专题一乘法公式及应用

合集下载

乘法公式的应用专题探究(解析版)

乘法公式的应用专题探究(解析版)

专题15 乘法公式的应用专题探究(一)利用乘法公式求面积:【类题训练】1.如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后用剩余的部分剪开后拼成一个长方形,上述操作能验证的等式是()A.a2+ab=a(a+b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)【分析】用代数式分别表示左图、右图的涂色部分的面积即可.【解答】解:左图,涂色部分的面积为a2﹣b2,拼成右图的长为(a+b),宽为(a﹣b),因此面积为(a+b)(a﹣b),因此有:a2﹣b2=(a+b)(a﹣b),故选:D.2.如图1,将边长为a的正方形纸片,剪去一个边长为b的小正方形纸片.再沿着图1中的虚线剪开,把剪成的两部分(1)和(2)拼成如图2的平行四边形,这两个图能解释下列哪个等式()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2+b2=(a+b)(a﹣b)D.a2﹣b2=(a+b)(a﹣b)【分析】用代数式分别表示各个部分的面积,再根据拼图前后面积之间的关系可得结论.【解答】解:图1中(1)(2)两部分的面积和可以看作两个正方形的面积差,即a2﹣b2,图2是由(1)(2)两部分拼成的底为a+b,高为a﹣b的平行四边形,因此面积为(a+b)(a﹣b),因此有a2﹣b2=(a+b)(a﹣b),故选:D.3.如图,将大正方形通过剪、割、拼后分解成新的图形,利用等面积法可证明某些乘法公式,在给出的4幅拼法中,其中能够验证平方差公式的有()A.①②③④B.①②③C.①③D.③④【分析】根据各个图形的拼图的面积计算方法分别用等式表示后,再进行判断即可.【解答】解:图1可以验证的等式为:a2﹣b2=(a+b)(a﹣b),因此图1可以验证乘法公式;图2可以验证的等式为:a2=(a﹣b)2+b2+2b(a﹣b),因此图2不能验证乘法公式;图3可以验证的等式为:a2﹣b2=(a+b)(a﹣b),因此图3可以验证乘法公式;图4可以验证的等式为:(a+b)2=(a﹣b)2+4ab,因此图4不能验证乘法公式;所以能够验证乘法公式的是:图1,图3,故选:C.4.如图,M是AG的中点,B是AG上一点.分别以AB、BG为边,作正方形ABCD和正方形BGFE,连接MD和MF.设AB=a,BG=b,且a+b=10,ab=21,则图中阴影部分的面积为()A.46B.33C.28D.52【分析】用两个正方形的面积之和,减去两个空白三角形的面积进行列式计算.【解答】解:∵(a+b)2=a2+2ab+b2,∴a2+b2=(a+b)2﹣2ab,由题意得,图中阴影部分的面积为:a2+b2﹣(+)=(a+b)2﹣2ab﹣,=﹣2ab,∴当a+b=10,ab=21时,原式=﹣2×21=75﹣42=33,故选:B.5.如图,有两个正方形纸板A,B,纸板A与B的面积之和为34.现将纸板B按甲方式放在纸板A的内部,阴影部分的面积为4.若将纸板A,B按乙方式并列放置后,构造新的正方形,则阴影部分的面积为()A.30B.32C.34D.36【分析】先设A,B的边长分别是a,b,再用a,b边上阴影部分的面积求解.【解答】解:设A的边长a,B的边长是b,则a2+b2=34,根据题意得:(a﹣b)2=4,∴a2+b2﹣2ab=4,∴2ab=30,∴乙图阴影部分的面积为:(a+b)2﹣a2﹣b2=2ab=30,故选:A.6.如图①,现有边长为b和a+b的正方形纸片各一张,长和宽分别为b,a的长方形纸片一张,其中a<b.把纸片Ⅰ,Ⅲ按图②所示的方式放入纸片Ⅱ内,已知图②中阴影部分的面积满足S1=6S2,则a,b满足的关系式为()A.3b=4a B.2b=3a C.3b=5a D.b=2a【分析】用含a,b的代数式表示出S1,S2,即可得出答案.【解答】解:由题意得,,,∵S1=6S2,∴2ab=6(ab﹣a2),2ab=6ab﹣6a2,∵a≠0,∴b=3b﹣3a,∴2b=3a,故选:B.7.在数学活动课上,一位同学用四张完全一样的长方形纸片(长为a,宽为b,a>b)搭成如图一个大正方形,面积为132,中间空缺的小正方形的面积为28.下列结论中,正确的有()①(a﹣b)2=28;②ab=26;③a2+b2=80;④a2﹣b2=64A.①②③B.①②④C.①③④D.②③④【分析】根据拼图得出,(a+b)2=132,(a﹣b)2=28,ab==26,再根据公式变形逐项进行判断即可.【解答】解:由拼图可知,大正方形的面积的边长为a+b,中间空缺的小正方形的边长为a﹣b,根据题意可知,(a+b)2=132,(a﹣b)2=28,ab==26,∴a2+2ab+b2=132,∴a2+b2=132﹣2×26=80,由于(a+b)2=132,(a﹣b)2=28,而a>b,∴a+b=,a﹣b=,∴a2﹣b2=(a+b)(a﹣b)=4,因此①②③正确,④不正确,故选:A.8.边长为a的正方形ABCD与边长为b的正方形DEFG按如图所示的方式摆放,点A,D,G在同一直线上.已知a+b=10,ab=24.则图中阴影部分的面积为.【分析】用代数式表示阴影部分的面积,再利用公式变形后,代入计算即可.【解答】解:由S阴影部分=S正方形ABCD+S正方形DEFG﹣S△ABC﹣S△AFG可得,S阴影部分=a2+b2﹣a2﹣b(a+b)=a2+b2﹣ab=(a2+b2﹣ab)=[(a+b)2﹣3ab]=×(100﹣72)=14,故答案为:14.9.数学活动课上,小明同学尝试将正方形纸片剪去一个小正方形,剩余部分沿虚线剪开,拼成新的图形.现给出下列3种不同的剪、拼方案,其中能够验证平方差公式的方案是.(请填上正确的序号)【分析】针对每一种拼法,利用代数式表示拼接前、后的面积,适当化简或变形可得答案.【解答】解:在图①中,左边的图形阴影部分的面积=a2﹣b2,右边图形中阴影部分的面积=(a+b)(a﹣b),故可得:a2﹣b2=(a+b)(a﹣b),可以验证平方差公式;在图②中,阴影部分的面积相等,左边阴影部分的面积=a2﹣b2,右边阴影部分面积=(a+b)•(a﹣b),可得:a2﹣b2=(a+b)(a﹣b),可以验证平方差公式;在图③中,阴影部分的面积相等,左边阴影部分的面积=(a+b)2﹣(a﹣b)2=4ab,右边阴影部分面积=2a•2b=4ab,可得:(a+b)2﹣(a﹣b)2=2a•2b,不可以验证平方差公式.故答案为:①②.10.建党100周年主题活动中,702班浔浔设计了如图1的“红色徽章”其设计原理是:如图2,在边长为a的正方形EFGH四周分别放置四个边长为b的小正方形,构造了一个大正方形ABCD,并画出阴影部分图形,形成了“红色徽章”的图标.现将阴影部分图形面积记作S1,每一个边长为b的小正方形面积记作S2,若S1=6S2,则的值是.【分析】利用正方形ABCD的面积减去空白部分的面积求出阴影部分的面积S1,结合S1=6S2,求出a与b的比值.【解答】解:∵S1=(a+2b)2﹣b2﹣a(a+2b)﹣b2﹣(a+b)2=2ab+b2,S2=b2,S1=6S2,∴2ab+b2=6b2,∴.故答案为:.11.如图是A型卡片(边长为a的正方形)、B型卡片(长为a、宽为b的长方形)、C型卡片(边长为b的正方形).现有4张A卡片,11张B卡片,7张C卡片,取其中的若干张卡片(3种类型卡片都要取到)无缝隙、无重叠地拼正方形或长方形,下列说法正确的是.(只填序号)①可拼成边长为a+3b的正方形;②可拼成长、宽分别为2a+4b、2a+b的长方形;③用所有卡片可拼成一个大长方形;④最多可拼出4种面积不同的正方形.【分析】根据长方形、正方形的面积,结合完全平方公式确定所需卡片型号和数量即可.【解答】解:∵边长为a+3b的正方形的面积为a2+9b2+6ab,∴需要1张A型卡片,9张C型卡片,6张B型卡片,∵C型卡片只有7张,∴不能拼成边长为a+3b的正方形;故①不符合题意;∵长、宽分别为2a+4b、2a+b的长方形的面积为(2a+4b)(2a+b)=4a2+10ab+4b2,∴需要4张A型卡片,4张C型卡片,10张B型卡片,∴可拼成长、宽分别为2a+4b、2a+b的长方形;故②符合题意;所有卡片的面积和为4a2+11ab+7b2=(a+b)(4a+7b),∴用所有卡片能可拼成一个大长方形,长方形的长为4a+7b,宽为a+b,故③符合题意;∵(a+b)2=a2+b2+2ab,需要1张A型卡片,1张C型卡片,2张B型卡片,(a+2b)2=a2+4ab+4b2,需要1张A型卡片,4张C型卡片,4张B型卡片,(2a+b)2=4a2+4ab+b2,需要4张A型卡片,1张C型卡片,4张B型卡片,(2a+2b)2=4a2+8ab+4b2,需要4张A型卡片,4张C型卡片,8张B型卡片,∴最多可拼出4种面积不同的正方形;故④符合题意;故答案为:②③④.12.如图1所示,将一张长为2m,宽为n(m>n)的长方形纸片沿虚线剪成4个直角三角形,拼成如图2的正方形ABCD(相邻纸片之间不重叠,无缝隙),若正方形ABCD的面积为20,中间空白处的正方形EFGH的面积为4,则:(1)m+n=;(2)原长方形纸片的周长是.【分析】(1)由拼图可知m2+n2=AB2=20,mn=8,由完全平方公式可求出答案;(2)原长方形的周长为2m+2n,利用(1)的结论进行计算即可.【解答】解:(1)∵正方形ABCD的面积为20,中间空白处的正方形EFGH的面积为4,∴m2+n2=AB2=20,mn=8,又∵(m+n)2=m2+n2+2mn=36,∴m+n=6,(取正值)故答案为:6;(2)∵m+n=6,mn=8,且m>n,∴m=4,n=2,∴原长方形的周长为4m+2n=16+4=20,故答案为:24013.两个边长分别为a和b的正方形(a>b)如图放置(图1,2,3),若阴影部分的面积分别记为S1,S2,S3.(1)用含a,b的代数式分别表示S1,S2,S3;(2)若S1=1,S3=3,求S2的值;(3)若对于任意的正数a、b,都有S1+mS3=kS2(m,k为常数),求m,k的值.【分析】(1)图1中,直接求出阴影的边长,都是a﹣b;图2中,两个正方形的面积与两个白色三角形的面积的和的差;图3中,阴影部分是直角三角形,直接用直角边长的乘积除以2.(2)把S1=1,和S3=3代入(1)中,便可解出ab=6,a2+b2=13值,整体代入S2=a2﹣ab+b2=(a2+b2)﹣ab=﹣3=;(3)把(1)中的三个等式代入S1+mS3=kS2,经过整理,有点巧,再由待定系数法解得.【解答】解:(1)图1中,阴影的边长都是a﹣b,所以S1=(a﹣b)2;图2中,阴影面积S2=(a2+b2)﹣[a2+(a+b)b]=a2﹣ab+b2;图3中,S3=ab.(2)当S1=1,S3=3时,,解得ab=6,a2+b2=13,代入S2,得,S2=a2﹣ab+b2=(a2+b2)﹣ab=﹣3=,(3)因为S1=(a﹣b)2;S2=a2﹣ab+b2;S3=ab.对于任意的正数a、b,都有S1+mS3=kS2(m,k为常数),则(a﹣b)2+m(ab)=k(a2﹣ab+b2),整理得:2(a²+b²)+ab(m﹣4)=(a²+b²)k+ab(﹣k),由于m,k为常数,故由待定系数法得:k=2,m﹣4=﹣k,解得m=2,k=2.14.图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的边长等于;(2)观察图2写出三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系;(3)若mn=﹣3,m﹣n=5,则:①(m+n)2的值为;②m2+n2的值为;③m4+n4的值为.【分析】(1)根据线段的差可得结论;(2)方法1,阴影部分的面积等于大正方形的面积减去4个长方形面积,方法2,阴影部分小正方形的边长为m﹣n,即可计算出面积,可得两次计算的都是阴影部分的面积,即可得出答案;(3)分别根据完全平方公式可解答.【解答】解:(1)图2中的阴影部分的正方形的边长等于m ﹣n ;故答案为:m ﹣n ;(2)根据题意,方法1:阴影部分的面积等于大正方形的面积减去4个长方形面积,即(m +n )2﹣4mn ;方法2,阴影部分小正方形的边长为m ﹣n ,则面积为(m ﹣n )2;∴(m ﹣n )2=(m +n )2﹣4mn ;故答案为:(m ﹣n )2=(m +n )2﹣4mn ;(3)由(2)知:(m ﹣n )2=(m +n )2﹣4mn ,∵mn =﹣3,m ﹣n =5,①(m +n )2=52+4×(﹣3)=25﹣12=13;故答案为:13;②m 2+n 2=(m +n )2﹣2mn =13﹣2×(﹣3)=13+6=19;故答案为:19;③m 4+n 4=(m 2+n 2)2﹣2m 2n 2=192﹣2×(﹣3)2=361﹣18=343;故答案为:343.(二)乘法公式的直接运用:1.平方差公式:()()22b a b a b a -=-+2.完全平方公式:()()2222222;2b ab a b a b ab a b a +-=-++=+【类题训练】1.计算:(2x ﹣y )2﹣(x ﹣2y )2.【分析】用平方差公式计算.【解答】解:原式=[(2x ﹣y )+(x ﹣2y )][(2x ﹣y )﹣(x ﹣2y )]=(3x ﹣3y )(x +y )=3(x ﹣y )(x +y )=3(x 2﹣y 2)=3x 2﹣3y 2.2.计算:(x ﹣2y +3)(x +2y ﹣3).【分析】原式利用平方差公式,及完全平方公式化简即可得到结果.