .49C .12D . 4510.()2a b --等于( ) A .22a b +B .22a b -C .222a ab b ++D .222a ab b -+11.下列说法正确的是( )A .三角形的内心到三角形的三个顶点的距离相等B .三角形的内心到三角形的三条边的距离相等C .三角形的内心是三角形的三条中线的交点D .三角形的内心是三角形三边的中垂线的交点12. 由于暴雨,路面积水达 0.1m ,已知一个车轮入水最大深度 CD 正好为此深度时,车轮入水部分的最大弦AB 长为 0.4 m (如图),则此车轮的半径为( ) A .0. 2 mB .0. 25 mC .0. 3 mD .0. 4 mP O A ·13.已知关于x 的一元二次方程221()04x R r x d -++=无实数根,其中 R 、r 分别是⊙O 1、⊙O 2的半径,d 为两圆的圆心距,则⊙O 1、⊙O 2的位置关系为( ) A .外切B .内切C .外离D .外切或内切14.如图,P 为⊙O 外一点,PA 切⊙O 于点A ,且OP=5,PA=4,则sin ∠APO 等于( ) A .54B .53C .34D .4315.若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面共有 ( ) A .5桶B .6桶C .9桶D .12桶16.如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD=12 m ,塔影长DE=18 m ,小明和小华的身高都是1.6m ,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,那么塔高AB 为( ) A .24m B .22m C .20 m D .18 m17.在一个晴朗的好天气里,小明向正北方向 走路时,发现自己的身影向右偏,则小明当 时所处的时间是( )A .上午B .中午C .下午D .无法确定 18.下列说法错误的是( ) A .太阳光所形成的投影为平行投影B .在一天的不同时刻,同一棵树所形成的影子长度不可能一样C .在一天中,不论太阳怎样变化,两棵相邻平行树的影子都是平行的D .影子的长短不仅和太阳的位置有关,还和物体本身的长度有关19.如果用□表示1个立方体,用 表示两个立方体叠加,•用■表示三个立方体叠加,那么下图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )B D20.下面几何体的俯视图正确的是( )A. B. C. D.21.下面设施并不是为了扩大视野、减少盲区而建造的是()A.建筑用的塔式起重机的驾驶室建在较高地方B.火车、汽车驾驶室要建在车头稍高处,且减少车头伸出部分C.指引航向的灯塔建在岸边高处,且灯塔建得也比较高D.建造高楼时首先在地下建造几层地下室22.若半径为1cm和2cm的两圆相外切,那么与这两个圆都相切且半径为3cm的圆的个数为()A.5个B.4个C.3个D.2个评卷人得分二、填空题23.如图,在下列各图形中选择合适的图形填入相应的空格内(填号码):(1)主视图:;左视图:;俯视图:;(2)主视图:;左视图:;俯视图:;(3)主视图:;左视图:;俯视图:;解答题24.若tanα·tan35°=1,则锐角α的度数等于________.25.已知sinA =23,则cosA = .tanA = . 26.升国旗时,某同学站在离旗杆底部 24m 处行注目礼,当国旗升至旗杆顶端时,该同学 视线的仰角 (视线与水平线的夹角 )恰为60°,若双眼离地面 1.5m ,则旗杆的高度为 m .(精确到 1 m)27.袋中装有 1个黑球、2个白球、3个红球,从中任取一个,那么取到的是白球的概率是 .28.小明玩转盘游戏,当他转动如图所示的转盘,转盘停止时指针指向 2 的概率是 .29.甲、乙、丙三名学生各自随机选择到A 、B 两个书店购书. (1)求甲、乙两名学生在不同书店购书的概率; (2)求甲、乙、丙三名学生在同一书店购书的概率.30.如图,⊙O 的半径为 4 cm ,BC 是直径,若AB= 10 cm ,则 AC = cm 时,AC 是⊙O 的切线.31.某商场在“五一”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色乒乓球各两个.顾客摸奖时,一次摸出两个球,如果两个球的颜色相同就得奖,颜色不同则不得奖.那么顾客摸奖一次,得奖的概率是 .2 5 83 9 64 1 732.如图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形可能是___________________.(把下图中正确的立体图形的序号都填在横线上) . 33.如图,P 是α 的边上一点,且 P 点坐标为(3,4),则tan α = .34. 请画出正四棱锥的俯视图. 35.太阳光线所形成的投影称为 .36.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小 (填 “相同”、“不一定相同”、“不相同”之一).37.如图,点 0是△ABC 的内切圆的圆心,若∠BAC=80°,则∠BOC= .38. 如图,在高为 2m ,坡角为 30°的楼梯上铺地毯,则地毯长度至少要 m .39.如图, 如果函数y=-x 与y=x4的图像交于A 、B 两点, 过点A 作AC 垂直于y 轴, 垂足为点C, 则△BOC 的面积为___________.40.王英同学从A 地沿北偏西60方向走100米到B 地,再从B 地向正南方向走200米到C 地,此时王英同学离A 地的距离是米.41.两圆的半径分别为3和5,当这两圆相交时,圆心距d 的取值范围是 .评卷人 得分三、解答题42.如图,△ABC 中,∠A =60°, BC=5 , AB+AC=11,△ABC 的内切圆与AB 、BC 、CA 分别切于点D 、E 、F ,求△ABC 内切圆的半径 r.43.△ABC 中,若∠A,∠B 都是锐角,且0)3(tan 23sin 2=-+-B A ,试判断出△ABC•的形状.44.一辆旅游大巴沿倾斜角为25°的斜坡行驶100 m ,分别求旅游大巴沿水平方向和铅垂方向所经过的距离.45.有五条线段,长度分别为1、3、5、7、9,从中任取三条线段,一定能构成三角形吗?能构成三角形的概率是多少?46.如图所示,在Rt △ABC 中,∠B= 90°,AC=200, sinA=0.6,求BC 的长.47.已知矩形 ABCD 的周长为 12,面积为 8,设∠ACB=α, 求tan α的值.48.阅读下面材料:探求 tanl5°的值.在△ABC 中,∠C= 90°,∠BAC=30°,BC = 1. 如图, 小明利用 30°的直角三角形的性质得出 AB= 2BC= 2,再由勾股定理知道,AG =2222213AB BC -=-=他突发奇想:若延长CA 到 D ,使 AD=AB ,则∠D=∠DBA ,∵∠BAC = 30°,∴∠D=15°,且23CD CA AD AC AB =+=+=+,故:1tan152323oBC CD ===-+, 同理也可求出0tan 7523CDBG==+.亲爱的同学们,你能利用上述方法求出tan22. 5°的值吗,请试一试.49.如图所示,在离地面高度为5m 处引拉线固定电线杆,拉线和地面成 60°角,求AC 和AD 的长.50.已知,4425,7522==y x 求22)()(y x y x --+的值.51.根据生物学家的研究,人体的许多特征都是由基因控制的,有的人是单眼皮,有的人是双眼皮,这是由一对人体基因控制的,控制单眼皮的基因f 是隐性的,控制双眼皮的基因F 是显性的,这样控制眼皮的一对基因可能是ff 、FF 或Ff ,基因ff 的人是单眼皮,基因FF 或Ff 的人是双眼皮.在遗传时,父母分别将他们所携带的一对基因中的一个遗传给子女,而且是等可能的,例如,父母都是双眼皮而且他们的基因都是Ff ,那么他们的子女只有ff 、FF 或Ff 三种可能,具体可用下表表示:你能计算出他们的子女是双眼皮的概率吗?如果父亲的基因是Ff ,母亲的基因是ff 呢?52.一只不透明的袋子中,装有2个白球和1个红球,这些球除颜色外其余都相同. (1)小明认为,搅均后从中任意摸出一个球,不是白球就是红球,因此摸出白球和摸出红球是等可能的,你同意他的说法吗?为什么?(2)搅均后从中一把摸出两个球,求两个球都是白球的概率; (3)搅均后从中任意摸出一个球,要使摸出红球的概率为32,应如何添加红球?53.如图,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点36B OA OP ==,,,求BAP ∠的度数.54.AB 是⊙O 的直径,D 是⊙O 上一动点,延长AD 到C 使CD =AD ,连结BC 、BD .(1)证明:当D点与A点不重合时,总有AB=BC;(2)设⊙O的半径为2,AD=x,BD=y,用含x的式子表示y;(3)BC与⊙O是否有可能相切?若不可能相切,请说明理由;若能相切,请求出x为何值时相切.55.如图所示为点光源 N 照射下的两个竖直标杆 AB、CD 以及它们的影子 BE 和DF.(1)找出点光源N的位置;(2)Rt△ABE 与 Rt△CDF 相似吗?请说明理由.56.一撞大楼高 30 m,小明在距大楼495 m处看大楼,由于前面有障碍物遮挡,他站在lm高的凳子上,恰好看见大楼的楼顶. 他若向后退,需要退后多远才能看见这撞大楼的楼顶? (已知小明的眼睛离地面距离为1.5 m)57.两棵小树在同一时刻的影子如图所示,请在图中画出形成树影的光线,并判断它们是太阳的光线还是灯光光线?并在图中画出小明的影子.58.田忌赛马是一个为人熟知的故事.传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出一匹,每匹马赛一次,赢得两局者为胜.看样子田忌似乎没有什么胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马要强……( 1 )如果齐王将马按上中下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能取胜? ( 2 )如果齐王将马按上中下的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况)59.将分别标有数字1,1,2,3的四张卡片洗匀后,背面朝上放在桌面上.(1)任意抽取一张卡片,求抽到卡片上的数字是奇数的概率;(2)任意抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,请你列表或画树状图分析并求出组成的两位数中恰好是13的概率.60.小明和小乐做摸球游戏,一只不透明的口袋里放有 3 个红球和 5 个绿球,每个球除颜色外都相同,每次摸球前都将袋中的球充分搅匀,从中任意摸出一个球,记录颜色后再放回,若是红球,小明得 3 分,若是绿球,小乐得 2 分,游戏结束时得分多者获胜.(1)你认为这个游戏对双方公平吗?(2)若你认为公平,请说明理由;:若你认为不公平,也请说明理由,并修改规则. 使该游戏对双方公平.【参考答案】一、选择题1.A2.B3.A4.A5.A6.B7.B8.A9.A10.C11.B12.B13.C14.B15.B17.C 18.B 19.B 20.B 21.D 22.A二、填空题23.无24.无25.无26.无27.无28.无29.无30.无31.无32.无34.无35.无36.无37.无38.无39.无40.无41.无三、解答题42.无43.无44.无45.无46.无47.无48.无49.无51.无52.无53.无54.无55.无56.无57.无58.无59.无60.无。