【解答】解:原式=x2﹣(2y﹣3)2=x2﹣(4y2﹣12y+9)=x2﹣4y2+12y﹣9.3.已知x=,求(3x﹣1)2+(1+3x)(1﹣3x)的值.【分析】根据完全平方公式、平方差公式可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:(3x﹣1)2+(1+3x)(1﹣3x)=9x2﹣6x+1+1﹣9x2=﹣6x+2,当x=时,原式=﹣6×+2=﹣1+2=1.4.先化简,再求值:(x+2y)2﹣(x﹣2y)2﹣(x+2y)(x﹣2y)﹣4y2,其中x=﹣2,y =.【分析】利用完全平方公式和平方差公式计算乘方和乘法,然后去括号,合并同类项进行化简,最后代入求值.【解答】解:原式=x2+4xy+4y2﹣(x2﹣4xy+4y2)﹣(x2﹣4y2)﹣4y2=x2+4xy+4y2﹣x2+4xy﹣4y2﹣x2+4y2﹣4y2=﹣x2+8xy,当x=﹣2,y=时,原式=﹣(﹣2)2+8×(﹣2)×=﹣4﹣8=﹣12.5.先化简,再求值:(2m+1)(2m﹣1)﹣(m﹣1)2+(2m)3÷(﹣8m),其中m2+m ﹣2=0.【分析】先算乘方,再算乘法和除法,再合并同类项,最后代入求出即可.【解答】解:原式=4m2﹣1﹣(m2﹣2m+1)+8m3÷(﹣8m)=4m2﹣1﹣m2+2m﹣1﹣m2=2m2+2m﹣2=2(m2+m)﹣2,∵m2+m﹣2=0,∴m2+m=2,当m2+m=2时,原式=2×2﹣2=2.6.观察下列各式:(a﹣b)(a+b)=a2﹣b2;(a﹣b)(a2+ab+b2)=a3﹣b3;(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4;…根据这一规律计算:(1)(a﹣b)(a4+a3b+a2b2+ab3+b4)=;(a﹣b)(a n+a n﹣1b+a n﹣2b2+…+ab n﹣1+b n)=;(2)22021+22020+22019+…+22+2+1.【分析】(1)根据规律即可得出答案;(2)原式变形成公式的形式,用公式即可得出答案.【解答】解:(1)根据规律得:(a﹣b)(a4+a3b+a2b2+ab3+b4)=a5﹣b5;(a﹣b)(a n+a n﹣1b+a n﹣2b2+…+ab n﹣1+b n)=a n+1﹣b n+1;故答案为:a5﹣b5;a n+1﹣b n+1;(2)解:原式=(2﹣1)(22021+22020•1+⋯+2•12020+12021)=22022﹣1.(三)运用乘法公式进行简便计算:【类题训练】1.运用乘法公式进行简便计算:(1)2022+202×198+982(2)20162﹣2017×2015(3)1992.(4)1232﹣122×124.(5)1007×993;(6)32×20.22+0.68×2022.(7)1002-992+982-972+962-952+……+22-12【分析】(1)根据完全平方公式以及平方差公式化简计算即可;(2)根据完全平方公式以及平方差公式化简即可.(3)原式变形后,利用平方差公式计算即可得到结果;(4)由1992=(200﹣1)2,再用完全平方公式计算即可.(5)根据平方差公式简便计算即可;(6)原式变形成0.32×2022+0.68×2022,逆用乘法分配律即可(7)每两个分组,再利用平方差公式,最后原式可化简为100+99+98+97+……+1,再利用首末项和公式求解即可【解答】解:(1)原式=(200+2)2+(200+2)(200﹣2)+(100﹣2)2=2002+800+4+2002﹣4+1002﹣400+4=40000+800+40000+10000﹣400+4=90404;(2)原式=20162﹣(2016+1)×(2016﹣1)=20162﹣(20162﹣1)=20162﹣20162+1=1;(3)1992=(200﹣1)2=2002﹣400+1=39601.(4)1232﹣122×124=1232﹣(123﹣1)×(123+1)=1232﹣(1232﹣12)=1.(5)原式=(1000+7)(1000﹣7)=10002﹣72=1000000﹣49=999951;(6)原式=0.32×2022+0.68×2022=2022×(0.32+0.68)=2022×1=2022.(7)1002-992+982-972+962-952+……+22-12=(1002-992)+(982-972)+(962-952)+……+(22-12)=(100-99)(100+99)+(98-97)(98+97)+……+(2-1)(2+1)=100+99+98+97+……+2+1=½·(100+1)·100=5050(四)完全平方公式的变形应用:完全平方公式的变形公式:()()ab b a b a 422+-=+()()()()222-222222b a b a ab b a ab b a b a -++=+-=+=+ ()()()()4-2-2-22222222b a b a b a b a b a b a ab -+=-+=++=)()( 【类题训练】1.若(a +b )2=25,a 2+b 2=13,则ab 的值为( )A .6B .﹣6C .12D .﹣12【分析】利用完全平方公式(a +b )2=a 2+2ab +b 2=25,且a 2+b 2=13,即可求ab .【解答】解:∵(a +b )2=a 2+2ab +b 2=25,a 2+b 2=13,∴2ab =25﹣13=12,∴ab =6,故选:A .2.已知:(2021﹣a )(2020﹣a )=3,则(2021﹣a )2+(2020﹣a )2的值为( )A .7B .8C .9D .12【分析】根据完全平方公式(a ±b )2=a 2±2ab +b 2,即可求出答案.【解答】解:设x =2021﹣a ,y =2020﹣a ,∴x ﹣y =2021﹣a ﹣2020+a =1,∵(2021﹣a )(2020﹣a )=3,∴xy =3,∴原式=x 2+y 2=(x﹣y)2+2xy=1+2×3=7,故选:A.3.已知a+b=10,ab=﹣5,则a2+b2=.【分析】根据完全平方公式进行计算即可.【解答】解:∵a+b=10,ab=﹣5,∴a2+b2=(a+b)2﹣2ab=102﹣2×(﹣5)=100+10=110.故答案为:110.4.已知:x+y=0.34,x+3y=0.86,则x2+4xy+4y2=.【分析】原式利用完全平方公式化简,将已知等式变形后代入计算即可求出值.【解答】解:∵x+y=0.34,x+3y=0.86,∴2x+4y=1.2,即x+2y=0.6,则x2+4xy+4y2=(x+2y)2=0.36.故答案为:0.36.5.若a+9=b+8=c+7,则(a﹣b)2+(b﹣c)2﹣(c﹣a)2=.【分析】由a+9=b+8=c+7可得:a﹣b=﹣1,b﹣c=﹣1,c﹣a=2,将其代入即可.【解答】解:∵a+9=b+8=c+7,∴a﹣b=﹣1,b﹣c=﹣1,c﹣a=2,∴原式=(﹣1)2+(﹣1)2﹣22=﹣2,故答案为:﹣2.6.两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.若a+b=8,ab=10,则S1+S2=;当S1+S2=40时,则图3中阴影部分的面积S3=.【分析】根据拼图可用a、b的代数式表示S1,S2,进而根据a+b=8,ab=10,求出S1+S2的值即可;由第一问可知,当S1+S2=40时,就是a2+b2﹣ab=40,再利用a、b的代数式表示S3,变形后再整体代入计算即可求出答案.【解答】解:由图1可得,S1=a2﹣b2,由图2可得,S2=2b2﹣ab,因为a+b=8,ab=10,所以S1+S2=a2﹣b2+2b2﹣ab=a2+b2﹣ab=(a+b)2﹣3ab=82﹣3×10=64﹣30=34;由图3可得,S3=a2+b2﹣b(a+b)﹣a2=a2+b2﹣ab=(a2+b2﹣ab)=(S1+S2)=×40=20;故答案为:34,20.7.已知a+b=5,ab=.(1)求a2+b2的值;(2)求a﹣b的值.【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【解答】解:(1)∵a+b=5,ab=,∴(a+b)2=25,∴a2+2ab+b2=25,∴a2+b2=25﹣2ab=25﹣=;(2)∵a2+b2=,ab=,∴a2+b2﹣2ab=16,∴(a﹣b)2=16,∴a﹣b=±4.8.若,求:①(b﹣c)2+3(b﹣c)+3的值;②2a2+2b2+2c2﹣2ab﹣2bc﹣2ac的值.【分析】①根据,得,代入(b﹣c)2+3(b﹣c)+3,计算即可;②先拆项,再配成完全平方形式,再把,,代入,计算即可.【解答】解:①由得,∴(b﹣c)2+3(b﹣c)+3=+3×(﹣)+3=﹣+3=;②2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=a2﹣2ab+b2+b2﹣2bc+c2+a2﹣2ac+c2=(a﹣b)2+(b﹣c)2+(a﹣c)2当,时,原式==.9.阅读理解:若x满足(80﹣x)(x﹣60)=30,求(80﹣x)2+(x﹣60)2的值.解:设80﹣x=a,x﹣60=b,则(80﹣x)(x﹣60)=ab=30,a+b=(80﹣x)+(x﹣60)=20,∴(80﹣x)2+(x﹣60)2=a2+b2=(a+b)2﹣2ab=202﹣2×30=340.解决问题(1)若x满足(20﹣x)(x﹣10)=﹣10,求(20﹣x)2+(x﹣10)2的值;(2)若x满足(2022﹣x)2+(2020﹣x)2=4048,求(2022﹣x)(2020﹣x)的值.【分析】(1)根据题目所给解题方法,设20﹣x=a,x﹣10=b,则a+b=10,根据a2+b2=(a+b)2﹣2ab,即可得出答案;(2)设(2022﹣x)=a,(2020﹣x)=b,则a﹣b=2,根据a2+b2=(a﹣b)2+2ab,即可得出答案.【解答】解:(1)设(20﹣x)=a,(x﹣10)=b,则(20﹣x)(x﹣10)=ab=﹣10,a+b=(20﹣x)+(x﹣10)=10,所以(20﹣x)2+(x﹣10)2=a2+b2=(a+b)2﹣2ab=102+2×10=120;(2)设(2022﹣x)=a,(2020﹣x)=b,则a﹣b=(2022﹣x)﹣(2020﹣x)=2,因为(2022﹣x)2+(2020﹣x)2=4048,所以(2022﹣x)2+(2020﹣x)2=a2+b2=(a﹣b)2+2ab=4048,即22+2×(2022﹣x)(2020﹣x)=4048,(2019﹣x)(2017﹣x)=2022.(五)综合应用:1.若(x2+px+q)(x﹣2)展开后不含x的一次项,则p与q的关系是()A.p=2q B.q=2p C.p+2q=0D.q+2p=0【分析】利用多项式乘多项式法则计算,令一次项系数为0求出p与q的关系式即可.【解答】解:(x2+px+q)(x﹣2)=x3﹣2x2+px2﹣2px+qx﹣2q=x3+(p﹣2)x2+(q﹣2p)x﹣2q,∵结果不含x的一次项,∴q﹣2p=0,即q=2p.故选:B.2.已知a,b是常数,若化简(﹣x+a)(2x2+bx﹣3)的结果不含x的二次项,则36a﹣18b ﹣1的值为()A.﹣1B.0C.17D.35【分析】把式子展开,找到所有x2项的系数,合并后令其为0,再进行计算.【解答】解:原式=﹣2x3﹣bx2+3x+2ax2+abx﹣3a=﹣2x3+(2a﹣b)x2+(3+ab)x﹣3a∵(﹣x+a)(2x2+bx﹣3)结果不含x的二次项∴2a﹣b=0∵式子36a﹣18b﹣1=18(2a﹣b)﹣1∴36a﹣18b﹣1=18×0﹣1=﹣1故选:A.3.若代数式x2+3x+2可以表示为(x﹣1)2+a(x﹣1)+b的形式,则a+b的值是()A.10B.11C.12D.13【分析】利用x2+3x+2=(x﹣1)2+a(x﹣1)+b,将原式进行化简,得出a,b的值,进而得出答案.【解答】解:∵x2+3x+2=(x﹣1)2+a(x﹣1)+b=x2+(a﹣2)x+(b﹣a+1),∴a﹣2=3,∴a=5,∵b﹣a+1=2,∴b﹣5+1=2,∴b=6,∴a+b=5+6=11,故选:B.4.已知代数式x2+y2+4x﹣6y+13=0,则(y+1)x的值为()A.16B.﹣16C.﹣D.【分析】把含x和y的项分别写成完全平方公式的形式,根据非负数的性质求出x,y,再计算代数式的值.【解答】解:∵x2+y2+4x﹣6y+13=0,∴x2+4x+4+y2﹣6y+9=0,∴(x+2)2+(y﹣3)2=0,∴x+2=0,y﹣3=0,∴x=﹣2,y=3,∴原式=(3+1)﹣2=4﹣2=,故选:D.5.若2m×8n=32,,则的值为.【分析】已知等式利用幂的乘方与积的乘方运算法则,同底数幂的乘除法则计算,得到关于m与n的方程,组成方程组,求出方程组的解得m与n的值,即可求出所求.【解答】解:∵2m×8n=2m×23n=2m+3n=32=25,2m÷4n=2m÷22n=2m﹣2n==2﹣4,∴m+3n=5,m﹣2n=﹣4,两式相加得:2m+n=1,则原式=(2m+n)=.故答案为:.6.已知x2+xy+y=14①,y2+xy+x=28②,则x+y的值为.【分析】先把两个方程相加,得到关于(x+y)的一元二次方程,然后利用因式分解法解方程即可.【解答】解:①+②得,x2+2xy+y2+x+y=42,∴(x+y)2+(x+y)﹣42=0,∴(x+y+7)(x+y﹣6)=0,∴x+y=﹣7或x+y=6,故答案为:﹣7或6.7.已知a+b=1,ab=﹣2,则代数式(a+1)(b+1)的值是.【分析】原式利用多项式乘以多项式法则计算,整理后把a+b与ab的值代入计算即可求出值.【解答】解:原式=ab+a+b+1=ab+(a+b)+1,当a+b=1,ab=﹣2时,原式=﹣2+1+1=0,故答案为:0.8.已知x=+1,则代数式x2﹣2x+1的值为.【分析】根据x的值和完全平方差公式可以解答本题.【解答】解:∵x=+1,∴x2﹣2x+1=(x﹣1)2=(+1﹣1)2=()2=2,故答案为:2.9.若a2+ma+25是一个完全平方式,则实数m=.【分析】根据完全平方式即可求出答案.【解答】解:∵(a±5)2=a2±10a+25,∴m=±10,故答案为:±10.10.若25x2+1加上一个单项式能成为一个完全平方式,这个单项式是.【分析】把25x2看作中间项或第一项,根据完全平方公式可解答,当加上的项是﹣1或﹣25x2时,同样成立.【解答】解:①25x2是平方项时,25x2±10x+1=(5x±1)2,∴可添加的项是10x或﹣10x,②25x2是乘积二倍项时,+25x2+1=,∴可添加的项是,③可添加﹣1或﹣25x2,综上所述可添加的项是:10x或﹣10x或﹣1或﹣25x2或.故答案为:10x或﹣10x或﹣1或﹣25x2或.11.下列有四个结论:①若(1﹣x)x+1=1,则x=﹣1;②若a2+b2=3,a﹣b=1,则(2﹣a)(2﹣b)的值为5﹣2;③若规定:当ab≠0时,a⊗b=a+b﹣ab,若a⊗(4﹣a)=0,则a=2;④若4x=a,8y=b,则24x﹣3y可表示为;⑤已知多项式x2+4x+m是完全平方式,则常数m=4.其中正确的是.(填序号)【分析】①可以是零指数幂,可以是1的任何次幂,可以是﹣1的偶数次幂;②先求出ab的值,再求出a+b的值,最后代入代数式求值即可;③根据新定义列出方程求解即可;④把a,b先化成底数为2的式子,然后再求值;⑤根据完全平方公式判断即可.【解答】解:①可以分为三种情况:当x+1=0时,x=﹣1;当1﹣x=1时,x=0;当1﹣x=﹣1,x+1为偶数时,x=2,但x+1=3不是偶数,舍去;综上所述,x=﹣1或0.∴①不符合题意;②(2﹣a)(2﹣b)=4﹣2b﹣2a+ab=4﹣2(a+b)+ab,∵a﹣b=1,∴(a﹣b)2=1,∴a2+b2﹣2ab=1,∴ab=1,∴(a+b)2=a2+b2+2ab=3+2=5,∴a+b=±,当a+b=时,原式=4﹣2+1=5﹣2;当a+b=﹣时,原式=4+2+1=5+2,∴a+b=5±2.∴②不符合题意;③根据定义得:a+4﹣a+a(4﹣a)=0,解得:a=2,∴③符合题意;④∵4x=(22)x=22x,8y=(23)y=23y,∴24x﹣3y===,∴④不符合题意;⑤∵x2+4x+m是完全平方式,∴m=()2=4,∴⑤符合题意,故答案为:③⑤.12.已知实数m,n满足m﹣n=1,则代数式m2+2n+4m﹣1的最小值为.【分析】根据题意把原式变形,根据配方法把原式写成含有完全平方的形式,根据偶次方的非负性解答.【解答】解:∵m﹣n=1,∴n=m﹣1,则m2+2n+4m﹣1=m2+2m﹣2+4m﹣1=m2+6m﹣3=m2+6m+9﹣12=(m+3)2﹣12,∵(m+3)2≥0,∴(m+3)2﹣12≥﹣12,即代数式m2+2n+4m﹣1的最小值等于﹣12.故答案为:﹣12.13.已知S=t2﹣2t﹣15,则S的最小值为.【分析】先根据完全平方公式配方,再根据偶次方的非负性即可求解.【解答】解:∵S=t2﹣2t﹣15=(t﹣1)2﹣16,∴当t=1时,S取得最小值为﹣16.故答案为:﹣16.14.如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“奇特数”,例如:8=32﹣12,16=52﹣32,24=72﹣52;则8、16、24这三个数都是奇特数.(1)填空:32奇特数,2018奇特数.(填“是”或者“不是”)(2)设两个连续奇数是2n﹣1和2n+1(其中n取正整数),由这两个连续奇数构造的奇特数是8的倍数吗?为什么?(3)如图所示,拼叠的正方形边长是从1开始的连续奇数…,按此规律拼叠到正方形ABCD,其边长为99,求阴影部分的面积.【分析】(1)根据32=92﹣72,以及8、16、24这三个数都是奇特数,他们都是8的倍数,而2018=2×1009,不是8的整数倍,进行判断.(2)利用平方差公式计算(2n+1)2﹣(2n﹣1)2=(2n+1+2n﹣1)(2n+1﹣2n+1)=4n•2=8n,得到两个连续奇数构造的奇特数是8的倍数;(3)利用阴影部分面积为:S阴影部分=992﹣972+952﹣932+912﹣892+…+72﹣52+32﹣12,进而求出即可.【解答】解:(1)∵32=8×4=92﹣72,∴32是奇特数,∵因为2018不能表示为两个连续奇数的平方差,∴2018不是奇特数,故答案为:是,不是;(2)由这两个连续奇数构造的奇特数是8的倍数,理由:∵(2n+1)2﹣(2n﹣1)2=(2n+1+2n﹣1)(2n+1﹣2n+1)=4n•2=8n,∴由这两个连续奇数构造的奇特数是8的倍数.(3)S阴影部分=992﹣972+952﹣932+912﹣892+…+72﹣52+32﹣12=(99+97)(99﹣97)+(95+93)(95﹣93)+(91+89)(91﹣89)+…+(7+5)(7﹣5)+(3+1)(3﹣1)=(99+97+95+…+3+1)×2=×2=5000.15.数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为a、宽为b的长方形.用A种纸片一张,B种纸片一张,C种纸片两张可拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积(答案直接填写到题中横线上);方法1 ;方法2 .(2)观察图2,请你直接写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系;(3)类似的,请你用图1中的三种纸片拼一个图形验证:(a+b)(a+2b)=a2+3ab+2b2,请你将该示意图画在答题卡上;(4)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=11,求ab的值;②已知(x﹣2018)2+(x﹣2020)2=34,求(x﹣2019)2的值.【分析】(1)依据正方形的面积计算公式即可得到结论;(2)依据(1)中的代数式,即可得出(a+b)2,a2+b2,ab之间的等量关系;(3)画出长为a+2b,宽为a+b的长方形,即可验证:(a+b)(a+2b)=a2+3ab+2b2;(4)①依据a+b=5,可得(a+b)2=25,进而得出a2+b2+2ab=25,再根据a2+b2=11,即可得到ab=7;②设x﹣2019=a,则x﹣2018=a+1,x﹣2020=a﹣1,依据(x﹣2018)2+(x﹣2020)2=34,即可得到(x﹣2019)2的值.【解答】解:(1)方法一:图2大正方形的面积=(a+b)2方法二:图2大正方形的面积=a2+b2+2ab故答案为:(a+b)2,a2+b2+2ab;(2)由题可得(a+b)2,a2+b2,ab之间的等量关系为:(a+b)2=a2+2ab+b2故答案为:(a+b)2=a2+2ab+b2;(3)如图所示,(4)①∵a+b=5,∴(a+b)2=25,∴a2+b2+2ab=25,又∵a2+b2=11,∴ab=7;②设x﹣2019=a,则x﹣2018=a+1,x﹣2020=a﹣1,∵(x﹣2018)2+(x﹣2020)2=34,(a+1)2+(a﹣1)2=34,2a2+2=34,a2=16,∴(x﹣2019)2=16.16.【探究】如图①,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿线剪开,如图所示,拼成图②的长方形.(1)请你分别表示出这两个图形中阴影部分的面积;;(2)比较两图的阴影部分面积,可以得到乘法公式:(用字母表示);【应用】请应用这个公式完成计算:2001×1999;【拓展】(2+1)(22+1)(24+1)(28+1)…(232+1)+1结果的个位数字为.【分析】(1)分别用代数式表示两个图形的阴影部分的面积即可;(2)根据两个图形中阴影部分的面积相等得出答案;【应用】将2001×1999转化为(2000+1)(2000﹣1),根据平方差公式进行计算即可;【拓展】配上因式(2﹣1)后连续利用平方差公式计算出(2+1)(22+1)(24+1)(28+1)…(232+1)+1的结果,再由“幂”的个位数字的呈现的规律得出答案.【解答】解:(1)图①中阴影部分的面积可以看作是两个正方形的面积差,即a2﹣b2,图②中阴影部分是长为a+b,宽为a﹣b的长方形,因此面积为(a+b)(a﹣b),故答案为:a2﹣b2,(a+b)(a﹣b);(2)由两个图形的阴影部分的面积相等可得,a2﹣b2=(a+b)(a﹣b),故答案为a2﹣b2=(a+b)(a﹣b);【应用】2001×1999=(2000+1)(2000﹣1)=4000000﹣1=3999999;【拓展】原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1)+1=(22﹣1)(22+1)(24+1)(28+1)…(232+1)+1=(24﹣1)(24+1)(28+1)…(232+1)+1=(28﹣1)(28+1)…(232+1)+1=264﹣1+1=264,而21=2,22=4,23=8,24=16,25=32,26=64,27=128……所以264的个位数字为6,故答案为:6.17.(1)填空:(a﹣b)(a+b)=;(a﹣b)(a2+ab+b2)=;(a﹣b)(a3+a2b+ab2+b3)=;(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)=(其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:①211+210+29+28+27+…+23+22+2;②﹣511+510﹣59+58﹣57+…﹣53+52﹣5.【分析】(1)根据平方差公式,根据多项式乘多项式计算,然后合并同类项;(2)由(1)中的规律进行猜想;(3)①首先把1化为(2﹣1)形式,再把括号里的每一项写成乘以1的乘方形式,构成(2)中形式,从而写出结论,进行计算;②先提取符号,把1化为[5﹣(﹣1)]形式,再把括号里的每一项写成乘以(﹣1)的乘方形式,构成(2)中形式,从而写出结论,进行计算.【解答】解:(1)(a﹣b)(a+b)=a2﹣b2;(a﹣b)(a2+ab+b2)=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3;(a﹣b)(a3+a2b+ab2+b3)=a4+a3b+a2b2+ab3﹣a3b﹣a2b2﹣ab3﹣b4=a4﹣b4.故答案为:a2﹣b2、a3﹣b3、a4﹣b4.(2)(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)=a n﹣b n;故答案为:a n﹣b n.(3)①211+210+29+28+27+…+23+22+2=(2﹣1)(211+210×1+29×12+28×13+27×14+…+23×18+22×19+2×110+111)﹣111=212﹣112﹣1=4094;②﹣511+510﹣59+58﹣57+…﹣53+52﹣5=﹣[511﹣510+59﹣58+57﹣…+53﹣52+5]=﹣{[5﹣(﹣1)][511+510×(﹣1)+59×(﹣1)2+⋯+52×(﹣1)9+5×(﹣1)10+(﹣1)11]]﹣1=﹣[(512﹣(﹣1)12)]﹣1=﹣﹣=﹣(511+1).18.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:方法①:.方法②:.请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:.(2)根据(1)中的等式,解决如下问题:①已知:a﹣b=5,a2+b2=20,求ab的值;②已知:(x﹣2020)2+(x﹣2022)2=12,求(x﹣2021)2的值.【分析】(1)利用平移将草坪相对集中为边长为(a﹣b)米的正方形,可表示面积,再利用整体面积减去路的面积即可;(2)①根据完全平方公式进行变形即可;②设x﹣2020=m,x﹣2022=n,则m﹣n=2,m2+n2=(x﹣2020)2+(x﹣2022)2=12,利用完全平方公式可求出mn=4,进而求出(m+n)2=20,要求(x﹣201)2的值,即求()2的值即可.【解答】解:(1)方法①,通过平移两条路,草坪可看作边长为(a﹣b)米的正方形,因此面积为(a﹣b)2(平方米),方法②,从大正方形面积里减去两条路的面积,即(a2﹣ab﹣ab+b2)平方米,也就是(a2﹣2ab+b2)平方米,所以有(a﹣b)2=a2﹣2ab+b2,故答案为:(a﹣b)2,a2﹣2ab+b2,(a﹣b)2=a2﹣2ab+b2;(2)①∵a﹣b=5,∴a2﹣2ab+b2=25,又∵a2+b2=20,∴ab=﹣;②设x﹣2020=m,x﹣2022=n,则m﹣n=2,m2+n2=(x﹣2020)2+(x﹣2022)2=12,∴m2﹣2mn+n2=4,即12﹣2mn=4,∴mn=4,∴(m+n)2=(m﹣n)2+4mn=4+16=20,∴(x﹣201)2=()2===5,答:(x﹣2021)2的值为5.3132。