2022-2023学年人教版九年级下册数学 第二十六章反比例函数 章节测试卷

2022-2023学年人教版九年级下册数学 第二十六章反比例函数 章节测试卷

九年级下册数学《第二十六章反比例函数》章节测试卷测试时间:120分钟试卷满分:120分一.选择题(共10小题,共30分)1.(2022秋•招远市期中)下列函数中,y是x的反比例函数的有()个.①y=−1x;①y=3x;①xy=﹣1;①y=3x;①y=2x−1;①y=1x−1.A.2B.3C.4D.52.(2022秋•沈河区校级期中)关于反比例函数y=−4x下列说法正确的是()A.图象经过点(﹣2,﹣2)B.图象分别在第一、三象限C.在每个象限内,y随x的增大而增大D.当y≤1时,x≤﹣43.(2022•鹿城区校级开学)如图,A为反比例函数y=kx(k>0)图象上一点,AB①x轴于点B,若S①AOB=3,则k的值为()A.1.5B.3C.√3D.64.(2022秋•晋州市期中)在同一平面直角坐标系中,反比例函数y=kx与一次函数y=kx﹣k(k为常数,且k≠0)的图象可能是()A .B .C .D .5.(2022•鼓楼区校级模拟)在平面直角坐标系中,若一个反比例函数的图象经过A (m ,6),B (5,n )两点,则m ,n 一定满足的关系式是( ) A .m ﹣n =1B .m n=56C .m n=65D .mn =306.(2022秋•石阡县期中)若P 1(x 1,y 1),P 2(x 2,y 2)是反比例函数y =−6x的图象上的两点,且x 1<x 2<0,则( ) A .0<y 2<y 1B .0<y 1<y 2C .y 1<0<y 2D .y 2<0<y 17.(2022秋•虹口区校级期中)下列函数中,y 的值随x 值的增大而增大的函数是( ) A .y =2xB .y =﹣2x +1C .y =x ﹣2D .y =﹣x ﹣28.(2022春•丰城市校级期末)如图已知反比例函数C 1:y =k x(k <0)的图象如图所示,将该曲线绕点O 顺时针旋转45°得到曲线C 2,点N 是曲线C 2上一点,点M 在直线y =﹣x 上,连接MN 、ON ,若MN =ON ,①MON 的面积为2√3,则k 的值为( )A.﹣2B.﹣4C.−2√3D.−4√39.(2022秋•平桂区期中)如图,正比例函数y1=k1x的图象与反比例函数y2=k2x的图象相交于A、B两点,其中A点的横坐标为3,当y1<y2时,x的取值范围是()A.x<﹣3或x>3B.x<﹣3或0<x<3C.﹣3<x<0或0<x<3D.﹣3<x<0或x>310.(2022秋•覃塘区期中)如图,已知点A(﹣1,6)在双曲线y=kx(x<0)上,动点P在y轴正半轴上,将点A绕点P逆时针旋转90°,点A的对应点为B,若点B恰好落在双曲线上,则点P的坐标为()A.(0,3)B.(3,0)或(4,0)C.(0,2)或(0,6)D.(0,3)或(0,4)二.填空题(共8小题,共24分)11.(2022秋•蜀山区校级月考)若函数y=(m−1)x m2−2是反比例函数,则m的值是.12.(2022秋•澧县期中)若反比例函数y=kx的图象经过点(﹣2,32),则此函数的解析式为.13.(2022秋•固镇县校级期中)如图,点P(x,y)在双曲线y=kx的图象上,P A①x轴,垂足为A,若S①AOP=4,则该反比例函数的表达式为.14.(2022秋•淄川区月考)在反比例y=k−1x的图象的每一支上,y都随x的增大而减小,且整式x2﹣kx+4是一个完全平方式,则该反比例函数的解析式为.15.(2022秋•冷水滩区校级月考)已知y关于x的函数表达式是y=a−1x,且x=2时,y=3,则a的值为.16.(2022秋•滁州期中)如图,双曲线y=kx(x>0)与正方形ABCD的边BC交于点E,与边CD交于点F,且BE=3CE,A(4,0),B(8,0),则CF=.17.(2022秋•莱阳市期中)如图,在平面直角坐标系中,菱形ABOC的顶点A在反比例函数y=kx(k>0,x>0)的图象上,点C的坐标为(4,3),则k的值为.18.(2022春•锡山区期末)点P,Q,R在反比例函数y=kx(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 2+S 3=20,则S 1的值为 .三.解答题(共66分)19.(6分)(2022秋•德江县期中)已知反比例函数y =kx (k ≠0)的图象经过点A (2,6). (1)求这个函数的表达式;(2)点B (10,65),C (﹣3,﹣5)是否在这个函数的图象上?20.(7分)(2022秋•青浦区校级期中)已知:y =y 1﹣y 2,并且y 1与x 成正比例,y 2与(x ﹣2)成反比例,且当x =﹣2时,y =﹣7,当x =3时,y =13,求: (1)求y 与x 之间的函数解析式; (2)求当x =√2时的函数值.21.(7分)(2022•游仙区校级二模)如图,菱形ABOC在平面直角坐标系中,边OB在x轴的负半轴上,点C在反比例函数y=kx(k≠0)的图象上.若AB=2,①A=60°,求反比例函数的解析式.22.(9分)(2022秋•中山区月考)某气球内充满了一定量的气体,当温度不变时,气球内气体的压强P(kPa)是气体体积V(m3)的反比例函数,其图象过点A(0.8,120)如图所示.(1)求这一函数的表达式;(2)当气体压强为48kPa时,求V的值;(3)当气球内的体积小于0.6m3时,气球将爆炸,为了安全起见,气体的最大压强为多少?23.(9分)(2022秋•中原区月考)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=m x的图象的两个交点.(1)求反比例函数和一次函数的函数关系式;(2)求①AOB的面积;(3)求出反比例函数大于一次函数的解集.24.(8分)(2022秋•如皋市期中)如图,矩形ABCD的两边AD,AB的长分别为3,8.边BC落在x轴上,E是AB的中点,连接DE,反比例函数y=mx的图象经过点E,与CD交于点F.(1)若B(3,0),求F点坐标;(2)若DF=DE,求反比例函数的解析式.25.(8分)(2022秋•虹口区校级期中)如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=1x和y=9x在第一象限的图象于点A,B,过点B作BD①x轴于点D,交y=1x的图象于点C,联结AC,若①ABC是等腰三角形,求k的值.26.(12分)(2022秋•青浦区校级期中)如图,A为反比例函数y=kx(k<0)的图象上一点,AP①y轴,垂足为P.(1)联结AO,当S①APO=2时,求反比例函数的解析式;(2)联结AO,若A(﹣1,2),y轴上是否存在点M,使得S①APM=S①APO,若存在,求出M的坐标:若不存在,说明理由,(3)点B在直线AP上,且PB=3P A,过点B作直线BC①y轴,交反比例函数的图象于点C,若①P AC的面积为4,求k的值.九年级下册数学《第二十六章反比例函数》章节测试卷解析版测试时间:120分钟试卷满分:120分三.选择题(共10小题,共30分)1.(2022秋•招远市期中)下列函数中,y是x的反比例函数的有()个.①y=−1x;①y=3x;①xy=﹣1;①y=3x;①y=2x−1;①y=1x−1.A.2B.3C.4D.5【分析】根据反比例函数的定义(形如y=kx(k为常数,k≠0)的函数称为反比例函数)逐一判断即可得答案.【解答】解:①y=−1x,符合反比例函数的定义,是反比例函数;①y=3x,符合反比例函数的定义,是反比例函数;①xy=﹣1,符合反比例函数的定义,是反比例函数;①y=3x,不符合反比例函数的定义,不是反比例函数;①y=2x−1,不符合反比例函数的定义,不是反比例函数;①y=1x−1,不符合反比例函数的定义,不是反比例函数.故选:B.【点评】本题考查了反比例函数的定义,形如y=kx(k为常数,k≠0)的函数称为反比例函数.其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.2.(2022秋•沈河区校级期中)关于反比例函数y=−4x下列说法正确的是()A.图象经过点(﹣2,﹣2)B.图象分别在第一、三象限C.在每个象限内,y随x的增大而增大D.当y≤1时,x≤﹣4【分析】根据反比例函数的性质对各选项进行逐一分析即可.【解答】解:A、①(﹣2)×(﹣2)=4≠﹣4,①图象不经过点(﹣2,﹣2),故本选项不符合题意;B 、①﹣4<0,①图象分别在第二、四象限,故本选项不符合题意; C 、①﹣4<0,①在每个象限内,y 随x 的增大而增大,故本选项符合题意; D 、当0<y ≤1时,x ≤﹣4,故本选项不符合题意. 故选:C .【点评】本题考查的是反比例函数的性质,熟知反比例函数y =kx(k ≠0)的图象是双曲线;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大是解题的关键.3.(2022•鹿城区校级开学)如图,A 为反比例函数y =kx (k >0)图象上一点,AB ①x 轴于点B ,若S ①AOB =3,则k 的值为( )A .1.5B .3C .√3D .6【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即S =12|k |.【解答】解:由于点A 是反比例函数y =k x图象上一点,则S ①AOB =12|k |=3; 又由于k >0,则k =6. 故选:D .【点评】本题考查了反比例函数系数的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得三角形面积为12|k |,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.4.(2022秋•晋州市期中)在同一平面直角坐标系中,反比例函数y=kx与一次函数y=kx﹣k(k为常数,且k≠0)的图象可能是()A.B.C.D.【分析】分别根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【解答】解:A、①由反比例函数的图象在一、三象限可知,k>0,①﹣k<0,①一次函数y=kx﹣k的图象应该经过一、三、四象限,故本选项不符合题意;B、①由反比例函数的图象在二、四象限可知,k<0,①﹣k>0,①一次函数y=kx﹣k的图象应该经过一、二、四象限,故本选项符合题意;C、①由反比例函数的图象在二、四象限可知,k<0,①﹣k>0,①一次函数y=kx﹣k的图象应该经过一、二、四象限,故本选项不符合题意;D、①由反比例函数的图象在一、三象限可知,k>0,①﹣k<0,①一次函数y=kx﹣k的图象应该经过一、三、四象限,故本选项不符合题意;故选:B.【点评】本题考查的是反比例函数及一次函数图象,解答此题的关键是先根据反比例函数所在的象限判断出k的符号,再根据一次函数的性质进行解答.5.(2022•鼓楼区校级模拟)在平面直角坐标系中,若一个反比例函数的图象经过A(m,6),B(5,n)两点,则m,n一定满足的关系式是()A .m ﹣n =1B .m n=56C .m n=65D .mn =30【分析】设该函数解析式为y =k x,由题意可得6m =5n =k ,可求得此题结果. 【解答】解:设该函数解析式为y =kx ,由题意可得: 6m =5n =k , 即6m =5n , 解得m n=56,故选:B .【点评】此题考查了运用待定系数法求反比例函数解析式解决相关问题的能力,关键是能灵活运用该方法进行变式求解.6.(2022秋•石阡县期中)若P 1(x 1,y 1),P 2(x 2,y 2)是反比例函数y =−6x的图象上的两点,且x 1<x 2<0,则( ) A .0<y 2<y 1B .0<y 1<y 2C .y 1<0<y 2D .y 2<0<y 1【分析】根据反比例函数的性质和增减性,结合横坐标的大小和正负,即可得到答案. 【解答】解:①反比例函数y =−6x ,k <0, ①x <0时,y >0,y 随着x 的增大而增大, 又①x 1<x 2<0, ①0<y 1<y 2. 故选:B .【点评】本题考查了反比例函数图象上点的坐标特征,正确掌握反比例函数的性质和增减性是解题的关键.7.(2022秋•虹口区校级期中)下列函数中,y 的值随x 值的增大而增大的函数是( ) A .y =2xB .y =﹣2x +1C .y =x ﹣2D .y =﹣x ﹣2【分析】根据一次函数和反比例函数的性质分别进行判断即可.【解答】解:A、y=2x是反比例函数,k=2>0,在每个象限内,y随x的增大而减小,所以A选项不合题意;B、y=﹣2x+1是一次函数,k=﹣2<0,y随x的增大而减小,所以B选项不合题意;C、y=x﹣2是一次函数,k=1>0,y随x的增大而增大,所以C选项符合题意;D、y=﹣x﹣2是一次函数,k=﹣1<0,y随x的增大而减小,所以D选项不合题意.故选:C.【点评】本题考查了反比例函数的性质,一次函数的性质,熟练掌握反比例函数与一次函数的性质是解题的关键.8.(2022春•丰城市校级期末)如图已知反比例函数C1:y=kx(k<0)的图象如图所示,将该曲线绕点O顺时针旋转45°得到曲线C2,点N是曲线C2上一点,点M在直线y=﹣x上,连接MN、ON,若MN=ON,①MON的面积为2√3,则k的值为()A.﹣2B.﹣4C.−2√3D.−4√3【分析】将直线y=﹣x和曲线C2绕点O逆时针旋转45°,则直线y=﹣x与x轴重合,曲线C2与曲线C1重合,即可求解.【解答】解:①将直线y=﹣x和曲线C2绕点O逆时针旋转45°后直线y=﹣x与x轴重合,①旋转后点N落在曲线C1上,点M落在x轴上,如图所示,设点M和点N的对应点分别为点M'和N',过点N'作N'P①x轴于点P,连接ON',M'N',①MN=ON,①M'N'=ON',M'P=OP,①S①MON=2S①PN'O=2×12|k|=|k|=2√3,①k<0,①k=﹣2√3.故选:C.【点评】本题考查了反比例函数比例系数k的几何意义、旋转的性质,体现了直观想象、逻辑推理的核心素养.9.(2022秋•平桂区期中)如图,正比例函数y1=k1x的图象与反比例函数y2=k2x的图象相交于A、B两点,其中A点的横坐标为3,当y1<y2时,x的取值范围是()A.x<﹣3或x>3B.x<﹣3或0<x<3C.﹣3<x<0或0<x<3D.﹣3<x<0或x>3【分析】由正、反比例的对称性结合点A的横坐标即可得出点B的横坐标,根据函数图象的上下位置关系结合交点的横坐标,即可得出不等式y1<y2的解集.【解答】解:①正比例函数与反比例函数的图象均关于原点对称,点A的横坐标为3,①点B的横坐标为﹣3.观察函数图象,发现:当0<x<3或x<﹣3时,正比例函数图象在反比例函数图象的下方,①当y1<y2时,x的取值范围是x<﹣3或0<x<3.故选:B.【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是找出点B的横坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数的对称性找出两函数交点的横坐标,再根据函数图象的上下位置关系结合交点的横坐标解决不等式是关键.10.(2022秋•覃塘区期中)如图,已知点A(﹣1,6)在双曲线y=kx(x<0)上,动点P在y轴正半轴上,将点A绕点P逆时针旋转90°,点A的对应点为B,若点B恰好落在双曲线上,则点P的坐标为()A.(0,3)B.(3,0)或(4,0)C.(0,2)或(0,6)D.(0,3)或(0,4)【分析】先把A(﹣1,6)代入反比例函数y=kx(x<0)求出k的值,分别过A、B两点作x轴的垂线AC,BD,由旋转的性质证明①APC①①PBD,再设P(0,m),即可得出B 的坐标,由双曲线上的点横坐标与纵坐标的积即相等,列方程求m的值,确定P点坐标.【解答】解:分别过A 、B 两点作AC ①y 轴,BD ①y 轴,垂足为C 、D ,①A (﹣1,6)是双曲线y =k x(x <0)上一点, ①k =﹣6,①反比例函数的解析式为y =−6x , ①①APB =90°, ①①APC +①BPD =90°, 又①APC +①P AC =90°, ①①P AC =①BPD , 在①APC 和①PBD 中, {∠PAC =∠BPD∠ACP =∠PDB =90°AP =PB, ①①APC ①①PBD (AAS ), ①CP =BD ,AC =PD =1, 设P (0,m ), ①OP =m , ①PC =6﹣m , ①B (m ﹣6,m ﹣1), ①点B 在双曲线上,①m ﹣1=−6m−6,解得m =3或m =4, ①P (0,3)或(0,4). 故选:D .【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键. 四.