最新人教中考总复习知识点专题乘法公式的灵活应用

最新人教中考总复习知识点专题乘法公式的灵活应用

专题训练(五) 乘法公式的灵活应用
解:(1)由题意,可得 12×142×16+4=(122+4×12+2)2=1942,所以 12×142×16+4 是 194 的平方. (2)n(n+2)2(n+4)+4=(n2+4n+2)2(n 是正整数).
专题训练(五) 乘法公式的灵活应用
9.2018·武汉市江汉区校级月考 阅读材料:若 m2-2mn+2n2-8n +16=0,求 m,n 的值. 解:∵m2-2mn+2n2-8n+16=0, ∴(m2-2mn+n2)+(n2-8n+16)=0. ∴(m-n)2+(n-4)2=0. ∵(m-n)2≥0,(n-4)2≥0, ∴(m-n)2=0,(n-4)2=0. ∴n=4,m=4. 根据你的观察,探究下面的问题: (1)已知 x2+2xy+2y2+2y+1=0,求 2x+y 的值; (2)已知△ABC 的三边长 a,b,c 都是正整数,且满足 a2+b2-12a -16b+100=0,求△ABC 的最大边长 c 的值.
专题训练(五) 乘法公式的灵活应用
解:(1)∵a+b=6,ab=2, ∴a2+b2=(a+b)2-2ab=62-2×2=32. (2)∵a2+b2=32,ab=2, ∴(a-b)2=a2+b2-2ab=32-4=28. (3)∵a2+b2=32,ab=2, ∴a2-ab+b2=a2+b2-ab=32-2=30.
解:(1)x2+y2=12[(x+y)2+(x-y)2]=12×(6+2)=4. (2)xy=14[(x+y)2-(x-y)2]=14×(6-2)=1.
专题训练(五) 乘法公式的灵活应用
3.阅读下列解题过程: 已知 x≠0,且满足 x2-3x=1,求 x2+x12的值. 解:∵x2-3x=1,∴x2-3x-1=0. 又∵x≠0, ∴x-3-1x=0,即 x-1x=3. ∴x2+x12=x-1x2+2=32+2=11. 请根据上述解题思路解答下列问题: 若 a2-5a-1=0,且 a≠0,求 a2+a12的值.

人教版初中数学乘法公式完整版课件

人教版初中数学乘法公式完整版课件

类型五 巧用乘法公式定个位数字 8.求(2 -1)(2 +1)(22+1)(24+1)(28+1)…(232+1)+1 的个位数 字. 解:原式=(22-1)(22+1)(24+1)(28+1)…(232+1)+1=(24-1)(24 +1)(28+1)…(232+1)+1=264-1+1=264;∵21=2,22=4,23=8, 24=16,个位数按照2,4,8,6依次循环,而64=16×4,∴原式的 个位数为6

7.家具的主体建构中所占比例较大。 建筑中 的木构 是梁柱 系统, 家具中 的木构 是框架 系统, 两个结 构系统 之间同 样都靠 榫卯来 连接, 构造原 理相同 。根据 建筑物 体积、 材质、 用途等 方面的 不同, 榫卯呈 现出不 同的连 接构建 方式。

8.正是在大米的哺育下,中国南方地 区出现 了加速 度的文 明发展 轨迹。 河姆渡 文化之 后,杭 嘉湖地 区兴盛 起来的 良渚文 化,在 东亚大 陆率先 迈上了 文明社 会的台 阶,成 熟发达 的稻作 农业是 其依赖 的社会 经济基 础。
感谢观看,欢迎指导!
类型六 巧用乘法公式解决实际问题 9.解放街幼儿园有一块游戏场和一个葡萄园,所占地的形状都是 正方形,面积也相同,后来重新改建,扩大了游戏场,缩小了葡萄 园,扩大的游戏场仍为正方形,边长比原来增多了3米,缩小后的 葡萄园也为正方形,边长比原来减少了2米,设它们原来的边长均 为x米,请表示出扩大后的游戏场比缩小后的葡萄园的面积多多少 平方米,并计算当x=12时的值. 解:(x+3)2-(x-2)2=x2+6x+9-x2+4x-4=10x+5,当x=12 时,原式=120+5=125

9.考查对文章内容信息的筛选有效信 息的能 力。这 类试题 ,首先 要明确 信息筛 选的方 向,即 挑选的 范围和 标准, 其次要 对原文 语句进 行加工 ,用凝 练的语 言来作 答。

专题复习:乘法公式知识点归纳及典例+练习题及答案(师)

专题复习:乘法公式知识点归纳及典例+练习题及答案(师)