填空题(共8小题,共24分)11.(2022秋•蜀山区校级月考)若函数y =(m −1)x m2−2是反比例函数,则m 的值是 .【分析】形如y =kx(k 为常数,k ≠0)的函数称为反比例函数,由此即可判断. 【解答】解:因为函数y =(m ﹣1)x m 2−2是自变量为x 的反比例函数,所以m 2﹣2=﹣1,m ﹣1≠0, 所以m =﹣1. 故答案为:﹣1.【点评】本题考查反比例函数的定义,解题的关键是记住反比例函数的定义,属于中考基础题.12.(2022秋•澧县期中)若反比例函数y =kx 的图象经过点(﹣2,32),则此函数的解析式为 .【分析】把(﹣2,32)代入y =kx 中求出k 即可得到反比例函数解析式,【解答】解:把(﹣2,32)代入y =kx 中,得32=k−2,解得k =﹣3,所以反比例函数解析式为y =−3x . 故答案为:y =−3x .【点评】本题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,熟知待定系数法是解题的关键.13.(2022秋•固镇县校级期中)如图,点P (x ,y )在双曲线y =kx的图象上,P A ①x 轴,垂足为A ,若S ①AOP =4,则该反比例函数的表达式为 .【分析】根据反比例函数的几何意义解答即可.【解答】解:①点P (x ,y )在双曲线y =kx 的图象上,P A ①x 轴, ①xy =k ,OA =﹣x ,P A =y . ①S ①AOP =4, ①12AO •P A =4.①﹣x •y =8. ①xy =﹣8, ①k =xy =﹣8.①该反比例函数的解析式为xy 8﹣=.故答案为:xy 8﹣=.【点评】本题主要考查了反比例函数的几何意义,反比例函数图象上点的坐标的特征,待定系数法,利用点的坐标表示出相应线段的长度是解题的关键.14.(2022秋•淄川区月考)在反比例y =k−1x 的图象的每一支上,y 都随x 的增大而减小,且整式x 2﹣kx +4是一个完全平方式,则该反比例函数的解析式为 . 【分析】由整式x 2﹣kx +4是一个完全平方式,可得k =±4,由反比例函y =k−1x 的图象的每一支上,y 都随x 的增大而减小,可得k ﹣1>0,解得k >1,则k =4,即可得反比例函数的解析式.【解答】解:①整式x2﹣kx+4是一个完全平方式,①k=±4,①反比例函数y=k−1x的图象的每一支上,y都随x的增大而减小,①k﹣1>0,解得k>1,①k=4,①反比例函数的解析式为y=3 x.故答案为:y=3 x.【点评】本题考查反比例函数的图象与性质、完全平方式,熟练掌握反比例函数的图象与性质、完全平方式是解答本题的关键.15.(2022秋•冷水滩区校级月考)已知y关于x的函数表达式是y=a−1x,且x=2时,y=3,则a的值为.【分析】将x=2,y=3代入y=a−1x即可求出a的值.【解答】解:将x=2,y=3代入y=a−1x得,3=a−12,解得a=7,故答案为:7.【点评】本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数的图象上点的坐标特征是解题的关键.16.(2022秋•滁州期中)如图,双曲线y=kx(x>0)与正方形ABCD的边BC交于点E,与边CD交于点F,且BE=3CE,A(4,0),B(8,0),则CF=.【分析】直接利用已知点坐标得出AB=4,则AD=BC=4,F点纵坐标为4,进而利用反比例函数图象上点的坐标特点得出答案.【解答】解:①A(4,0),B(8,0),四边形ABCD是正方形,①AB=4,则AD=BC=4,F点纵坐标为4,①BE=3CE,①BE=3,EC=1,①E(8,3),故k=8×3=24,则设F点横坐标为m,故4m=24,解得:m=6,故FC=8﹣6=2.故答案为:2.【点评】此题主要考查了反比例函数图象上点的坐标特点,正确得出E点坐标是解题关键.17.(2022秋•莱阳市期中)如图,在平面直角坐标系中,菱形ABOC的顶点A在反比例函数y=kx(k>0,x>0)的图象上,点C的坐标为(4,3),则k的值为.【分析】延长AC交x轴于E,则AE①OC,根据菱形的性质以及勾股定理得出AB=OC=OB=5,即可得出A点坐标,进而求出k的值即可.【解答】解:延长AC交x轴于E,如图所示:则AE①x轴,①C的坐标为(4,3),①OE=4,CE=3,①OC=√42+32=5,①四边形OBAC是菱形,①AB=OB=OC=AC=5,①AE=5+3=8,①点A的坐标为(4,8),把A(4,8)代入函数y=kx(x>0)得:k=4×8=32;故答案为:32.【点评】此题主要考查了菱形的性质、勾股定理和反比例函数图象上点的坐标性质;得出A点坐标是解题关键.18.(2022春•锡山区期末)点P,Q,R在反比例函数y=kx(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S2+S3=20,则S1的值为.【分析】根据CD =DE =OE 以及反比例函数系数k 的几何意义得到S 1=13k ,S 四边形OGQD =k ,列方程即可得到结论.【解答】解:①CD =DE =OE ,①S 1=13k ,S 四边形OGQD =k ,①S 2=13(k −13k ×2)=k 6,S 3=k −13k −16k =12k ,①16k +12k =20, ①k =30,①S 1=13k =10,故答案为:10.【点评】本题考查反比例函数系数k 的几何意义,矩形的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.三.解答题(共66分)19.(6分)(2022秋•德江县期中)已知反比例函数y =k x (k ≠0)的图象经过点A (2,6).(1)求这个函数的表达式;(2)点B (10,65),C (﹣3,﹣5)是否在这个函数的图象上?【分析】(1)首先设这个反比例函数的解析式为y =k x(k ≠0),再把点A (2,6)的坐标代入函数关系式,即可算出k 的值,进而可得函数关系式;(2)只要把点B (10,65),C (﹣3,﹣5)分别代入(1)中求出的函数关系式,满足关系式,就是函数图象上的点,反之则不在.【解答】解:(1)设这个反比例函数的解析式为y =k x(k ≠0),依题意得:6=k 2,①k =12,故这个反比例函数解析式为y =12x ;(2)由(1)求得:y =12x ,当x =10时,y =65,当x =﹣3时,y =﹣4,①点B (10,65)在这个函数图象上,C (﹣3,﹣5)不在这个函数的图象上. 【点评】此题主要考查了利用待定系数法求反比例函数解析式,正确求出函数解析式是解题关键.20.(7分)(2022秋•青浦区校级期中)已知:y =y 1﹣y 2,并且y 1与x 成正比例,y 2与(x ﹣2)成反比例,且当x =﹣2时,y =﹣7,当x =3时,y =13,求:(1)求y 与x 之间的函数解析式;(2)求当x =√2时的函数值.【分析】(1)设y 1=kx ,y 2=m x−2,则y =kx −m x−2,然后利用待定系数法即可求得;(2)把x =√2代入(1)求得函数解析式求解.【解答】解:(1)设y 1=kx ,y 2=m x−2,则y =kx −m x−2, 根据题意得:{−2k +m 4=−73k −m =13, 解得:{k =3m =−4, 则函数解析式是:y =3x +4x−2;(2)当x =√2时,y =3√2+√2−2=√2−4. 【点评】本题考查了待定系数法求函数的解析式,注意在本题中的正比例系数和反比例系数是两个不同的值,用不同的字母区分.21.(7分)(2022•游仙区校级二模)如图,菱形ABOC 在平面直角坐标系中,边OB 在x 轴的负半轴上,点C 在反比例函数y =k x(k ≠0)的图象上.若AB =2,①A =60°,求反比例函数的解析式.【分析】连接BC ,过C 作CD ①OB 于D ,根据菱形的性质得出OC =AB =2,①COB =①A =60°,根据直角三角形的性质求出OD 和CD ,得出点C 的坐标,再代入反比例函数的解析式y =kx 即可.【解答】解:连接BC ,过C 作CD ①OB 于D ,则①CDO =90°,①四边形ABOC 是菱形,AB =2,①A =60°,①OC =AB =2,①COB =①A =60°,①①DCO =30°,①OD=12OC=1,①CD=√OC2−OD2=√22−12=√3,①点C的坐标是(﹣1,√3),①点C在反比例函数y=kx(k≠0)的图象上,①k=(﹣1)×√3=−√3,∴反比例函数的解析式是y=−√3 x,【点评】本题考查了菱形的性质,反比例函数图象上点的坐标特征,用待定系数法求反比例函数的解析式,直角三角形的性质等知识点,能求出点C的坐标是解此题的关键.,22.(9分)(2022秋•中山区月考)某气球内充满了一定量的气体,当温度不变时,气球内气体的压强P(kPa)是气体体积V(m3)的反比例函数,其图象过点A(0.8,120)如图所示.(1)求这一函数的表达式;(2)当气体压强为48kPa时,求V的值;(3)当气球内的体积小于0.6m3时,气球将爆炸,为了安全起见,气体的最大压强为多少?【分析】(1)设函数解析式为P=kv,把点(0.8,120)的坐标代入函数解析式求出k值,即可求出函数关系式;(2)将P=48代入(1)中的函数式中,可求气球的体积V.(3)依题意V =0.6,即 96P =0.6,求解即可.【解答】解:(1)设P 与V 的函数关系式为P =k v ,则 k =0.8×120,解得k =96,①函数关系式为P =96v .(2)将P =48代入P =96v 中, 得96v =48,解得V =2,①当气球内的气压为48kPa 时,气球的体积为2立方米.(3)当V =0.6m 3时,气球将爆炸,①V =0.6,即96P =0.6,解得 P =160kpa故为了安全起见,气体的压强不大于160kPa .【点评】本题考查了反比例函数的实际应用,关键是建立函数关系式,并会运用函数关系式解答题目的问题.23.(9分)(2022秋•中原区月考)如图,已知A (﹣4,n ),B (2,﹣4)是一次函数y =kx +b 的图象和反比例函数y =m x 的 图象的两个交点.(1)求反比例函数和一次函数的函数关系式;(2)求①AOB 的面积;(3)求出反比例函数大于一次函数的解集.【分析】(1)先把B 点坐标代入反比例函数的解析式中求得反比例解析式,再求A 点坐标,最后用待定系数法求出一次函数的解析式;(2)求出AB 与x 轴的交点C 的坐标,再由OC 求三角形面积;(3)根据函数图象便可求解.【解答】解:(1)把B (2,﹣4)代入y =m x 中,得﹣4=m 2, 解得m =﹣8,①反比例函数的解析式为:y =−8x ,把A (﹣4,n )代入y =−8x 中,得n =−8−4=2,①A (﹣4,2),把A (﹣4,2),B (2,﹣4)代入y =kx +b 中,得{−4k +b =22k +b =−4, 解得{k =−1b =−2, ①一次函数的解析式为:y =﹣x ﹣2;(2)在y =﹣x ﹣2中,令y =0,则﹣x ﹣2=0,解得x =﹣2,①C (﹣2,0),①OC =2,①S ①AOB =S ①AOC +S ①BOC =12×2×(2+4)=6; (3)由函数图象可知,反比例函数大于一次函数的解集为﹣4<x <0或x >2.【点评】本题是反比例函数与一次函数的交点问题,主要考查了待定系数法求函数解析式,利用函数图象求不等式的解集,求三角形的面积,此题难度适中,注意掌握数形结合思想的应用.24.(8分)(2022秋•如皋市期中)如图,矩形ABCD 的两边AD ,AB 的长分别为3,8.边BC 落在x 轴上,E 是AB 的中点,连接DE ,反比例函数y =m x 的图象经过点E ,与CD 交于点F .(1)若B (3,0),求F 点坐标;(2)若DF =DE ,求反比例函数的解析式.【分析】(1)先求得点E 的坐标为(3,4),然后利用待定系数法求得m ,进一步即可求得点F 的坐标.(2)在Rt①ADE 中,利用勾股定理可求出AE 的长,由DF =DE ,BC =3可得出点E 的坐标为(m 3−3,4),再利用反比例函数图象上点的坐标特征,可得出关于m 的一元一次方程,解之即可得出m 的值,进而可得出反比例函数的表达式.【解答】解:(1)①反比例函数y =m x 的图象经过点E ,E 是AB 的中点,AB =8, ①BE =4,①B (3,0),①E (3,4),①反比例函数y =m x的图象经过点E , ①m =3×4=12,①y =12x ,①BC =AD =3,①OC =6, 把x =6代入y =12x 得y =2,①点F 的坐标为(6,2);(2)在Rt①ADE 中,AD =3,AE =4,①A =90°,①DE =5.①DF =DE ,①DF =5,①CF =8﹣5=3,①点E 的坐标为(m 3−3,4).①反比例函数y =m x 的图象经过点F ,①4×(m 3−3)=m ,解得:m =36,①反比例函数的表达式为y =36x .【点评】本题考查了矩形的性质、待定系数法求反比例函数解析式、反比例函数图象上点的坐标特征、勾股定理,解题的关键是利用含m 的代数式表示出点E ,F 的坐标.25.(8分)(2022秋•虹口区校级期中)如图,在平面直角坐标系xOy 中,已知直线y =kx (k >0)分别交反比例函数y =1x 和y =9x 在第一象限的图象于点A ,B ,过点B 作BD ①x 轴于点D ,交y =1x 的图象于点C ,联结AC ,若①ABC 是等腰三角形,求k 的值.【分析】根据一次函数和反比例函数的解析式,即可求得点A、B、C的坐标(用k表示),再讨论①AB=BC,①AC=BC,即可解题.【解答】解:①点B是y=kx和y=9x的交点,则kx=9x,①点B坐标为(√k,3√k),同理可求出点A的坐标为(√k,√k),①BD①x轴,①点C(√k ,√k3),①BA=√4k+4k,AC=√4k+4k9,BC=83√k,①BA2≠AC2,①BA≠AC,若①ABC是等腰三角形,①AB=BC,则√4k+4k=83√k,解得k=3√7 7;①AC=BC,则√4k+4k9=83√k,解得k=√15 5;故k 的值为3√77或√155. 【点评】本题考查了点的坐标的计算,考查了一次函数和反比例函数交点的计算,本题中用k 表示点A 、B 、C 坐标是解题的关键.26.(12分)(2022秋•青浦区校级期中)如图,A 为反比例函数y =k x (k <0)的图象上一点,AP ①y 轴,垂足为P .(1)联结AO ,当S ①APO =2时,求反比例函数的解析式;(2)联结AO ,若A (﹣1,2),y 轴上是否存在点M ,使得S ①APM =S ①APO ,若存在,求出M 的坐标:若不存在,说明理由,(3)点B 在直线AP 上,且PB =3P A ,过点B 作直线BC ①y 轴,交反比例函数的图象于点C ,若①P AC 的面积为4,求k 的值.【分析】(1)根据反比例函数系数k 的几何意义即可求解;(2)求得S ①APM =S ①APO =1,即可求得PM =2从而求得点M (0,4);(3)当B 点在P 点右侧,如图,设A (t ,k t ),则可表示出B (﹣3t ,k t ),C (﹣3t ,−k 3t),利用三角形面积公式得到12×(﹣t )×(k t+k 3t )=4;当B 点在P 点左侧,设A (t ,k t ),则可表示出B (3t ,k t ),C (3t ,k 3t ),利用三角形面积公式得到12×(﹣t )×(k t −k 3t )=4,然后分别解关于k 的方程即可.【解答】解:(1)①S ①APO =2,AP ①y 轴,①S ①APO =12|k |=2,①反比例函数的解析式为y =−4x ;(2)存在,理由如下:①A (﹣1,2),①AP =1,OP =2,①S ①APO =12×1×2=1, ①S ①APM =S ①APO =1,①12PM •AP =1, ①PM =2,①M (0,4);(3)当B 点在P 点右侧,如图,设A (t ,k t ), ①PB =3P A ,①B (﹣3t ,k t ), ①BC ①y 轴,①C (﹣3t ,−k 3t), ①①P AC 的面积为4,①12×(﹣t )×(k t +k 3t )=4,解得k =﹣6;当B 点在P 点左侧,设A (t ,k t ),①B (3t ,k t ), ①BC ①y 轴,①C (3t ,k 3t ), ①①P AC 的面积为4,①12×(﹣t )×(k t −k 3t )=4,解得k =﹣12;综上所述,k 的值为﹣6或﹣12.【点评】本题考查了反比例函数系数k 的几何意义:在反比例函数y =k x 图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |.也考查了反比例函数图象上点的坐标特征.。

人教版九年级上册数学各单元测试卷及答案(全套)

人教版九年级上册数学各单元测试卷及答案(全套)

第二十一章综合测试一、选择题(30分)1.一元二次方程22(32)10x x x --++=的一般形式是( ) A .2550x x -+= B .2550x x +-= C .2550x x ++=D .250x +=2.一元二次方程260x +-=的根是( ) A.12x x ==B .10x =,2x =-C.1x =2x =-D.1x =2x =3.用配方法解一元二次方程245x x -=时,此方程可变形为( ) A .2(2)1x +=B .2(2)1x -=C .229x +=()D .229x -=()4.一元二次方程220x x -=的两根分别为1x 和2x 则12x x 为( ) A .2-B .1C .2D .05.关于x 的一元二次方程2(3)0x k x k -++=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根D .不能确定6.若2x =-是关于x 的一元二次方程22502x ax a -+=的一个根,则a 的值为( )A .1或4B .1-或4-C .1-或4D .1或4-7.已知等腰三角形的腰和底的长分别是一元二次方程2680x x -+=的根,则该三角形的周长为( ) A .8B .10C .8或10D .128.若α,β是一元二次方程定2260x x +-=的两根,则22αβ+=( ) A .8-B .32C .16D .409.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的方程为( )A .1(1)282x x += B .1(1)282x x -= C .(1)28x x +=D .(1)28x x -=10.已知关于的一元二次方程2(1)2(1)0a x bx a ++++=有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程20x bx a ++=的根B .0一定不是关于x 的方程20x bx a ++=的根C .1和1-都是关于x 的方程20x bx a ++=的根D .1和1-不都是关于x 的方程20x bx a ++=的根 二、填空题(24分)11.如果关于x 的方程220x x k -+=(k 为常数)有两个不相等的实数根,那么k 的取值范围是__________.12.若将方程定267x x +=化为2()16x m +=,则m =__________.13.一个三角形的两边长分别为3和6,第三边长是方程210210x x -+=的根,则三角形的周长为__________.14.已知一元二次方程21)10x x -=的两根为1x ,2x ,则1211x x +=__________. 15.已知关于x 的方程224220x x p p --++=的一个根为p ,则p =__________. 16.关于x 的一元二次方程2(5)220m x x -++=有实根,则m 的最大整数解是__________. 17.若关于x 的一元二次方程号2124102x mx m --+=有两个相等的实数根,则2 2 2)1)((m m m ---的值为__________.18.关于x 的方程2()0a x m b ++=的解是12x =-,21x =(a ,m ,b 均为常数,0a ≠),则方程2260a x m +++=()的解是__________.三、解答题(8+6+6+6+6+7+7=46分) 19.解方程.(1)3(2)2(2)x x x -=-(2)2220x x --=(用配方法)(3)()()11238x x x +-++=()(4)22630x x --=20.已知关于x 的一元二次方程()22(22)20x m x m m --+-=. (1)求证:方程有两个不相等的实数根,(2)如果方程的两实数根为1x ,2x ,且221210x x +=求m 的值.21.已知关于x 的一元二次方程2640x x m -++=有两个实数根1x ,2x .(1)求m 的取值范围.(2)若1x ,2x 满足1232x x =+,求m 的值.22.在水果销售旺季,某水果店购进一种优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系。

036.勤学早测试卷目录(16-17) 数学 九年级(上、下)

036.勤学早测试卷目录(16-17)  数学 九年级(上、下)

勤学早测试卷(2016-2017)数学九年级(上、下)九年级数学(上册)1.九(上)第21章《一元一次方程》周测(一)2.九(上)第21章《一元二次方程》周测(二)3.九(上)第2l章《一元二次方程》单元检测题(月考一)4.九(上)第2l章《一元二次方程》专题一点通(一)(二)5.九(上)第22章《一次函数》周测(一)6.九(上)第22章《二次函数》周测(二)7.九(上)第22章《二次函数》单元检测题8.九(上)第22章《二次函数》专题一点通(一)(二)9.九(上)第22章《二次函数》专题一点通(三)10.九(上)月考(二)11.九(上)第23章《旋转》单元检测题12.九(上)第23章《旋转》专题一点通13.九(上)期中模拟题(月考三)14.九(上)第24章《圆》周测(一)15.九(上)第24章《圆》周测(二)16.九(上)第24章《圆》周测(三)17.九(上)第24章《圆》单元检测题18.九(上)第24章《圆》专题一点通19.九(上)月考(四)20.九(上)第25章《概率初步》单元检测题21.九(上)第25章《概率初步》专题一点通22.九(上)期末模拟题(月考五)九年级数学(下册)23.九(下)第26章《反比例函数》周测(一)24.九(下)第26章《反比例函数》周测(二)25.九(下)第26章《反比例函数》单元检测题(月考一)26.九(下)第26章《反比例函数》专题一点通27.九(下)第27章《相似》周测(一)28.九(下)第27章《相似》周测(二)29.九(下)第27章《相似》单元检测题30.九(下)第27章《相似》专题一点通31.九(下)月考(二)32.九(下)第28章《三角函数》周测(一)33.九(下)第28章《三角函数》单元检测题34.九(下)第28章《三角函数》专题一点通35.九(下)第29章《投影与视图》单元检测题36.九(下)月考(三)(中考模拟题)。

2022-2023学年度九年级数学下册模拟测试卷 (2149)

2022-2023学年度九年级数学下册模拟测试卷  (2149)