专题复习:乘法公式知识点归纳及典例+练习题一、知识概述 1、平方差公式 由多项式乘法得到 (a+b)(a-b) =a -b . 即两个数的和与这两个数的差的积,等于它们的平方差. 2、平方差公式的特征 ①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数; ②右边是乘式中两项的平方差(相同项的平方减去相反项的平方); ③公式中的 a 和 b 可以是具体数,也可以是单项式或多项式; ④对于形如两数和与这两数差相乘的形式,就可以运用上述公式来计算. 3、完全平方公式 由多项式乘法得到(a±b) =a ±2ab+b2 2 2 2 2即两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的 2 倍. 推广形式:(a+b+c) =a +b +c +2ab+2bc+2ca 4、完全平方公式的特征 (a+b) =a +2ab+b 与(a-b) =a -2ab+b 都叫做完全平方公式,为了区别,我们把前者叫做两数 和的完全平方公式,后者叫做两数差的完全平方公式. ①两公式的左边:都是一个二项式的完全平方,二者仅有一个符号不同;右边:都是二次三项式,其 中有两项是公式左边两项中每一项的平方,中间是左边二项式中两项乘积的 2 倍,两者也仅有一个符号不 同. ②公式中的 a、b 可以是数,也可以是单项式或多项式. ③对于形如两数和(或差)的平方的乘法,都可以运用上述公式计算. 5、乘法公式的主要变式 (1)a -b =(a+b)(a-b); (2)(a+b) -(a-b) =4ab; (3)(a+b) +(a-b) =2(a +b ); (4)a +b =(a+b) -2ab=(a-b) +2ab (5)a +b =(a+b) -3ab(a+b). 熟悉这些变形公式,明确它们间联系,综合运用,常可简化解题过程. 注意:(1)公式中的 a,b 既可以表示单项式,也可以表示多项式. (2)乘法公式既可以单独使用,也可以同时使用. (3)这些公式既可以正用,也可以逆用,因此在解题时应灵活地运用公式,以计算简捷为宜.3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2二、典型例题讲解 例 1、计算: (1)(3a+2b)(2b-3a); (2)(x-2y)(-x-2y);(3) (4)(a+b+c)(a-b-c). 解:;(1)原式=(2b+3a)(2b-3a) =(2b) -(3a) =4b -9a2 2 2 2(2)原式=(-2y+x)(-2y-x) =(-2y) -x =4y -x2 2 2 2(3)原式=== (4)原式=[a+(b+c)][a-(b+c)] =a -(b+c)2 2 2 2=a -(b +2bc+c ) =a -b -2bc-c 例 2、计算: (1)2004 -19962 2 2 2 2 22(2)(x-y+z) -(x+y-z)2(3)(2x+y-3)(2x-y-3). 解:(1)2004 -1996 =(2004+1996)(2004-1996) =4000×8=32000 (2)(x-y+z) -(x+y-z)2 2 2 2=[(x-y+z)+(x+y-z)][ (x-y+z)-(x+y-z)]=2x(-2y+2z)=-4xy+4xz (3)(2x+y-3)(2x-y-3)=[(2x-3)+y][(2x-3)-y] =(2x-3) -y =4x -12x+9-y =4x -y -12x+9; 例 3、计算: (1)(3x+4y) ; (3)(2a-b) ;2 2 2 2 2 2 2 2 2(2)(-3+2a) ; (4)(-3a-2b)22解:(1)原式=(3x) +2·3x·4y+(4y) =9x +24xy+16y2 2 22(2)原式=(-3) +2·(-3)·2a+4a =4a -12a+922(3)原式=(2a) +2·2a·(-b)+(-b) =4a -4ab+b2 222(4)原式=[-(3a+2b)] =(3a+2b)2 22=(3a) +2·(3a)·2b+(2b) =9a +12ab+4b2 22例 4、已知 m+n=4, mn=-12,求(1);(2);(3).解:(1);(2);(3)2.例 5、多项式 9x +1 加上一个单项式后,使它能够成为一个整式的完全平方,那么加上的单项式可以是 ________(填上一个你认为正确的即可). 分析: 解答时,很多学生只习惯于课本上的完全平方的顺序,认为只有添加中间(两项的乘积的 2 倍)项,即 9x +1+6x=(3x+1) 或 9x -6x+1=(3x-1) ;但只要从多方面考虑,还会得出2 2 2 2,9x +1-1=9x =(3x) , 9x +1-9x =12, 所以添加的单项式可以是 6x,22222-6x,,-1,-9x .2答案:±6x 或 例 6、计算:或-1 或-9x2,并说明结果与 y 的取值是否有关. 解:从上述结果可以看出,结果中不含 y 的项,因此结果与 y 的取值无关. 点评: (1)利用平方差公式计算的关键是弄清具体题目中,哪一项是公式中的 a,哪一项是公式中的 b; (2)通常在各因式中, 相同项在前, 相反项在后, 但有时位置会发生变化, 因此要归纳总结公式的变化, 使之更准确的灵活运用公式. ①位置变化:(b+a)(-b+a)=(a+b)(a-b)=a -b ; ②符号变化:(-a-b)(a-b)=(-b-a)(-b+a)=(-b) -a =b -a ; ③系数变化:(3a+2b)(3a-2b)=(3a) -(2b) =9a -4b ; ④指数变化:(a +b )(a -b )=(a ) -(b ) =a -b ; ⑤连用公式变化:(a-b)(a+b)(a +b )(a +b ) =(a -b )(a +b )(a +b )=(a -b )(a +b ) =a -b ; ⑥逆用公式变化:(a-b+c) -(a-b-c)2 2 8 8 2 2 2 2 4 4 4 4 4 4 2 2 4 4 3 3 3 3 3 2 3 2 6 6 2 2 2 2 2 2 2 2 2 2=[(a-b+c)+(a-b-c)][(a-b+c)-(a-b-c)] =4c(a-b). 例 7、已知 .求 分析:的值.若直接代入求解则十分繁杂。

初高中衔接知识专题乘法公式

初高中衔接知识专题乘法公式

初高中衔接知识专题乘法公式
先来看今天的知识点:
乘法公式:
1. 平方差公式: (a+b)(a-b)=a2-b
2.
2. 立方和公式: (a+b)(a2-ab+b2)=a3+b
3.
3. 立方差公式: (a-b)(a2+ab+b2)=a3-b3.
4. 完全平方公式: (a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2;
(a+b+c)2=a2+b2+c2+2ab+2bc+2ac.
5. 完全立方公式:
(a+b)3=a3+3a2b+3ab2+b3;
(a-b)3=a3-3a2b+3ab2-b3.
这些公式可以用多项式乘多项式的方法,通过计算获得,亲爱的同学,你可以把这些公式作为练习,自己计算一下.
记忆这些公式时,要注意以下几点:
第一:要注意公式中有负号时,负号所处的位置.
第二:完全平方公式展开后,每一项的次数都是2,如果某一项里面有两个字母,它的系数也是2,如: 2ab;如果某一项是单独一个字母的平方,它的系数是1,如: a2.
完全立方公式与此类似.
有“负号”的那个完全立方公式,展开后,如果某一项含有b的奇数次方,这一项的符号就是“负号”. 如: -3a2b,因为它含有b的一次方,所以它的符号是“负号”.
千万不要小看上面的这两道例题哦,它们不但经常会出现在初中的一些探究题中,而且可以作为最基本的模型,在高中的好多知识模块中都能用到. 亲爱的同学,你一定要好好琢磨这两道例题的特点和解法,最好能自己再做一遍.。

小专题1 乘法公式的综合应用

小专题1 乘法公式的综合应用
小专题(一) 乘法公式的综合应用
小专题
(一) 乘法公式的综合应用
-2-
乘法公式是初中数学中的重要公式,也是中考常见的考点之一.平方差公式:(a+b)(a-
b)=a2-b2,公式的左边是两个数的和乘这两个数的差,右边正好是这两个数的平方差,两
边都有差的运算,关键要准确把握谁减去谁.完全平方公式:(a+b)2=a2+2ab+b2,(a-
b)2=a2-2ab+b2,公式的左边是两个数的和(或差)的平方,右边是这两个数的平方和,再加
上(或减去)这两个数积的2倍,两边的符号是一致的,要准确把握符号问题.在解决问题
时,要注意观察式子的特点,选择合适的方法和解题思路,不要拘泥于公式的形式,而要
深刻理解,加以灵活运用.
完全平方公式的常见变形有:
a2+b2=(a+b)2-2ab=(a-b)2+2ab;
ab=12[(a+b)2-(a2+b2)]=14[(a+b)2-(a-b)2]=
������+������ 2
2−������-来自����� 22;
(a+b)2+(a-b)2=2a2+2b2.
小专题
(一) 乘法公式的综合应用
-3-
类型1 直接应用公式 1.计算:(x-3y+2z)(x+3y-2z).
所以a2+b2+ab=13+(-6)=7.
小专题
(一) 乘法公式的综合应用
-6-
类型5 解决探究问题 6.(1)如图1,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成 一个长方形(如图2所示),通过观察比较图2与图1中的阴影部分面积,可以得到乘法公式 为 a2-b2=(a+b)(a-b) .(用含a,b的等式表示)

专题1.3 乘法公式-重难点题型(举一反三)(北师大版)(解析版)