2022-2023学年度九年级数学下册模拟测试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A .与x 轴相离、与y 轴相切 B .与x 轴、y 轴都相离 C .与x 轴相切、与y 轴相离 D .与x 轴、y 轴都相切2.在△ABC 中,∠C= 90°,若∠B=2∠A ,则tanB =( )A B .3 C .2 D .123.sin55°与 cos35°之间的关系( )A .0sin55cos35o <B .00sin 55cos5>C .00sin55cos351+=D .sin55cos35o o = 4.如图,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,则tan EFC ∠的值为( )A .34B .43C .35D .45 5.在ABC △中,90C ∠=°,2B A ∠=∠,则cos A 等于( )A B .12 C D 6.从分别写着A 、B 、C 、D 、E 的 5 张卡片中,任取两张,这两张上的字母恰好按字母顺序相邻的概率是( )A .15B .25C .110D .127.如图,若正方形A 1B 1D 1C 1内接于正方形ABCD 的内切圆,则AB B A 11的值为( ) A .21 B .22 C .41 D .42 8.如果小强将镖随意投中如图所示的正方形木板,那么镖落在阴影部分的概率为( ) A .61 B .81 C .91 D .121 9.已知两圆的半径分别是2 和 3,圆心距是 d ,若两圆有公共点,则下列结论正确的是( )A .d=1B .d=5C .1≤d ≤5D .1<d<510.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能...是( )11.有一个高大的五棱柱形建筑物,人站在地面上,不可能同时看到的是( )A .2个侧面B . 3个侧面C . 1个侧面D . 4个侧面D12.人走在路灯下的影子的变化是( )A .长→短→长B .短→长→短C .长→长→短D .短→短→长 13.下列哪个图可以近似地反应上午9:10时,浙江某中学竖立的旗杆与其影子的位置关系 的是( )14.甲、乙、丙三个侦察员,从三个方位观察一间房子,如图①. 则看到如图②的视图的是侦察员( )A .甲B .乙C . 丙D . 以上都不对15.半径分别为5和8的两个圆的圆心距为d ,若313d ≤,则这两个圆的位置关系一A B C D定是( )A .相交B .相切C .内切或相交D .外切或相交16.如图①,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图②摆放,从中任意翻开一张是汉字“自”的概率是( )A .21B .31C .32D .61 17.将下列各纸片沿虚线剪开后,能拼成右图的是( )评卷人得分 二、填空题18.在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是 (填上序号即可).19.若tan α·tan35°=1,则锐角α的度数等于________.20.在△ABC 中,∠C=90°,BC=4,sinA=32,则AC= . 21.某体育训练小组有2名女生和3名男生,现从中任选1人去参加学校组织的“我为奥运添光彩”志愿者活动,则选中女生的概率为 .22.掷两枚硬币,一枚硬币正面朝上,另一枚硬币反面朝上的概率是 .23.如图,⊙O 的半径为4cm ,直线l ⊥OA ,垂足为O ,则直线l 沿射线OA 方向平移________cm 时与⊙O 相切.24.如图所示,在把易拉罐中的水倒入一个圆水杯的过程中,若水杯中的水在点 P 与易拉罐刚好接触,则此时水杯中的水深为 ㎝.25.在两个布袋中分别装有三个小球,这三个小球的颜色分别为红色、白色、绿色,其他没有区别.把两袋小球都搅匀后,再分别从两袋中各取出一个小球,试求取出两个相同颜色....小球的概率(要求用树状图个或列表方法求解).26.如图是由8块相同的等腰直角三角形黑白瓷砖镶嵌而成的正方形地面示意图,一只蚂蚁在上面自由爬动,并随机停留在某块瓷砖上,则蚂蚁停留在黑色瓷砖上的概率是 . 27.如图,△ABC 中,∠A =60°,点 I 是内心,则∠BIC .28.如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴相切于点C ,则圆心M 的坐标是 .29.如图,PA 切半圆O 于A 点,如果∠P =35°,那么∠AOP =____°.30.已知31a b ==,,则()()(2)a b a b b b +-+-= .31.如图,已知⊙O 是ABC △的内切圆,且50BAC ∠=°,则BOC ∠为 度.32.如图,P 是α 的边上一点,且 P 点坐标为(3,4),则tan α = .如图是由一些相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数有 个.34.在阳光明媚的上午,小波上午 9:30 出去时测量了自已的影子,出去一段时间后,回来时,他发现这时的影长和上午出去时的影长一样长,则小波出去的时间约为 小时.35.一个夜晚, 在马路上散步的人,经过一盏路灯时,他的影子的变化的情况是 .36.将下图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去 (填序号).37.如图,地面A 处有一支燃烧的蜡烛(长度不计),一个人在A 与墙BC 之间运动,则他在墙上投影长度随着他离墙的距离变小而 (填“变大”、“变小”或“不变”).38. 如图,在高为 2m ,坡角为 30°的楼梯上铺地毯,则地毯长度至少要 m .39. 如图,△ABC 中,∠A =30°,3tan 2B =,23AC =,则 AB= .40. 如图是置于水平地面上的一个球形储油罐,小明想测量它的半径. 在阳光下,他测 得球的影子的最远点 A 到球罐与地面接触点B 的距离是 10 m(如示意图,AB =10 m). 同一时刻,他又测得竖直立在地面上长为 lm 的竹竿的影子长为 2 m ,那么,球的半径是 m .41.如图,在平面直角坐标系中,二次函数y=ax 2+c (a<0)的图象过正方形ABOC 的三个顶点A 、B 、C ,则ac 的值是 .42.如图,△ABC 中,AB=AC ,∠A=45°,AC 的垂直平分线分别交AB ,AC 于D ,E 两点,连接CD .如果AD=1,那么tan ∠BCD=________.43.如图是一个被等分成6个扇形可自由转动的转盘,转动转盘,当转盘停止后,指针指向红色区域的概率是 .44.已知⊙O 1与⊙O 2的半径分别为2cm 和3cm ,当⊙O 1与⊙O 2外切时,圆心距O 1O 2=____ cm .红红 红 白白 蓝评卷人得分三、解答题45.如图,在以0为圆心的两个同心圆中,大圆的弦AB = CD,且 AB 与小圆相切,求证:CD 与小圆也相切.46.某商场门前的台阶截面如图所示.已知每级台阶的宽度(如CD)均为30cm,高度(如BE)均为20cm.为了方便残疾人行走,商场决定将其中一个门的门前台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角为9°.请计算从斜坡起点A到台阶前的点B的水平距离.(参考数据:sin9°≈0.16,cos9°≈0.99,tan9°≈0.16)47.有两个可以自由转动的均匀转盘A B,都被分成了3等份,并在每一份内均标有数字,如图所示,规则如下:①分别转动转盘A B,;②两个转盘停止后观察两个指针所指份内的数字(若指针停在等份线上,那么重转一次,直到指针指向某一份内为止).(1)用列表法(或树状图)分别求出“两个指针所指的数字都是..方程2560x x-+=的解”的概率和“两个指针所指的数字都不是...方程2560x x-+=的解”的概率;(2)王磊和张浩想用这两个转盘作游戏,他们规定:若“两个指针所指的数字都是..2560x x-+=的解”时,王磊得1分;若“两个指针所指的数字都不是...2560x x-+=的解”时,张浩得3分,这个游戏公平吗?若认为不公平,请修改得分规定,使游戏对双方公平.48.如图,已知AB是⊙0的直径,CD⊥AB,垂足为D,CE切⊙0于点F,交AB的延长线于点E.求证:EF·EC=E0·ED.49.如图,P是⊙O外的一点,PA、PB分别与⊙O相切于点A、B,C是弧AB上的任意一点,过点C的切线分别交PA、PB于点D、E.(1)若PA=4,求△PED的周长;(2)若∠P=40°,求∠DOE的度数.50.如图所示,在Rt△ABC 中,∠B= 90°,AC=200, sinA=0.6,求BC 的长.51.计算:30.00l0.0l-+52.如图所示,海中有一小岛 P,在距离P处82海里范围内有暗礁,一轮船自西向东航行,它在A处时测得小岛 P位于北偏东 60°,且A、P之间的距离为 16 海里,若轮船继续向东航行,请计算轮船有无触礁的危险,如有危险,轮船自A处开始至少东偏南多少度方向航行,才能安全通过这一海域?53.下面三张卡片上分别写有一个整式,把它们背面朝上洗匀,小明闭上眼睛,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张.第一次抽取的卡片上的整式做分子,第二次抽取的卡片上的整式做分母,用列表法或树形图法求能组成分式的概率是多少?54.如图,已知⊙O是△ABC的内切圆,E、F是其中两个切点,问:∠BOC 与∠FOE 的度数有什么数量关系?试说明理由.55.如图①所示表示一个高大的正三棱柱纪念碑,图②所示的是它的俯视图,小昕站在地面上观察该纪念碑.(1)当他在什么区域活动时,他只能看到一个侧面?(2)当他在什么区域活动时,他同时看到两个侧面?(3)他能同时看到三个侧面吗?56.如图,根据要求完成下列作图:(1)在图①中用线段表示出小明行至 B处时,他在路灯A 下的影子.(2)在图②中根据小明在路灯A下的影子,判断其身高并用线段表示.(3)在图③中,若路灯、小明及影子、木棍及影子的关系如图,请判断这是白天还是夜晚,为什么?57.如图,已知马路上的两棵树及其在路灯下的影子,确定如图所示的马路上路灯灯泡所在的位置.58.某地夏季中午,当太阳移到屋顶上方偏南时,光线与地面成600角,房屋向南的窗户AB 高1.6米,现要在窗子外面的上方安装一个水平遮阳篷AC(如图所示).(l)当遮阳篷AC的宽度在什么范围时,太阳光线直射入室内?(2)当遮阳篷AC的宽度在什么范围时,太阳光线不能直射入室内?(结果精确到0.1米)59.添线补全下面物体的三视图:60.如图,在某建筑物 AC 上,挂着宣传条幅BC,小明站在点 F处,看条帽顶端 B,测得仰角为 30°;再往条幅方向前行 20m 到达点E处,看条幅顶点 B,测得仰角为 60°,求宣传条幅 BC 的长. (小明的身高忽略不计,结果精确到0.1 m)【参考答案】一、选择题1.A2.A3.D4.无5.A6.B7.B8.C9.C10.A11.无12.A13.C14.A15.D17.C二、填空题18.无19.无20.无21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无31.无32.无34.无35.无36.无37.无38.无39.无40.无41.无42.无43.无44.无三、解答题45.无46.无47.无48.无49.无51.无52.无53.无54.无55.无56.无57.无58.无59.无60.无。

2022-2023学年度九年级数学下册模拟测试卷 (9975)

2022-2023学年度九年级数学下册模拟测试卷 (9975)

2022-2023学年度九年级数学下册模拟测试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1. 若与四边形各边都相切的圆叫做四边形的内切圆,则下面图形中一定有内切圆的是( ) A .平行四边形B .矩形C .菱形D .等腰梯形2. 当锐角∠A>300 时,cosA 的值( )A .小于12B . 大于12C . 小于2D . 大于23. 给出下列式子:① cos450>sin600;②sin780>cos780;③sin300>tan450;④ sin250=cos650,其中正确的是 ( ) A .①③B .②④C .①④D .③④4.下列说法中合理的是( )A .天气预报员说今天某地区下雨的概率是90%,由此可以断定今天该地区一定要下雨B .小莹在10次抛图钉的试验中发现3次钉尖朝上,据此他说钉尖朝上的概率一定是30%C .某种福利彩票的中奖概率是1%,买一张这样的彩票不一定中奖,而买100张一定会中奖D .在一次课堂上进行的试验中,甲、乙两组同学估计一枚硬币落地后正面朝上的概率分别为0.48和0.525.等腰直角三角形内切圆半径与外接圆半径的比是( )A 1B .2C 1D 16.若把 Rt △ABC 的各边都扩大 3倍,则各边扩大后的cosB 与扩大前的cosB 的值之间 的关系是 ( )A .扩大3倍B .缩小3倍C .相等D .不能确定7.“百城馆”中一滑梯的倾斜角α= 60°,则该滑梯的坡比为若太阳光与地面成40°角,一棵树的影长为10㎝,则树高 h 所满足的范围是( ) A .h>15B . 10<h<15C . 5<h<10D . 3<h<58.如图所示,在高为 300 m 的山顶上,测得一建筑物顶端与底部俯角分别为 30°和 60°,则该建筑物高为( ) A .200mB .lOOmC .1003 mD .30039.掷两枚均匀的锬子,出现正面向上的点数和为4 的概率是( ) A .16B .112C .118D .13610.在一个不透明的口袋中装有若干个只有颜色不同的球,如果口袋中装有4个红球,且摸出红球的概率为13,那么袋中共有球的个数为( ) A .12 个B .9 个C .7 个D .6个11.如图,在△ABC 中,点D 在AB 上,点E 在AC 上,若∠ADE=∠C ,且AB=5,AC=4,AD=x ,AE=y ,则y 与x 的关系式是( )A .x y 5=B .x y 54=C .x y 45=D .x y 209=12.从某班学生中随机选取一名学生是女生的概率为53,则该班女生与男生的人数比是( )A .23 B .53 C .32 D .52 13.已知两圆的半径分别为6和8,圆心距为7,则两圆的位置关系是 ( ) A .外离B .外切C .相交D .内切14.△ABC 的三边长分别为 6、8、10,并且以A 、B 、C 三点分别为圆心,作两两相切的圆,那么这三个圆的半径分别为( ) A .3、4、5B .2、4、6C .6、8、10D .4、6、815.已知⊙O 1和⊙O 2的半径分别为 9 和 5,圆心距O 1O 2=4,则⊙O 1 和⊙O 2位置关系是( ) A .内含B . 内切C . 相交D . 外切16.如图,是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是()A.内含B.相交C.相切D.外离17.下面说法正确的是( )①矩形的平行投影一定是矩形;②梯形的平行投影一定是梯形;③两相交的直线的平行投影可能是平行的;④如果一个三角形的平行投影是三角形,那么它的中位线平行投影一定是这个三角形平行投影对应的中位线.A.①②B.④C.②③D.①④B18.如图所示,兄弟两人在家中向窗外观察,则()A.两人的盲区一样大B.母母的盲区大C.弟弟的盲区大D.两人盲区大小无法确定19.主视图、左视图、俯视图都是圆的几何体是()A.圆锥B.圆柱C.球D.空心圆柱20.如图,PB 为⊙O的切线,B 为切点,连结 PO交⊙O于点 A,PA =2,PO= 5,则 PB 的长为()A.4 B.10C.26D.4321.由几个相同的小正方体搭成的几何体的视图如图所示,则搭成这个几何体的小正方体的个数是()A.4 个B.5 个C.6 个D.7 个22.如图,河旁有一座小山,从山顶A处测得河对岸点C的俯角为30,测得岸边点D的,,在同一水平线上,又知河宽CD为50米,则山高AB是()俯角为45,C D BA.50米 B.25米 C.25(31)+米D.75米23.下列图形中的直线 1与⊙0的位且关系是相离的是()A. B. C. D.评卷人得分二、填空题如图,小明的身高是1.7m,他的影长是2m,同一时刻学校旗杆的影长是10m,则旗杆的高是_____m.25.若α是锐角,则α的余弦记作,α正切记作.26.计算:cos45°= ,sin60°×cos30°= .27.升国旗时,某同学站在离旗杆底部 24m 处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角 (视线与水平线的夹角 )恰为60°,若双眼离地面 1.5m,则旗杆的高度为m.(精确到 1 m)28.在直角三角形ABC中,∠A=090,AC=5,AB=12,那么tan B=.29.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于.30.某口袋里有编号为 l~5的5个球,先从中摸出一球,将它放回口袋中,再模一次,两次摸到的球相同的概率是.31.如图,⊙O的直径为 10,弦 AB 的长为8,M是弦 AB 上的动点,则OM的长的取值范围是.32.如图,等边三角形ABC的内切圆的面积为π9,则⊿ABC的周长为.EODCBA33.在Rt△ABC中,∠C=900,若bc3=,则cosA= .34.直角三角形在太阳光下得到的投影可能是 .35.某校为了筹备校园艺术节,要在通往舞台的台阶上铺上红色地毯.如果地毯的宽度恰好与台阶的宽度一致,台阶的侧面如图所示,台阶的坡角为30,90BCA∠=,台阶的高BC为2米,那么请你帮忙算一算需要米长的地毯恰好能铺好台阶.(结果精确到0.1m)如图,5个边长为1cm的立方体摆在桌子上,则露在表面的部分的面积为2cm.37.如图是一口直径AB为4米,深BC为2米的圆柱形养蛙池,小青蛙们晚上经常坐在池底中心O观赏月亮,则它们看见月亮的最大视角∠COD= 度,(不考虑青蛙的身高).38.如果一个立体图形的主视图为矩形,则这个立体图形可能是 (•只需填上一个立体图形).39.计算:2sin303cos60tan45o o O-+的结果是.40.一张桌子上摆放着若干个碟子,从三个方向上看,三种视图如图所示,则这张桌子上共有个碟子.41.二次函数2(0)y ax bx c a=++≠的部分对应值如下表,则不等式20ax bx c++>的解集为.42.在△ABC中,点D、E 分别在边AB和AC上,且DE∥BC,如果AD=2,DB=4,AE=3,那么EC=.43.如图,△ABC中,AB=AC,∠A=45°,AC的垂直平分线分别交AB,AC于D,E两x-3-2-101234y60-4-6-6-406点,连接CD.如果AD=1,那么tan∠BCD=________.44.已知⊙O1与⊙O2的半径分别为2cm和3cm,当⊙O1与⊙O2外切时,圆心距O1O2=____ cm.评卷人得分三、解答题45.如图,已知⊙O1和⊙O2相交于A、B两点,过点A的直线和两圆相交于C、D,过点B 的直线和两圆相交于点E、F,求证:DF∥CE.46.一辆旅游大巴沿倾斜角为25°的斜坡行驶100 m,分别求旅游大巴沿水平方向和铅垂方向所经过的距离.47.为举办毕业联欢会,小颖设计了一个游戏:游戏者分别转动如图的两个可以自由转动的转盘各一次,当两个转盘的指针所指字母相同时,他就可以获得一次指定..一位到会者为大家表演节目的机会.(1)利用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果;(2)若小亮参加一次游戏,则他能获得这种指定机会的概率是多少?48.如图,AB是⊙0的直径,BC切⊙0于B,AC交⊙0于D,若∠A=30°,AD=2,求BC的长.49.如图所示,我市某广场一灯柱 AB 被一钢缆CD 固定,CD 与地面成40°夹角,且DB = 5m,则 BC 的长度是多少?现再在 C点上方 2m 处加固另一条钢缆 ED,则钢缆 ED的长度是多少?(结果保留三个有效数字)50.随着社会的发展,人们对防洪的意识越来越强,今年为了提前做好防洪准备工作,某市正在长江边某处常出现险情的河段修建一防洪大坝,其横断面为梯形ABCD,如图所示,根据图中数据计算坝底 CD 的宽度. (结果保留根号)51.在△ABC 中,∠C=900,∠A=300, BD是∠B的平分线,如图所示.(1)如果AD=2,试求BD和BC的长;(2)你能猜想AB与DC的数量关系吗,请说明理由.52.为了利用太阳光线或其他方法测量一棵大树的高度,准备了如下测量工具:•①镜子;②皮尺;③长为2m的标杆;④高为1.5m的测角仪,请你根据你所设计的测量方案,回答下列问题:(1)在你的设计方案中,选用的测量工具是(用工具序号填写)_______________.(2)在图中画出你的方案示意图.(3)你需要测量示意图中哪些数据,并用a、b、c表示测得的数据__________.(4)写出求树高的算式,AB=___________m.53.如图,甲转盘被分成 3 个面积相等的扇形,乙转盘被分成 4 个面积相等的扇形,每一个扇形都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x ,乙转盘中指针所指区域内的数字为y (当指针指在边界线上时,重转一次,直到指针指向一个区域为止).(1)请你用画树状图或列表格的方法,求出点(),x y 落在第二象限内的概率; (2)直接写出点(),x y 落在函数1y x=-图象上的概率.54.已知,如图,AB 和DE 是直立在地面上的两根立柱.AB=5m ,某一时刻AB 在阳光下的投影BC=3m.(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m ,请你计算DE 的长.55.如图①,小然站在残墙前,小亮站在残墙后活动又不被小然看见,请在下面图②中画出小亮的活动区域.56.某同学想测量旗杆的高度,他在某一时刻测得1•米长的竹竿竖直放置时影长为1.5米,在同时刻测旗杆的影长时,因旗杆靠近一幢楼房,影子不全落在地面上,•他测得落在地面上的影长为21米,留在墙上的影子高为2米,如图,求旗杆的高度.57.某汽车油箱的容积为 70 L,小王把油箱注满油后准备驾驶汽车从县城到300 km 外的省城接客人,在接到客人后立即按原路返回,请回答下列问题:(1)油箱注满油后,汽车能够行驶的总路程 a(km)与每千米平均耗油量 b(L)之间有怎样的函数关系?(2)小王以平均每千米耗油 0.1 L 的速度驾驶汽车到达省城,在返程时由于下雨,小王降低了车速,此时每行驶1 km的耗油量增加了一倍,如果小王一直以此速度行驶,油箱里的油是否够回到县城?如果不够用,至少还需加多少油?58.将分别标有数字1,1,2,3的四张卡片洗匀后,背面朝上放在桌面上.(1)任意抽取一张卡片,求抽到卡片上的数字是奇数的概率;(2)任意抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,请你列表或画树状图分析并求出组成的两位数中恰好是13的概率.59.将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求P (偶数);(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?60.如图,在△ABC 中,AB =8,∠B =30o ,∠C =45o ,以A 、C 为圆心的⊙A 与⊙C 的半径分别为3和5,试判断⊙A 与⊙C 的位置关系,并通过计算说明理由.【参考答案】一、选择题1.C2.C3.B4.D5.C6.C7.C CB A9.B 10.A 11.C 12.A 13.C 14.B 15.B 16.D 17.无18.B 19.C 20.A 21.B 22.C 23.C二、填空题24.无26.无27.无28.无29.无30.无31.无32.无33.无34.无35.无36.无37.无38.无39.无40.无41.无42.无43.无三、解答题45.无46.无47.无48.无49.无50.无51.无52.无53.无54.无55.无56.无57.无58.无59.无60.无。