专题1.3 乘法公式-重难点题型【北师大版】【题型1 乘法公式的基本运算】【例1】(2021•锦江区校级开学)下列运算正确的是( )A.(x+y)(﹣y+x)=x2﹣y2B.(﹣x+y)2=﹣x2+2xy+y2 C.(﹣x﹣y)2=﹣x2﹣2xy﹣y2D.(x+y)(y﹣x)=x2﹣y2【分析】根据完全平方公式和平方差公式逐个判断即可.【解答】解:A、结果是x2﹣y2,原计算正确,故本选项符合题意;B、结果是x2﹣2xy+y2,原计算错误,故本选项不符合题意;C、结果是x2+2xy+y2,原计算错误,故本选项不符合题意;D、结果是y2﹣x2,原计算错误,故本选项不符合题意;故选:A.【变式1-1】(2021春•龙岗区校级期中)下列关系式中,正确的是( )A.(a﹣b)2=a2﹣b2B.(a+b)(﹣a﹣b)=a2﹣b2 C.(a+b)2=a2+b2D.(﹣a﹣b)2=a2+2ab+b2【分析】根据完全平方公式判断即可.【解答】解:A 选项,原式=a 2﹣2ab +b 2,故该选项计算错误;B 选项,原式=﹣(a +b )2=﹣a 2﹣2ab ﹣b 2,故该选项计算错误;C 选项,原式=a 2+2ab +b 2,故该选项计算错误;D 选项,原式=[﹣(a +b )]2=(a +b )2=a 2+2ab +b 2,故该选项计算正确;故选:D .【变式1-2】(2021春•舞钢市期末)下列乘法运算中,不能用平方差公式计算的是( )A .(m +1)(﹣1+m )B .(2a +3b ﹣5c )(2a ﹣3b ﹣5c )C .2021×2019D .(x ﹣3y )(3y ﹣x )【分析】平方差公式,要求有一项完全相同,另一项互为相反项.根据公式的结构特点解答即可.【解答】解:不能用平方差公式计算的是(x ﹣3y )(3y ﹣x )=(x ﹣3y )×[﹣(x ﹣3y )]=﹣(x ﹣3y )2,故选:D .【变式1-3】(2021春•龙岗区校级月考)下列各式,能用平方差公式计算的是( )A .(2a +b )(2b ﹣a )B .(﹣a ﹣2b )(﹣a +2b )C .(2a ﹣3b )(﹣2a +3b )D .(13a +1)(―13a ―1)【分析】只有相同项,没有相反项,不符合平方差公式,故本选项不符合题意;【解答】解:A .既没有相同项,也没有相反项,不能用平方差公式进行计算,故本选项不符合题意;B .原式=﹣(2b +a )(2b ﹣a ),符合平方差公式,故本选项符合题意;C .原式=﹣(2a ﹣3b )(2a ﹣3b ),只有相同项,没有相反项,不符合平方差公式,故本选项不符合题意;D .原式=﹣(13a +1)(13a +1)只有相同项,没有相反项,不符合平方差公式,故本选项不符合题意;故选:B .【题型2 完全平方公式(求系数的值)】【例2】(2021春•仪征市期中)若多项式4x 2﹣mx +9是完全平方式,则m 的值是( )A .6B .12C .±12D .±6【分析】根据完全平方公式得到4x 2﹣mx +9=(2x ﹣3)2或4x 2﹣mx +9=(2x +3)2,即4x 2﹣mx +9=x 2﹣12x +9或4x 2﹣mx +9=x 2+12x +9,从而得到m 的值.【解答】解:∵多项式4x2﹣mx+9是一个完全平方式,∴4x2﹣mx+9=(2x﹣3)2或4x2﹣mx+9=(2x+3)2,即4x2﹣mx+9=x2﹣12x+9或4x2﹣mx+9=x2+12x+9,∴m=12或m=﹣12,故选:C.【变式2-1】(2021春•南山区校级期中)如果x2+8x+m2是一个完全平方式,那么m的值是( )A.4B.16C.±4D.±16【分析】利用完全平方公式的结构特征判断即可求出m的值.【解答】解:∵x2+8x+m2是一个完全平方式,∴m2=16,解得:m=±4.故选:C.【变式2-2】(2021春•新城区校级期末)已知:(x﹣my)2=x2+kxy+4y2(m、k为常数),则常数k的值为 ±4 .【分析】利用完全平方公式的结构特征判断即可确定出k的值.【解答】解:∵(x﹣my)2=x2+kxy+4y2=x2+kxy+(2y)2(m、k为常数),∴m=±2,∴(x±2y)2=x2±4xy+4y2=x2+kxy+4y2,∴k=±4.故答案为:±4.【变式2-3】(2021春•邗江区期中)若x2﹣2(m﹣1)x+4是一个完全平方式,则m= 3或﹣1 .【分析】根据完全平方公式得出2(m﹣1)x=±2•x•2,求出m即可.【解答】解:∵x2﹣2(m﹣1)x+4是一个完全平方式,∴﹣2(m﹣1)x=±2•x•2,解得:m=3或﹣1.故答案为:3或﹣1.【题型3 完全平方公式的几何背景】【例3】(2021春•兴宾区期末)有A,B两个正方形,按图甲所示将B放在A的内部,按图乙所示将A,B并列放置构造新的正方形.若图甲和图乙中阴影部分的面积分别为3和16,则正方形A,B的面积之和为( )A.13B.19C.11D.21【分析】设A,B两个正方形的边长各为a、b,则由题意得(a﹣b)2=3,(a+b)2﹣(a2+b2)=2ab=16,所以正方形A,B的面积之和为a2+b2=(a﹣b)2+2ab,代入即可计算出结果.【解答】解:设A,B两个正方形的边长各为a、b,则图甲得(a﹣b)2=a2﹣2ab+b2=3,由图乙得(a+b)2﹣(a2+b2)=(a2+2ab+b2)﹣(a2+b2)=2ab=16,∴正方形A,B的面积之和为,a2+b2=(a2﹣2ab+b2)+2ab=(a﹣b)2+2ab=3+16=19,故选:B.【变式3-1】(2021春•芝罘区期末)用4块完全相同的长方形拼成如图所示的正方形,用不同的方法计算图中阴影部分的面积,可得到一个关于a,b的等式为( )A.4a(a+b)=4a2+4ab B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+2ab+b2D.(a+b)2﹣(a﹣b)2=4ab【分析】由观察图形可得阴影部分的面积为4ab,也可以表示为(a+b)2﹣(a﹣b)2,可得结果.【解答】解:∵图形中大正方形的面积为(a+b)2,中间空白正方形的面积为(a﹣b)2,∴图中阴影部分的面积为(a+b)2﹣(a﹣b)2,又∵图中阴影部分的面积还可表示为4ab,∴(a+b)2﹣(a﹣b)2=4ab,故选:D.【变式3-2】(2021春•岚山区期末)现有四个大小相同的长方形,可拼成如图1和图2所示的图形,在拼图2时,中间留下了一个边长为4的小正方形,则每个小长方形的面积是( )A.3B.6C.12D.18【分析】设小长方形的长为a,宽为b,由图1可得a=3b,则(a﹣b)²=4b²=16,解得b=2即可就得最后结果.【解答】解:设小长方形的长为a,宽为b,由图1可得a=3b,则(a﹣b)²=(3b﹣b)²=(2b)²=4b²=4²=16,解得b=2或b=﹣2(不合题意,舍去),∴每个小长方形的面积为,ab=3b•b=3×2²=12,故选:C.【变式3-3】(2021春•深圳期中)有两个正方形A,B.现将B放在A的内部得图甲,将A,B并列放置后,构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,若三个正方形A和两个正方形B,如图丙摆放,则阴影部分的面积为( )A.28B.29C.30D.31【分析】设正方形A,B的边长各为a、b(a>b),得图甲中阴影部分的面积为(a﹣b)2=a²﹣2ab+b²=1,可解得a﹣b=1,图乙中阴影部分的面积为(a+b)2﹣(a2+b2)=2ab=12,可得(a+b)²=(a﹣b)²+4ab=1+2×12=25,可得a+b=5,所以图丙中阴影部分的面积为(2a+b)²﹣(3a²+2b²)=a²+4ab﹣b²=(a+b)(a﹣b)+4ab,代入就可计算出结果.【解答】解:设正方形A,B的边长各为a、b(a>b),得图甲中阴影部分的面积为(a﹣b)2=a²﹣2ab+b²=1,解得a﹣b=1或a﹣b=﹣1(舍去),图乙中阴影部分的面积为(a+b)2﹣(a2+b2)=2ab=12,可得(a+b)²=a²+2ab+b²=a²﹣2ab+b²+4ab=(a﹣b)²+4ab=1+2×12=25,解得a+b=5或a+b=﹣5(舍去),∴图丙中阴影部分的面积为(2a+b)²﹣(3a²+2b²)=a²+4ab﹣b²=(a+b)(a﹣b)+2×2ab=5×1+2×12=5+24=29,故选:B.【题型4 平方差公式的几何背景】【例4】(2021•庐江县开学)如图1,在边长为a的正方形中剪去一个边长为b(b<a)的小正方形,把剩下部分拼成一个梯形(如图2),利用这两个图形的面积,可以验证的等式是( )A.a2+b2=(a+b)(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2﹣b2=(a+b)(a﹣b)【分析】分别表示图1、图2中阴影部分的面积,根据两者面积相等,即可得出结论.【解答】解:∵图1中的阴影部分面积为:a2﹣b2,图2中阴影部分面积为:12(2b+2a)(a﹣b),∴a2﹣b2=12(2b+2a)(a﹣b),即a2﹣b2=(a+b)(a﹣b),故选:D.【变式4-1】(2021春•博山区期末)如图1,将一个大长方形沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示图形,正好是边长为x的大正方形剪去一个边长为1的小正方形(阴影部分).这两个图能解释下列哪个等式( )A.(x﹣1)2=x2﹣2x+1B.(x+1)(x﹣1)=x2﹣1C.(x+1)2=x2+2x+1D.x(x﹣1)=x2﹣x【分析】用代数式分别表示出图1和图2中白色部分的面积,由此得出等量关系即可.【解答】解:图1的面积为:(x+1)(x﹣1),图2中白色部分的面积为:x2﹣1,∴(x+1)(x﹣1)=x2﹣1,故选:B.【变式4-2】(2021春•洪江市期末)如图(1),从边长为a的大正方形的四个角中挖去四个边长为b的小正方形后,将剩余的部分剪拼成一个长方形,如图(2),通过计算阴影部分的面积可以得到( )A.(a﹣2b)2=a2﹣4ab+b2B.(a+2b)2=a2+4ab+b2C.(a﹣2b)(a+2b)=a2﹣4b2D.(a+b)2=a2+2ab+b2【分析】利用大正方形面积减去4个小正方形面积即可得出图(1)中阴影部分的面积;根据矩形的面积公式可得图(2)的面积,据此可得结果.【解答】解:图(1)中阴影部分的面积为:a2﹣4b2;图(2)中长方形的长是a+2b,宽是a﹣2b,面积是(a+2b)(a﹣2b)=a2﹣4b2,∴(a﹣2b)(a+2b)=a2﹣4b2.故选:C.【变式4-3】(2020春•阳谷县期末)如图1,将边长为a的大正方形剪去一个边长为b的小正方形,再沿图中的虚线剪开,然后按图2所示进行拼接,请根据图形的面积写出一个含字母a,b的等式 a2﹣b2=(a+b)(a﹣b) .【分析】分别表示出两个图形的面积,再根据面积相等得出等式即可.【解答】解:图1面积为a2﹣b2,图2的面积为(a+b)(a﹣b),因此有:a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b).【题型5 乘法公式(求代数式的值)】【例5(2021春•邗江区校级期末)若xy=﹣1,且x﹣y=3.(1)求(x﹣2)(y+2)的值;(2)求x2﹣xy+y2的值.【分析】(1)原式利用多项式乘以多项式法则计算,将各自的值代入计算即可求出值;(2)原式利用完全平方公式变形,将各自的值代入计算即可求出值.【解答】解:(1)∵xy=﹣1,x﹣y=3,∴(x﹣2)(y+2)=xy+2(x﹣y)﹣4=﹣1+6﹣4=1;(2)∵xy=﹣1,x﹣y=3,∴x2﹣xy+y2=(x﹣y)2+xy=9+(﹣1)=8.【变式5-1】(2021•宁波模拟)已知(2x+y)2=58,(2x﹣y)2=18,则xy= 5 .【分析】由(2x+y)2﹣(2x﹣y)2=4×2xy进行解答.【解答】解:∵(2x+y)2=58,(2x﹣y)2=18,∴(2x+y)2﹣(2x﹣y)2=4×2xy,∴58﹣18=8xy,∴xy=5.故答案是:5.【变式5-2】(2021春•驿城区期末)已知a﹣b=9,ab=﹣14,则a2+b2的值为 53 .【分析】运用完全平方公式(a﹣b)2=a2+b2﹣2ab可解决此题.【解答】解:∵a﹣b=9,ab=﹣14,∴(a﹣b)2=a2+b2﹣2ab=a2+b2﹣2×(﹣14)=81.∴a2+b2=81+(﹣28)=53.故答案为53.【变式5-3】(2021春•聊城期末)已知:a﹣b=6,a2+b2=20,求下列代数式的值:(1)ab;(2)﹣a3b﹣2a2b2﹣ab3.【分析】(1)把a﹣b=6两边平方,展开,即可求出ab的值;(2)先分解因式,再整体代入求出即可.【解答】解:(1)∵a﹣b=6,a2+b2=20,∴(a﹣b)2=36,∴a2﹣2ab+b2=36,∴﹣2ab=36﹣20=16,∴ab=﹣8;(2)∵a2+b2=20,ab=﹣8,∴﹣a3b﹣2a2b2﹣ab3=﹣ab(a2+2ab+b2)=﹣(﹣8)×(20﹣16)=32.【题型6 乘法公式的综合运算】【例6】(2020秋•东湖区期末)实践与探索如图1,边长为a的大正方形有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).(1)上述操作能验证的等式是 A ;(请选择正确的一个)A.a2﹣b2=(a+b)(a﹣b)B.a2﹣2ab+b2=(a﹣b)2C.a2+ab=a(a+b)(2)请应用这个公式完成下列各题:①已知4a2﹣b2=24,2a+b=6,则2a﹣b= 4 .②计算:1002﹣992+982﹣972+…+42﹣32+22﹣12.【分析】(1)分别表示图1和图2中阴影部分的面积即可得出答案;(2)①利用平方差公式将4a2﹣b2=(2a+b)(2a﹣b),再代入计算即可;②利用平方差公式将原式转化为1+2+3+…+99+100即可.【解答】解:(1)图1中阴影部分的面积为两个正方形的面积差,即a2﹣b2,图2中的阴影部分是长为(a+b),宽为(a﹣b)的长方形,因此面积为(a+b)(a﹣b),所以有a2﹣b2=(a+b)(a﹣b),故答案为:A;(2)①∵4a2﹣b2=24,∴(2a+b)(2a﹣b)=24,又∵2a+b=6,∴6(2a﹣b)=24,即2a﹣b=4,故答案为:4;②∵1002﹣992=(100+99)(100﹣99)=100+99,982﹣972=(98+97)(98﹣97)=98+97,…22﹣12=(2+1)(2﹣1)=2+1,∴原式=100+99+98+97+…+4+3+2+1=5050.【变式6-1】(2021•滦南县二模)【阅读理解】我们知道:(a+b)2=a2+2ab+b2①,(a﹣b)2=a2﹣2ab+b2②,①﹣②得:(a+b)2﹣(a﹣b)2=4ab,所以ab=(a b)24―(a b)24=(a b2)2―(a b2)2.利用上面乘法公式的变形有时能进行简化计算.例:51×49=(51492)2―(51492)2=502―12=2500﹣1=2499.【发现运用】根据阅读解答问题(1)填空:102×98= (102982) 2﹣ (102982) 2;(2)请运用你发现的规律计算:19.2×20.8.【分析】(1)根据规律解答即可;(2)根据规律计算19.2×20.8即可.【解答】解:(1)102×98=(102982)2―(102982)2;故答案为:(102982),(102982);(2)19.2×20.8=(19.220.82)2―(19.220.82)2=202﹣0.82=400﹣0.64=399.36.【变式6-2】(2021春•平顶山期末)我们将(a+b)2=a2+2ab+b2进行变形,如:a2+b2=(a+b)2﹣2ab,ab=(a b)2(a2b2)2等.根据以上变形解决下列问题:(1)已知a2+b2=8,(a+b)2=48,则ab= 20 .(2)已知,若x满足(25﹣x)(x﹣10)=﹣15,求(25﹣x)2+(x﹣10)2的值.(3)如图,四边形ABED是梯形,DA⊥AB,EB⊥AB,AD=AC,BE=BC,连接CD,CE,若AC•BC=10,则图中阴影部分的面积为 10 .【分析】(1)将a2+b2=8,(a+b)2=48代入题干中的推导公式就可求得结果;(2)设25﹣x=a,x﹣10=b,则(25﹣x)2+(x﹣10)2=a2+b2=(a+b)2﹣2ab,再代入计算即可;(3)设AD=AC=a,BE=BC=b,则图中阴影部分的面积为12(a+b)(a+b)―12a²―12b²=12[(a+b)²﹣(a²+b²)]=12×2ab=ab=10.【解答】(1)∵a2+b2=8,(a+b)2=48,∴ab=(a b)2(a2b2)2=4882=20,(2)设25﹣x=a,x﹣10=b,由(a+b)2=a2+2ab+b2进行变形得,a2+b2=(a+b)2﹣2ab,∴(25﹣x)2+(x﹣10)2=[(25﹣x)+(x﹣10)]²﹣2(25﹣x)(x﹣10)=15²﹣2×(﹣15)=225+30=255,(3)设AD=AC=a,BE=BC=b,则图中阴影部分的面积为12(a+b)(a+b)―12(a²+b²)=12[(a+b)²﹣(a²+b²)]=12×2ab=ab=10【变式6-3】(2021春•滨江区校级期末)数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为b,宽为a的长方形.并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积:方法1: (a+b)2 ;方法2: a2+b2+2ab ;(2)观察图2,请你写出代数式:(a+b)2,a2+b2,ab之间的等量关系 (a+b)2=a2+b2+2ab ;(3)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,(a﹣b)2=13,求ab的值;②已知(2021﹣a)2+(a﹣2020)2=5,求(2021﹣a)(a﹣2020)的值.【分析】(1)方法1,由大正方形的边长为(a+b),直接求面积;方法2,大正方形是由2个长方形,2个小正方形拼成,分别求出各个小长方形、正方形的面积再求和即可;(2)由(1)直接可得关系式;(3)①由(a﹣b)2=a2+b2﹣2ab=13,(a+b)2=a2+b2+2ab=25,两式子直接作差即可求解;②设2021﹣a=x,a﹣2020=y,可得x+y=1,再由已知可得x2+y2=5,先求出xy=﹣2,再求(2021﹣a)(a﹣2020)=﹣2即可.【解答】解:(1)方法一:∵大正方形的边长为(a+b),∴S=(a+b)2;方法二:大正方形是由2个长方形,2个小正方形拼成,∴S=b2+ab+ab+a2=a2+b2+2ab;故答案为:(a+b)2,a2+b2+2ab;(2)由(1)可得(a+b)2=a2+b2+2ab;故答案为:(a+b)2=a2+b2+2ab;(3)①∵(a﹣b)2=a2+b2﹣2ab=13①,(a+b)2=a2+b2+2ab=25②,由①﹣②得,﹣4ab=﹣12,解得:ab=3;②设2021﹣a=x,a﹣2020=y,∴x+y=1,∵(2021﹣a)2+(a﹣2020)2=5,∴x2+y2=5,∵(x+y)2=x2+2xy+y2=1,∴2xy=1﹣(x2+y2)=1﹣5=﹣4,解得:xy=﹣2,∴(2021﹣a)(a﹣2020)=﹣2.。

乘法公式灵活应用专题

《乘法公式的复习》专题班级 姓名贵有恒何必三更眠五更起,最无益只怕一日曝十日寒。

【平方差公式: (a+b)(a-b)=a 2-b 2】【完全平方公式: (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 】如下几个比较有用的派生公式:()()()()()()()12223244222222222222....a b ab a b a b ab a b a b a b a b a b a b ab+-=+-+=+++-=++--= (a +b +c )2 =[(a +b )+c ]2 =(a +b )2+2(a +b )⋅c +c 2 =a 2+2ab +b 2+2ac +2bc +c 2=a 2+b 2+c 2+2ab +2bc +2ac即(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac乘方运算(同底数幂的乘法、幂的乘方、积的乘方、同单项式乘以单项式乘法公式1.已知2=+b a ,1=ab ,求22b a +的值。

2.已知8=+b a ,2=ab ,求2)(b a -的值。

3:计算19992-2000×19984:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。

5:已知x-y=2,y-z=2,x+z=14。

求x 2-z 2的值。

6:判断(2+1)(22+1)(24+1)……(22048+1)+1的个位数字是几?7.计算(1)(a +4b -3c )(a -4b -3c ) (2)(3x +y -2)(3x -y +2)8.解下列各式(1)已知a 2+b 2=13,ab =6,求(a +b )2,(a -b )2的值。

(2)已知(a +b )2=7,(a -b )2=4,求a 2+b 2,ab 的值。

(3)已知a (a -1)-(a 2-b )=2,求222a b ab +-的值。

9.计算 (1)(x 2-x +1)2 (2)(3m +n -p )210. 计算:()()53532222x y x y +- 计算:()()32513251x y z x y z +-+-+--计算:()()57857822a b c a b c +---+ 计算:()()x y z x y z +-++2611. 已知a b ab -==45,,求a b 22+的值。

初一数学乘法公式验证及应用专题

乘法公式验证及应用专题1.(1)如图1所示,若大正方形的边长为a,小正方形的边长为b,则阴影部分的面积是;若将图1中的阴影部分裁剪下来,重新拼成如图2所示的一个长方形,则它的面积是;(2)由(1)可以得到一个公式:;(3)利用你得到的公式计算:20192−2020×2018.2.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是______.(请选择正确的一个)A.a2−b2=(a+b)(a−b)B.a2−2ab+b2=(a−b)2C.a2+ab=a(a+b)(2)若x2−y2=16,x+y=8,求x−y的值;(3)计算:(1−122)(1−132)(1−142)…(1−120182)(1−120192).3.(1)如图1,已知正方形ABCD 的边长为a ,正方形FGCH 的边长为b ,长方形ABGE 和EFHD 为阴影部分,则阴影部分的面积是______(写成平方差的形式);(2)将图1中的长方形ABGE 和EFHD 剪下来,拼成图2所示的长方形,则长方形AHDE 的面积是______(写成多项式相乘的形式);(3)比较图1与图2的阴影部分的面积,可得乘法公式______.(4)利用所得公式计算:(1−13)(1+13)(1+132)(1+134)(1+138)+1316.4.在学习“乘法公式”时,育红中学七(1)班数学兴趣小组在活动课上进行了这样的操作:作两条互相垂直的线段AB 和CD.把大正方形分成四部分(如图所示).【观察发现】(1)请用两种不同的方法表示图形的面积,得到一个等量关系:________.【类比操作】(2)请你作一个图形验证:(x +y)(2x +y)=2x 2+3xy +y 2.【延伸运用】 (3) 若AB +CD =14,图中阴影部分的面积和为29,求xy 的值.5. 数形结合是解决数学问题的一种重要的思想方法,借助图的直观性,可以帮助理解数学问题.(1)请写出图1,图2,图3阴影部分的面积分别能解释的乘法公式.图1______,图2______,图3______.(2)用4个全等的长和宽分别为a,b的长方形拼摆成一个如图4的正方形,请你通过计算阴影部分的面积,写出这三个代数式(a+b)2,(a−b)2,ab之间的等量关系.(3)根据(2)中你探索发现的结论,计算:当x+y=3,xy=−10时,求x−y的值.6. 通常情况下,用两种不同的方法计算同一图形的面积,可以得到一个恒等式.现有如图1所示边长为a的正方形纸片,边长为b的正方形纸片,长宽分别为a、b的长方形纸片若干,取部分纸片摆成如图2所示的一个长方形,根据这个长方形的面积可以得到的等式是:(a+b)(a+2b)=a2+3ab+2b2;(1)请利用若干图1所示纸片,摆出图形来说明:当a,b都不为0时,(a+b)2≠a2+b2(画图并写出过程).(2)小明同学用图1中边长为a的正方形纸片x张,边长为b的正方形纸片y张,长宽分别为a、b的长方形纸片z张,拼出一个面积为(2a+b)(a+3b)的长方形,则x=______,y=______,z=______.7. 有两类正方形A,B,其边长分别为a,b.现将B放在A的内部得图1,将A,B并列放置后构造新的正方形得图2.若图1和图2中阴影部分的面积分别为1和12,求:(1)正方形A,B的面积之和为________.(2)小明想要拼一个两边长分别为(2a+b)和(a+3b)的长方形(不重不漏),除用去若干个正方形A,B外,还需要以a,b为边的长方形________个.(3)三个正方形A和两个正方形B如图3摆放,求阴影部分的面积.8. 如图1,用4个相同边长是x,y的长方形和中间一个小正方形密铺而形成的大正方形.(1)若大正方形的面积为36,小正方形的面积为4,则x−y值为______ ;则x+y的值为______ ;(2)若小长方形两边长为9−m和m−4,则大正方形的边长为______ ;若满足(9−m)(m−4)=4,则(9−m)2+(m−4)2的值为______(3)如图2,正方形ABCD的边长是c,它由四个直角边长分别是a,b的直角三角形和中间一个小正方形组成的,猜想a,b,c三边的数量关系,并说明理由.9.【探究】如图1,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示),通过观察比较图2与图1中的阴影部分面积,可以得到乘法公式________;(用含a,b的等式表示)【应用】请应用这个公式完成下列各题:(1)已知4m2=12+n2,2m+n=4,则2m−n的值为________;(2)计算:20192−2020×2018;【拓展】计算:1002−992+982−972+⋯+42−32+22−12.10.如图①是1个直角三角形和2个小正方形,直角三角形的三条边长分别是a、b、c,其中a、b是直角边.正方形的边长分别是a、b.(1)将4个完全一样的直角三角形和2个小正方形构成一个大正方形(如图②).用两种不同的方法列代数式表示图②中的大正方形面积:方法一:______ ;方法二:______ ;(2)观察图②,试写出(a+b)2,a2,2 ab,b2这四个代数式之间的等量关系是:______ ;(3)借助以上经验,利用以下两个完全一样的直角梯形,验证等式a2−b2=(a+b)(a−b).请画出图形,并写出验证过程.。