2022-2023学年度九年级数学下册 模拟测试卷 (774)

2022-2023学年度九年级数学下册模拟测试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.人走在路灯下的影子的变化是( ) A .长→短→长B .短→长→短C .长→长→短D .短→短→长2.已知等腰梯形的底角为60,上底长为2,上、下底长之比为1:3,那么梯形的面积为( )A .B .C .D .3.如图,P 是∠α的边OA 上一点,且点P 的坐标为(3,4), 则sin α= ( ) A .35B .45C .34D .434.某商店举办有奖销售活动,购物满100元者发对奖券一张.在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个.若某人购物刚好满100元,那么他中一等奖的概率是( ) A .1001 B .10001C .100001D .100001115.在Rt △ABC 中,∠C=90°,下列各式中正确的是( ) A .sinA=sinBB .tanA=tanBC .sinA=cosBD .cosA=cosB6.如图,在山坡上种树,已知∠A=30°,AC=3米,则相邻两株树的坡面距离AB=( )A .6米B 米C .D .7.如图,为了测量河的宽度,王芳同学在河岸边相距200m 的M 和N 两点分别测定对岸一棵树P 的位置,P 在M 的正北方向,在N 的北偏西30的方向,则河的宽度是( )A .2003mB .20033m C .1003m D .100m8.有一对酷爱运动的年轻夫妇给他们 12 个月大的婴儿拼排 3 块分别写有“20”,“08”和“北京”的字块,如果婴儿能够排成“2008 北京”或者“北京 2008”,则他们就给婴儿奖励. 假设该婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是( ) A .16B .14C .13D .129.小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为( ) A .21B .π63C .π93D .π3310.如果一个三角形内心与外心重合,那么这个三角形是( ) A .任意三角形 B .直角三角形 C .任意等腰三角形 D .等边三角形 11.在Rt △ABC 中,各边的长度都扩大2倍,那么锐角A 的正弦值( ) A .都扩大2倍B .都扩大4倍C .没有变化D .都缩小一半12.已知⊙O 的半径为r ,圆心O 到直线l 的距离为d .若直线l 与⊙O 有交点,则下列结论正确的是( )A .d =rB .d ≤rC .d ≥rD .d <r13.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶( ) A .0.5mB .0.55mC .0.6mD .2.2m14.夜晚在亮有路灯的路上,若想没有影子,你应该站的位置是( ) A .路灯的左侧B .路灯的右侧C .路灯的下方D .以上都可以15.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( ) A .B .C .D .下列图形中,不是正方体平面展开图的是( )17.如果用□表示1个立方体,用 表示两个立方体叠加,•用■表示三个立方体叠加,那么下图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )B CA D18.如图表示的是一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为()A. B. C . D.19.如图是一些相同的小\正方体构成的几何体的三视图:主视图左视图俯视图这些相同的小正方体的个数有()A.4 个B.5 个C.6 个D.7 个20.下面四个图形中,是三棱柱的平面展开图的是()21.如图1表示正六棱柱形状的高大建筑物,图2表示该建筑物的俯视图,P、Q、M、N 表示小明在地面上的活动区域,小明想同时看到该建筑物的三个侧面,他应在()A.P区域B.Q区域C.M区域D.N区域22.已知二次函数=y ax2c+(a≠0)的图象如图所示,有下列5个结论:①bx+a4>+b2c2<,⑤)+,④b3abc>,②cca<,③0b+≥+,其中正确的结a+mb(bam论有()A.1个 B.2个 C.3个 D.4个23.△ABC 的内切圆与三边的切点构成△DEF,则△ABC 的内心是△DEF 的()A.内心B.重心C.垂心D.外心评卷人得分二、填空题24.如图,⊙O1和⊙O2外切于点 P,过点 P的直线 AB 分别交⊙O1、⊙O2于点 A.B,已知⊙O1和⊙O2的面积比是 3:1,则 AP:BP .25.如图,⊙0的半径为4 cm,BC是直径,若AB=10 cm,则AC= cm时,AC是⊙0的切线.26.在菱形ABCD中,DE⊥AB,垂足是E,DE=6,sinA=35,则菱形ABCD的周长是_____.27.sin54° cos36° (填写<,=,>号) .28.有4条长度分别为1,3,5,7的线段,现从中任取三条能构成三角形的概率是__________.29.若三个圆两两外切,圆心距分别是6,8,10,则这三个圆的半径分别是.30.夏天的某一时刻,如图所示,当太阳光与地面上的树影成 45°角时,树影投射在墙上的影高 CD 等于 2m,若树根到墙的距离 BC等于 8m,则树高 AB 等于 m.31.已知⊙O的半径为 4 cm,直线l与⊙O相切,则圆心0到直线l的距离为 cm.32.如图,已知 AB 是⊙O的直径,BD =OB,∠CAB=30°,请根据已知条件和所给图形,写出三个正确结论. (除 OA= OB =BD外):①;② ; ③ .33.在“妙手推推推”的游戏中,主持人出示了一个 9位数,让参加者猜商品价格. 被猜的价格是一个 4位数,也就是这个 9位数中从左到右连在一起的某 4个数字. 如果参与者不知道商品的价格,从这些连在一起的所有 4位数中,任意猜一个,求他猜中该商品价格的概率.34.如图,△ABC 中,∠A =60°,点 I 是内心,则∠BIC .35.如图所示的半圆中,AD 是直径,且3AD =,2AC =,则sin B 的值是 . 36.两圆半径比为 5:3,当这两圆外切时,圆心距为 24,若这两圆相交,则圆心距d 的取值范围是 .如图是一个正方体的展开图,如果正方体相对的面上标注的值,那么x =____,y =_______.38.林玲的房间里有一面积为3.5m 2的玻璃窗, 她站在窗内离窗子4 m 的地方向外看,她能看到前面一培楼房(楼房之间的距离为 20 m)的面积有 m 2.39.一个夜晚, 在马路上散步的人,经过一盏路灯时,他的影子的变化的情况是 . 40.如图是一束平行的阳光从教室的窗户射入的平面示意图,光线与地面所成角60°,在教室地面的影长 MN= 23m ,若窗户的下檐到教室地面的距离 BC= lm ,则窗户的上檐地面的距离 AC 为 m .41.数学兴趣小组想测量一棵树的高度,在阳光下,一名同学测得一根长为1米的竹竿的影长为0.8米.同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),其影长为1.2米,落在地面上的影长为2.4米,则树高为 米.42.八年级的小亮和小明是好朋友,他们都报名参加学校的田径运动会,将被教练随机分进甲、乙、丙三个训练队,他俩被分进同一训练队的概率是.43.“五一”黄金周期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有2条公路,乙地到丙地有3条公路.每一条公路的长度如下图所示(单位:km).梁先生任选..一条从甲地到丙地的路线,这条路线正好是最短路线的概率是.44.如图,CT 是⊙O的切线,切点是 T,CT 和弦AB 的延长线相交于点 C,且∠C=40°,∠CTB=30°,则∠CTA= .评卷人得分三、解答题45.如图,正方形 ABCD 是⊙O的内接正方形,延长BA 至 E,使 AE=AB,连结 ED.(1)求证:直线 ED 是⊙O的切线;(2)连结 EO 交 AD 于点F,求证:EF=2FO.46.如图,在正方形ABCD中,M为AD的中点,BE=3AE ,求sin∠ECM的值.,,,,其正面分别画有四个不同的几何图形(如47.有四张背面相同的纸牌A B C D图).小明将这4张纸牌背面朝上洗匀后摸出一张,将剩余3张洗匀后再摸出一张.,,,表(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A B C D 示);(2)求摸出的两张牌面图形既是轴对称图形又是中心对称图形纸牌的概率.48.小明正在操场上放风筝(如图所示),风筝线拉出长度为200m,风筝线与水平地面所成的角度为62°,他的风筝飞得有多高? (精确到lm)49.已北京 2008 奥运会:吉祥物是“贝贝、晶晶、欢欢、迎迎、妮妮”. 如图所示,现将三张分别印有“欢欢、迎迎、妮妮”这三个吉祥物图案的卡片(卡片的形状大小一样,质地相同)放入盒子中.(1)小玲从盒子中任取一张,取到卡片“欢欢”的概率是多少?(2)小玲从盒子中取出一张卡片,记下名子后放回,再从盒子中取出第二张卡片,记下名字. 用列表或画树状图列出小玲取到的卡片的所有可能情况,并求出两次都取到印有“欢欢”图案的卡片的概率.50.甲、乙两人在玩转盘游戏时,把转盘A、B分别分成4 等份、3 等份,并在每一份内标上数字,如图所示,自由转动两个转盘,当转盘停止时,指针所指的两个数字之和为奇数的概率是多少?一艘轮船自西向东航行,在A处测得东偏北21.3°方向有一座小岛C,继续向东航行60海里到达B处,测得小岛C此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C最近?(参考数据:sin21.3°≈925,tan21.3°≈25, sin63.5°≈910,tan63.5°≈2)52..如图,△ABO 中,OA = OB,以 0为圆心的圆经过 AB 的中点 C,且分别交OA、OB 于点E、F.(1)求证:AB 是⊙O的切线;(2)若∠A=30°,且43AB ,求⌒ECF的长.53.将编号依次为1,2,3,4的四个同样的小球放进一个不透明的袋子中,摇匀后甲、乙二人做如下游戏:每人从袋子中各摸出一个球,然后将这两个球上的数字相乘,若积为奇数,则甲获胜;若积为偶数,则乙获胜.请问:这样的游戏规则对甲、乙双方公平吗?请用概率的知识说明理由.54.画出如图实物的三视图.55.图l是“口子窖”酒的一个由铁皮制成的包装底盒,它是一个无盖的六棱柱形状的盒子(如图2),侧面是矩形或正方形.经测量,底面六边形有三条边的长是9cm,有三条边的长是3cm,每个内角都是120º,该六棱校的高为3cm.现沿它的侧棱剪开展平,得到如图3的平面展开图.(1)制作这种底盒时,可以按图4中虚线裁剪出如图3的模片.现有一块长为17.5cm、宽为16.5cm的长方形铁皮,请问能否按图4的裁剪方法制作这样的无盖底盒?并请你说明理由;(2)如果用一块正三角形铁皮按图5中虚线裁剪出如图3的模片,那么这个正三角形的边长至少应为cm.(说明:以上裁剪均不计接缝处损耗.)56.如图,用连线的方法找出图中每一物体所对应的主视图.57.某立体图形的三视图如图,请你画出它的立体图形:58.先确定图中路灯灯泡的位置,再根据小浩的影子画出表示小浩身高的线段.59.从甲地到乙地和从乙地到丙地都分别有火车和汽车两种交通工具,小波的爸爸要从甲地到乙地参加会议后,再去丙地办事,问小波爸爸任意选取交通工具,从甲地到丙地都乘火车的概率是多少?60.在电视台举行的某选秀比赛中,甲、乙、丙三位评委对选手的综合表现,分别给出“待定”或“通过”的结论.(1)写出三位评委给出 A 选手的所有可能的结论;(2)对于选手 A,只有甲、乙两位评委给出相同结论的概率是多少?【参考答案】一、选择题1.A2.A3.B4.B5.C6.C7.无8.C9.C10.D11.C13.A 14.无15.D 16.D 17.B 18.C 19.B 20.A 21.B 22.无23.D二、填空题24.无25.无26.无27.无28.无30.无31.无32.无33.无34.无35.无36.无37.无38.无39.无40.无41.无42.无43.无44.无三、解答题45.无47.无48.无49.无50.无51.无52.无53.无54.无55.无56.无57.无58.无59.无60.无。

文曲星跟踪测试卷九年级数学

文曲星跟踪测试卷九年级数学哎呀,说起这文曲星跟踪测试卷九年级数学,那可真是让我又爱又恨呀!前几天,老师把那厚厚的一沓试卷发到我们手上的时候,我的心都“咯噔”了一下。

我瞅着那密密麻麻的题目,心里忍不住犯嘀咕:“这得做到啥时候呀?”回到家,我赶忙打开书包,把试卷拿出来。

我妈凑过来瞅了一眼,说:“孩子,加油啊,这可都是重点知识的考查呢!”我无奈地点点头,心想:“能不加油嘛,不加把劲,这成绩怎么能上去?”开始做题啦!第一道题还算简单,我心里暗自高兴:“哈哈,这不是小菜一碟嘛!”可没高兴多久,后面的题目就越来越难了。

就像爬山一样,刚开始还轻松,越往上爬,那坡就越陡。

我咬着笔头,绞尽脑汁地思考着。

这时候,我爸走过来看了看,说:“咋啦,闺女,被难住啦?”我苦着脸说:“爸,这题太难啦,我都快想破脑袋啦!”爸爸笑了笑说:“别着急,慢慢想,就像打仗一样,咱得一步步攻克难关。

”做到后面的大题,我感觉自己就像在黑暗中摸索,找不到一点头绪。

我真想大喊一声:“这题到底咋做呀?” 好不容易做完了,我对照着答案批改,哎呀,错了好多呀!我的心情一下子就跌到了谷底,这可怎么办呀?我同桌小明,那可是数学高手。

第二天到学校,我赶紧向他请教。

我着急地说:“小明,快帮帮我,这几道题我怎么都想不明白。

”小明耐心地给我讲解,还说:“你呀,就是有些知识点没掌握牢。

”经过几天的努力,我终于把这套试卷都搞明白了。

我这才发现,其实这些题目也没有那么可怕,就像一个个小怪兽,只要我掌握了方法,就能把它们统统打败。

我想说,这文曲星跟踪测试卷九年级数学虽然让我头疼了好一阵子,但是通过做这套试卷,我也发现了自己的不足之处,让我能更有针对性地去学习。

难道这不是它的好处吗?所以呀,面对难题,咱们可不能退缩,得勇敢地去挑战,这样才能不断进步,你们说对不对?。

2022-2023学年度九年级数学下册模拟测试卷 (5690)

2022-2023学年度九年级数学下册模拟测试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知⊙O半径为 4 cm,直线l与圆心距离是3 cm,则直线l与⊙O公共点个数为()A.O 个B.1个C.2 个D.不能确定2.等腰三角形的腰长为32,底边长为6,那么底角等于()A. 30°B. 45°C. 60°D.120°3.若⊙O的半径为6,如果一条直线和圆相切,P为直线上的一点,则OP的长度()A.OP=6 B.OP>6 C.OP≥6 D.OP<64.“百城馆”中一滑梯的倾斜角α= 60°,则该滑梯的坡比为若太阳光与地面成40°角,一棵树的影长为10㎝,则树高 h所满足的范围是()A.h>15 B. 10<h<15 C. 5<h<10 D. 3<h<55.从 1、2、3、4、5 的 5个数中任取 2个,它们的和是偶数的概率是()A.110B.15C.25D.以上都不对6.某足球评论员预测:“6 月 13 日进行的世界杯小组赛意大利对加纳的比赛,意大利队有 80%的机会获胜.”与“有80%的机会获胜”意思最接近的是()A.假如这两支球队进行 10 场比赛,意大利队恰好会赢8 场B.假如这两支球队进行 10 场比赛,意大利队会8 场左右C.加纳队肯定会瑜这场比赛D.意大利队肯定会赢这场比赛7.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40 个,除颜色外其它都完全相同,小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在 20和 40,则口袋中白色球的个数很可能是()A .6 个B . 16 个C . 18 个D . 24 个8.随机掷两枚硬币,落地后全部正面朝上的概率是( ) A .1 B .21 C .31 D .419.如果∠A 为锐角,那么sin ∠A ( ) A .小于1B .等于1C .大于1D .大于零且小于110.张华的哥哥在西宁工作,今年“五一”期间,她想让哥哥买几本科技书带回家,于是发短信给哥哥,可一时记不清哥哥手机号码后三位数的顺序,只记得是0,2,8三个数字,则张华一次发短信成功的概率是( ) A .16B .13C .19D .1211.同时抛掷两枚均匀硬币,正面都同时向上的概率是( ) A .31B .41 C .21 D .4312.关于视线的范围,下列叙述正确的是( )A .在轿车内比轿车外看到的范围大B .在船头比在船尾看到的范围大C . 走上坡路比走平路的视线范围大D .走上坡路比走平路的视线范围小 13.下列光源的光线所形成的投影不能称为中心投影的是( ) A .探照灯B .太阳C .路灯D .台灯14.如图是由一些相同的小正方形构成的几何体的三视图,那么构成这个几何体的小正方体的个数为( ) A .7个B .6个C .5个D .4个15.如图,沿 AC 方向开山修路,为了加快施工进度,要在小山的另一边同时施工,从 AC 上的一点B ,取ABD= 145°,BD= 500 米,D= 55°. 要使A 、C 、E 成一直线,那么开挖点 E 离点D 的距离是( )A .0500sin55米B .500cos55o 米C .500tan55o 米D .500cot55o 米16.如图,在直角坐标系中,⊙O 的半径为1,则直线2y x =-+与⊙O 的位置关系是( )A .相离B .相交C .相切D .以上三种情形都有可能 17.甲、乙、丙排成一排,甲排在中间的概率是( ) A .14 B .13 C .12 D .2318.正方形网格中,AOB ∠如图放置,则sin AOB ∠=( )A .5B .5C .12 D .219.其市气象局预报称:明天本市的降水概率为70%,这句话指的是( ) A . 明天本市70%的时间下雨,30%的时间不下雨 B . 明天本市70%的地区下雨,30%的地区不下雨 C . 明天本市一定下雨 D . 明天本市下雨的可能性是70%二、填空题20.直角三角形的两条直角边长分别为 3cm 和4 cm ,则它的外接圆半径是 cm ,内切圆半径是 cm .21.如图,⊙0的半径为4 cm ,BC 是直径,若AB=10 cm ,则AC= cm 时,AC 是⊙0的切线.22.如图,AB 和CD 是同一地面上的两座相距24米的楼房,在楼AB 的楼顶A 点测得楼CD 的楼顶C 的仰角为45°,楼底D 的俯角为30°,则楼CD 的高为___ _______m . 23. 用计算器求:(1)sin12036/= ;(2)cos53018/40//= ;(3)tan39040/53//= . (保留4个有效数字).24.若α是锐角,则α的余弦记作 ,α正切记作 .25.升国旗时,某同学站在离旗杆底部 24m 处行注目礼,当国旗升至旗杆顶端时,该同学 视线的仰角 (视线与水平线的夹角 )恰为60°,若双眼离地面 1.5m ,则旗杆的高度为 m .(精确到 1 m)26.某同学住在汇字花园 19 幢,一天,这位同学站在自家的窗口,目测了对面 22幢楼房的顶部仰角为 30°,底部俯角为 45°,又辆道这两幢楼房的间距是 4.5 m ,那么 22楼房的高度为 m .(精确到0.1 m)27.在Rt ABC △中,90C ∠=,5AC =,4BC =,则tan A = . 28.从 1、2、3、4、5 中任选两个数,这两个数的和恰好等于 7 的概率是 . 29.一只口袋内装有3个红球,3 个白球,5个黄球,这些球除颜色外没有其它区别,从中任意取一球,则取得红球的概率为 . 30.已知29x =,则3x = .31.如图,⊙O 的直径为 10,弦 AB 的长为8,M 是弦 AB 上的动点,则OM 的长的取值范围是 .32.如图所示,准备了三张大小相同的纸片,其中两张纸片上各画一个半径相等的半圆,另一张纸片上画一个正方形.将这三张纸片放在一个盒子里摇匀,随机地抽取两张纸片,若可以拼成一个圆形(取出的两张纸片都画有半圆形)则甲方赢;若可以拼成一个蘑菇形(取出的一张纸片画有半圆、一张画有正方形)则乙方赢.你认为这个游戏对双方是公平的吗?若不公平,有利于谁?____________________________.33.如图,△ABC 中,∠A =60°,点 I是内心,则∠BIC .34.如图,已知△ABC的一边BC与以AC为直径的⊙O相切于点C,若BC=4,AB=5,则cosB= .35.小芳的房间有一面积为3m2的玻璃窗,她站在室内离窗子4m的地方向外看,她能看到窗前面一幢楼房的面积有 m2(楼之间的距离为20m).36.如图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形可能是___________________.(把下图中正确的立体图形的序号都填在横线上) .如图,地面A处有一支燃烧的蜡烛(长度不计),一个人在A与墙BC之间运动,则他在墙上投影长度随着他离墙的距离变小而 (填“变大”、“变小”或“不变”).38.王浩在 A 处的影子为AB,AB=lm,A 到电线杆的距离AO=2m,王浩从A点出发绕0点转一圈(以 OA 为半径),如图所示,则王浩的影子“扫”过的面积为 m2.39.一张桌子上摆放着若干个碟子,从三个方向上看,三种视图如图所示,则这张桌子上共有个碟子.40.如图,直径为 1 个单位长度的圆从原点沿数轴向右滚动一周,圆周上的一点从原点0到达 0′,则点 O′代表的值为.41.“太阳每天从东方升起”,这是一个事件(填“确定”或“不确定”).42.如图,1∠的正切值等于.43.如果口袋中只有若干个白球,没有其它颜色的球,而且不许将球倒出来. 若想估计出其中的自球数,可采用的方法有:方法一:向口袋中放几个黑球;方法二:从口袋中抽出几个球并将它们染成黑色或做上标记.若按方法一,向口袋中放5个黑球,并通过多次实验,估计出黑球的概率为 0.2,则你可估计出白球的数目为.若按方法二,从口袋中抽出 5个白球,将它们做上标记,并通过多次实验,估计出做上标记的概率为 0.2,则你可估计出口袋中白球的数目为.评卷人得分三、解答题44.如图,有一个转盘,转盘分成五个相等的扇形,并在每个扇形上分别标上数字“1,2,3,4,5”五个数字,小明转动了 100 次,并记录下指针指向数字 1 的次数.转动次数指向“ 1”的次数指向数字“ 1”的频率202 407 6012 8018(图1)(1)请将上表补充完整.(2)根据上表,估计转动转盘,指针指向“1”的概率是多少?45.小华与小红用5张同样规格的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张. 规则如下:当两张硬纸片上的图形可拼成电灯或小人时,小华得1分;当两张硬纸片上的图形可拼成房子或小山时,小红得1分(如图2).问题:游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方公平?46.两人去某风景区游玩,每天某一时段开往该风景区有三辆汽车,票价相同,但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序,两人采用了不同的乘车方案: 甲无论如何总是上开来的第一辆车,而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况,如果第二辆车的舒适程度比第一辆好,他就上第二辆车;如果第二辆车的舒适程度不比第一辆好,他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等。

北师大版九年级数学上册第三章概率的进一步认识测试卷

第三章概率的进一步认识周周测1 1.(2017•河南)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.2.(2017•南宁)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为()A.B.C.D.3.(2017•黔东南州模拟)小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.4.(2017•黔东南州二模)不透明的袋子里装有2个红球和1个白球,这些球除了颜色外都相同.从中任意摸一个,放回摇匀,再从中摸一个,则两次摸到球的颜色相同的概率是()A.B.C.D.5.(2017•微山县模拟)从长度分别为2、3、4、5的4条线段中任取3条,能构成钝角三角形的概率为()A.B.C.D.6.(2017•衡阳一模)把1枚质地均匀的普通硬币重复掷两次,落地后出现一次正面一次反面的概率是()A.1 B.C.D.7.(2017•和平区模拟)布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是()A.B.C.D.8.(2017•武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.9.(2017•黄石)甲、乙两位同学各抛掷一枚质地均匀的骰子,他们抛掷的点数分别记为a、b,则a+b=9的概率为.10.(2017•宁德模拟)甲、乙两位同学参加物理实验考试,若每人只能从A、B、C、D四个实验中随机抽取一个,则甲、乙两位同学抽到同一实验的概率为.11.(2017•杭州)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.12.(2017•邵阳)掷一枚硬币两次,可能出现的结果有四种,我们可以利用如图所示的树状图来分析有可能出现的结果,那么掷一枚硬币两次,至少有一次出现正面的概率是.13.(2017•德州)淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是.14.(2017•白银)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.15.(2017•衡阳)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.16.(2017•徐州)一个不透明的口袋中装有4张卡片,卡片上分别标有数字1,﹣3,﹣5,7,这些卡片除数字外都相同,小芳从口袋中随机抽取一张卡片,小明再从剩余的三张卡片中随机抽取一张,请你用画树状图或列表的方法,求两人抽到的数字符号相同的概率.17.(2017•常州)一只不透明的袋子中装有4个大小、质地都相同的乒乓球,球面上分别标有数字1、2、3、4.(1)搅匀后从中任意摸出1个球,求摸出的乒乓球球面上数字为1的概率;(2)搅匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,求2次摸出的乒乓球球面上数字之和为偶数的概率.18.(2017•随州)某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分),A组:75≤x<80;B组:80≤x<85;C组:85≤x<90;D组:90≤x<95;E组:95≤x<100.并绘制出如图两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有40名,请补全频数分布直方图;(2)扇形统计图中,C组对应的圆心角是多少度?E组人数占参赛选手的百分比是多少?(3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.19.(2017•乌鲁木齐)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):步数频数频率0≤x<40008a4000≤x<8000150.38000≤x<1200012b12000≤x<16000c0.216000≤x<2000030.0620000≤x<24000d0.04请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.用树状图或表格求概率答案1.C.2.C.3.A.4.B.5.B.6.B.7.C.8.9..10.11..12..13..14.【解答】解:(1)根据题意列表如下:甲乙678939101112410111213511121314可见,两数和共有12种等可能结果;(2)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴李燕获胜的概率为=;刘凯获胜的概率为=.【解答】解:(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.16.【解答】解:画树状图为:共有12种等可能的结果数,其中两人抽到的数字符号相同的结果数为4,所以两人抽到的数字符号相同的概率==.17.【解答】解:(1)∵共有4个大小、质地都相同的乒乓球,球面上分别标有数字1、2、3、4,∴摸出的乒乓球球面上数字为1的概率是;(2)根据题意画树状图如下:共有12种等可能的结果,两次摸出的乒乓球球面上的数字的和为偶数的有4种情况,则两次摸出的乒乓球球面上的数字的和为偶数的概率为=.18.【解答】解:(1)参加初赛的选手共有:8÷20%=40(人),B组有:40×25%=10(人).频数分布直方图补充如下:故答案为40;(2)C组对应的圆心角度数是:360°×=108°,E组人数占参赛选手的百分比是:×100%=15%;(3)画树状图得:∵共有12种等可能的结果,抽取的两人恰好是一男生和一女生的有8种结果,∴抽取的两人恰好是一男生和一女生的概率为=.19.【解答】解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x <20000的3名教师分别为A 、B 、C , 20000≤x <24000的2名教师分别为X 、Y , 画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.北师大版九年级数学上册期中测试题一、选择题(本大题共10小题,每小题3分,共30分) 1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12C.13D.14乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………………密………………………………….封……………………….线…………………………………………………………………………..2. 关于方程x 2-2=0的理解错误的是A.这个方程是一元二次方程B.方C.这个方程可以化成一元二次方程的一般形式D.这个方程可以用公式法求解 3.下列说法正确的个数是①菱形的对角线相等 ②对角线互相垂直的四边形是菱形;③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形⑤矩形的对角线相等且互相垂直平分 A.1 B.2 C.3 D.4 4.方程x 2-3x+6=0的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.不能确定5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________………………………………密………………………………….封……………………….线…………………………………………………………………………..则当投掷次数为1000时,“钉尖向上"”的频率一定是0.620.其中合理的是A.①②B.②③C.①③D.①②③6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是A.23 B.12C.13D.498.如图,在菱形ABCD中,AB=13,对角线AC=10,若过点A作AE ⊥BC垂足为E,则AE的长为A.8B.6013 C.12013D.240139.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为 A.5 B.4 C.342 D.34 10.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有 A.1个 B.2个 C.3个 D.4个 二、填空题(本题共6小题,每小题4分,共24分) 11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..________.12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,则菱形ABCD 的周长为________.13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P ,再随机摸出一张卡片,其数字记为q ,则关于的方程x 2+px+q =0有实数根的概率是________. 14.某种油菜籽在相同条件下的发芽试验结果如下: 由此可以估计油菜籽发芽的概率约为________.(精确到0.1) 15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________. 乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________.三、解答题(本题共7小题,共66分) 17.(8分)解方程: (1)2x 2-4x+1=0 (2)(x+8)(x+1)=-12 18.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转 (1)请用画树状图法或列表法列出所有可能的结果; (2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜 若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..胜.问他们两人谁获胜的概率大?请分析说明 19.(10分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件村衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,且让顺客尽可能多得实惠,则每件衬衫应降价多少元? (2)商场平均每天可能盈利1700元吗?请说明理由. 20.(10分)如图,矩形ABCD 中AB =3,BC =2,过对角线BD 的中点O 的直线分別交AB 、CD 边于点E 、F. (1)求证:四边形BEDF 是平行四边形;乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(2)当四边形BEDF 是菱形时,求EF 的长. 21.(10分)如图,若要建一个长方形鸡场,鸡场的一边靠墙,另三边用竹篱笆園成,篱笆总长33米,墙对面有一个2米宽的门,国成长方形的鸡场除门之外四周不能有空隙.求: (1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米? (2)能围成面积为200平方米的鸡场吗? 22.(10分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量(千克)与销售单价x(元/千克)之间存在如图所示的变化规律. (1)求每月销售量y 与销售单价x 之间的函数关系式; (2)若某月该茶叶专卖店销售这种绿茶获得利润1350元,乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..试求该月茶叶的销售单价x. 23.(10分)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形; (2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FC 交BD 于点O ①判断四边形BFDC 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长. 乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学周测试卷(一)
姓名:______________ 班别:_________ 学号:_______ 成绩:___________
一、 选择题(每题2分,共20分)
1.下列方程中是一元二次方程的有( )
①x x 792
= ②832
=y ③ )13()1(3+=-y y y y ④0622=+-y x ⑤ 10)1(22=+x ⑥ 0142=--x x
A . ①②③ B. ①③⑤ C. ①②⑤ D. ⑥①⑤
2. 一元二次方程()()1532142+=-+x x x 化成一般形式)0(02≠=++a c bx ax 后c b a ,,的值为( )
A .3,-10,-4 B. 3,-12,-2
C. 8,-10,-2
D. 8,-12,4
3.一元二次方程2210x x --=的根的情况为( )
A.有两个相等的实数根
B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根
4.下列实数中,( )是关于x 的一元二次方程0232=--x x 的一个实数根.
A .3 B.-1 C.1 D.2
5.用配方法解一元二次方程542=-x x 的过程中,配方正确的是( )
A .(1)22=+x
B .1)2(2=-x
C .9)2(2=+x
D .9)2(2=-x
6.一元二次方程240x -=的根为( )
A 2x =
B 2x =-
C 120,2x x ==
D 122,2x x ==-
7. 已知αβ、是关于x 的一元二次方程22(23)0x m x m +++=的两个不相等的实数根,且满足1
1
1αβ+=-,则m 的值是( )
A. 3或-1
B.3
C. 1
D. –3或1
8、.设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( )
A .2006
B .2007
C .2008
D .2009
9、在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图5所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( )
A .213014000x x +-=
B .2653500x x +-=
C .213014000x x --=
D .2653500x x --= 10、二次三项式x 2-4x+7的值( )
A 、可以等于3
B 、大于3
C 、不小于3
D 、既为正,也为负
11.在一次篮球联赛中,每个小组的各队都要与同组的其他队比赛两场,然后决定小组出线的球队。

如果某一小组共有x 个队,该小组共赛了90场,那么列出正确的方程是( ) A 1(1)902x x -= B 90(1)2
x x -= C (1)90x x -= D (1)90x x += 二、 填空题(每题2分,共20分)
1.如果方程2130m x -+=是一元二次方程,则m = .
2.方程()()012=-+x x 的解为 .
3.已知关于x 的方程0232=+-k x x 的一个根是1,则k = .
4.关于x 的一元二次方程02522=++x x 的根的判别式的值是____________.
5. 若92++mx x 为完全平方式,则m =___________.
6、关于x 的一元二次方程k
x 2+2x-1=0有两个不相等实数根,则k 的取值范围是 ;
7.若把代数式223x x --化为()2x m k -+的形式,其中,m k 为常数,则m k += .
8、. 请你写出一个有一根为1的一元二次方程: .
9. 关于x 的方程ax 2-(a +2)x +2=0只有一解(相同解算一解),则a 的值为___
9.请你写出一个以31+和31-为根的二次项系数为1的一元二次方程____________
10、已知一个三角形的三边长均满足方程
x 2- 6x+8=0的解,则这个三角形的周长
为 ;
三、 解答题(本大题满分30分)
1.按照要求解方程:
(1)用配方法解方程:
2250x x --= 02522=++x x
(2)用公式法解方程:
2310x x --= )1(3)42(-=-x x x
(3)用适当的方法解方程:
()13312=+x ()()626-=-x x x
2、若2
x 2+1与4x 2-2x-5的值互为相反数,求x 的值。

3、已知方程062=-+kx x 的一个根是2,求它的另一个根以及k 的值.
4、一个矩形的宽比长少m 2,面积是2100m ,求矩形的长.
5、 已知关于x 的方程2(2)20x a x a b -++-=的判别式等于0,且12
x =
是方程的根,求a b +的值.
6、若关于x 的一元二次方程012)2(2=-+-x x m 有实数根,求m 的取值范围。

7、从一块正方形的木板上锯掉2米宽的长方形木条,剩下的面积是48平方米,求原来正方形木板的面积。

8、某药品的价格原来每盒25元,经过两次降价后每盒16元,求该药品平均每次降价的百分率。

9、若a 是方程
x 2-5x+1=0的一个根,求a+a 1的值。

10、已知12,x x 是方程220x x a -+=的两个实数根,且1223x x +=
(1)求12,x x 及a 的值;(2)求32111232x x x x -++的值.
11. 已知关于x 的一元二次方程034)12(2=-++-k x k x .
(1)求证:无论k 取什么实数值,该方程总有两个不相等的实数根;
(2)当Rt ABC △的斜边31=
a ,且两条直角边的长
b 和
c 恰好是这个方程的两个根时,
求k 的值.。

相关文档
最新文档