乘法公式及应用

教师姓名学生姓名学管师学科数学年级上课时间月日:00--- :00 课题整式的乘法公式及其应用教学目标乘法公式及其应用教学重难点乘法公式在计算证明中的熟练应用教学过程一、【基础知识精讲】1.整式的乘法(1)单项式乘以单项式:把它的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的因式,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:就是根据乘法分配律用单项式去乘多项式的每一项,再把所得的积相加.即是:()m a b c ma mb mc++=++(3)多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即是:()()m n a b ma mb na nb++=+++2.整式的乘法公式:(1)平方差公式:22()()a b a b a b+-=-公式的逆用:22()()a b a b a b-=+-添括号:()a b c a b c-+=+-+;()a b c a b c-+=--(2)完全平方公式:222()2()a b a ab b+=++完全平方和公式;222()2()a b a ab b-=-+完全平方差公式公式的逆用:2222()()a ab b a b++=+完全平方和公式2222()()a ab b a b-+=-完全平方差公式3.乘法公式的变形运用:①22()()4a b a b ab+=-+②22()()4a b a b ab-=+-③2222()()2a b a ba b++-+=④22()()4a b a bab+--=⑤2222()2()2a b a b ab a b ab+=+-=-+⑥222222()()()()22a b a b a b a bab+-+--+==-⑦2222111()2()2a a aa a a+=+-=-+⑧2222()222a b c a b c ab bc ac++=+++++⑨2222221[()()()]2a b c ab bc ac a b b c a c+++++=+++++⑩2222221[()()()]2a b c ab bc ac a b b c a c ++---=-+-+-⎪⎩⎪⎨⎧-=-;为奇数,为偶数)()()(n a n a a nn n ⎪⎩⎪⎨⎧---=-).()()()()(为奇数,为偶数n b a n b a a b nn n二、【例题精讲】专题一、整式的乘法例题1: 计算下列各题.(1)22321(2)(3)2x xy y -⋅-⋅ (2)(2)(341)a a b -⋅-+ (3)(2)(53)x y a b -⋅-【仿练1】若3964·(324)324n m k a a a a a a a -+=-+,则m 、n 、k 分别为( )A. 6、3、1B. 3、6、1C. 2、1、3D. 2、3、1【仿练2】若x+y=4 ,x-y=2 ,求 1131()27n n n x x x y -+-的值.【仿练3】下列计算结果错误的是( )A.(2xy)2y=4x 2y 3B.2ab(134n a +-12b )=2232n a b ab +-C.(x+4)(x-5)=x 2+9x-20D.(y-1)(y-2)=y 2-3y+2例题2:计算.)20101413121)(20111201014131211()201014131211)(2011120101413121(++++++++++-++++++++++专题二、两个多项式的乘积不含某一项例题3:若)3)(3(22m x x nx x +-++的乘积中不含有2x 和3x 的项,求m 和n 的值.【仿练1】已知))((2c x x a x +-+的积中没有含2x 和x 的项,求c a +的值.【仿练2】若)51)((++x q x 不含有x 的一次项,则q = .【仿练3】已知)3)(8(22q x x px x +-++的展开式中不含有2x 和3x 的项,求q p 、的值.专题三、平方差公式的应用 例题4:用平方差公式计算. (1)20112-2010×2012; (2)(a+3)(a-3)(a 2+9); (3)(x+y-z )(x-y+z)【仿练1】下面的计算中,错误的有 ( )① (2a-2)(2a+3)=4a 2-6 ② (3b+4)(3b-4)=3b 2-16③ (2x 2+y)(2x 2-y)=4x 2-y 2 ④ (-x+y)(x+y)=-(x-y)(x+y)=-x 2-y 2 ⑤ (5-x)(x+5)=x 2-25 ⑥ (2ab+c)(2ab-c)=4ab-c 2 A. 3个 B. 4个 C. 5个 D. 6个【仿练2】不能用平方差公式计算的是( ) A.(2a 2+2b)(a 2-b) B.(1-212x )(2+2x ) C.(a+b-c)(a-b+c) D.(x-y-z)(y+z-x)【仿练3】(2010·培优)利用平方差公式计算:168422)12()12()12(3-+⨯+⨯+⨯.专题四、完全平方公式的应用例题5: (云南中考题)已知正方形的边长为a-12b ,则这个长方形的面积为( ) A. a 2+ab-214b B. a 2214b - C. a 2-ab+214b D.a 2-ab+212b【仿练1】下列运算中,利用完全平方公式计算正确的是( ) A.(m - 2n )2= m 2+4n 2 B.(m -2n )2=m 2-4n 2 C .(m - 2n )2=m 2-2mn+4n 2 D.(-m -2n )2=m 2+4mn+4n 2【仿练2】下列多项式属于完全平方式的是( )A.x 2-4x+8B.x 2y 2-xy+41C.x 2-xy+y 2D.4x 2+4x -1例题6: (2008广东)已知 22(3)9x m x --+是关于字母x 的一个完全平方,则m 的值为多少?【仿练】若4a 2+ma+25是关于字母a 的一个完全平方式,则m= .例题7:(配方法)已知0106222=++-+b a b a ,求20061a b-的值为多少?【仿练】多项式224620x y x y +-++有最小值吗?如果有,请说明y x 、分别为何值所时有最小值,最小值又是多少?【其他应用类型】1、(待定系数法)若 2(3)(4)x x ax bx c +-=++ ,则a =___、b =___、c =____.2、(哈尔滨中考)已知 x+y=3, xy=-2, 则 ① x 2+y 2=_______;② (x-y)2=_______.3、(整体代入)已知13a a +=,则 ① 221a a +=________ ② 441a a+=________.4、(09成都中考改)2222211111(1)(1)(1)(1)(1)23420102011----- =________.名书·名校·中考在线1、计算下列各题.(1)1.23452+0.76552+2.469×0.7655; (2)2221999199819991997199919992+-;(3)222222221234979899100-+-++-+- .2、(宁波中考题)已知 2246130a b a b ++-+=,求2011)(b a +的值.3、(巴中·中考题)若S=2222222123499100101-+-++-+ ,则S= .4、(2010·培优)已知 2220a b c ab bc ca ++---=,求证 a=b=c.家庭作业1、若x 2-y 2=12,且x +y =-3,则x -y 的值是 .2、如果2(3)()6m m k m pm --=+-,则k =_________,p =_________.3、多项式(mx +8)(2-3x)展开后不含x 项,则m =_________.4、若2251x ax ++是关于字母x 的完全平方式,则a =________.5、已知n 是有理数,则二次三项式n 2-4n+7的最小值为___________.6、若n 满足(n-2010)2+(2011-n)2=1,则(n-2010)(2011-n)的值为_______________.7、计算.① -4a 2b ·(21abc )2=_________; ②2(23)(49)(23)x x x +--=_________; ③ 59.8×60.2=_________; ④2299=__________; ⑤ (x -1)(x +1)=_______; ⑥(m -21)(m +2)= ; ⑦ (2a+3)2= ; ⑧ (-x-2)2= .8、计算:(1)2(3)(3)(9)x x x +-- (2)203123)21()21(2)21(2⎥⎦⎤⎢⎣⎡-⨯⨯+------9、先化简,再求值:)2(2)()2)(2(22xy x y x y x y x --+--+,其中3-=x ,21=y .10、已知4432=--c b a ,求4)161(84-⨯÷cb a 的值.11、若2243))((y xy x by x ay x -+=++,其中b a 、为常数,求)(b a ab +的值.课后小结上课情况:课后需再巩固的内容: 配合需求:家 长 _________________________________学管师 _________________________________组长签字。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一乘法公式的复习一、复习:a+ba-b=a2-b2 a+b2=a2+2ab+b2 a-b2=a2-2ab+b2a+ba2-ab+b2=a3+b3 a-ba2+ab+b2=a3-b3归纳小结公式的变式,准确灵活运用公式:①位置变化,xyyxx2y2②符号变化,xyxyx2y2 x2y2③指数变化,x2y2x2y2x4y4④系数变化,2ab2ab4a2b2⑤换式变化,xyzmxyzmxy2zm2x2y2zmzmx2y2z2zmzmm2x2y2z22zmm2⑥增项变化,xyzxyzxy2z2xyxyz2x2xyxyy2z2x22xyy2z2⑦连用公式变化,xyxyx2y2x2y2x2y2x4y4⑧ 逆用公式变化,xyz 2xyz 2xyzxyzxyzxyz2x 2y 2z4xy 4xz例1.已知2=+b a ,1=ab ,求22b a +的值;解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值;解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998例4:已知a+b=2,ab=1,求a 2+b 2和a-b 2的值;例5:已知x-y=2,y-z=2,x+z=14;求x 2-z 2的值;例6:判断2+122+124+1……22048+1+1的个位数字是几例7.运用公式简便计算11032 21982例8.计算1a 4b 3ca 4b 3c 23xy 23xy 2例9.解下列各式1已知a 2b 213,ab 6,求ab 2,ab 2的值;2已知ab 27,ab 24,求a 2b 2,ab 的值;3已知aa 1a 2b 2,求222a b ab +-的值; 4已知13x x -=,求441x x +的值;例11.计算 1x 2x 12 23mnp 2两数和的平方的推广abc 2abc 2 ab 22abcc 2 a 22abb 22ac 2bcc 2a 2b 2c 22ab 2bc 2ac 即abc 2a 2b 2c 22ab 2bc 2ac几个数的和的平方,等于它们的平方和加上每两个数的积的2倍;二、乘法公式的用法一、套用:这是最初的公式运用阶段,在这个环节中,应弄清乘法公式的来龙去脉,准确地掌握其特征,为辨认和运用公式打下基础,同时能提高学生的观察能力;例1. 计算:()()53532222x y x y +- 解:原式()()=-=-53259222244x y x y二、连用:连续使用同一公式或连用两个以上公式解题;例2. 计算:()()()()111124-+++a a a a例3. 计算:()()32513251x y z x y z +-+-+--三、逆用:学习公式不能只会正向运用,有时还需要将公式左、右两边交换位置,得出公式的逆向形式,并运用其解决问题;例4. 计算:()()57857822a b c a b c +---+四、变用: 题目变形后运用公式解题;例5. 计算:()()x y z x y z +-++26五、活用: 把公式本身适当变形后再用于解题;这里以完全平方公式为例,经过变形或重新组合,可得如下几个比较有用的派生公式:灵活运用这些公式,往往可以处理一些特殊的计算问题,培养综合运用知识的能力;例6. 已知a b ab -==45,,求a b 22+的值;解:()a b a b ab 2222242526+=-+=+⨯=例7. 计算:()()a b c d b c d a ++-+++-22三、学习乘法公式应注意的问题一、注意掌握公式的特征,认清公式中的“两数”.例1 计算-2x2-52x2-5分析:本题两个因式中“-5”相同,“2x2”符号相反,因而“-5”是公式a+ba-b=a2-b2中的a,而“2x2”则是公式中的b.解:原式=-5-2x2-5+2x2=-52-2x22=25-4x4.例2 计算-a2+4b2分析:运用公式a+b2=a2+2ab+b2时,“-a2”就是公式中的a,“4b”就是公式中的b;若将题目变形为4b-a22时,则“4b”是公式中的a,而“a2”就是公式中的b.解略二、注意为使用公式创造条件例3 计算2x+y-z+52x-y+z+5.分析:粗看不能运用公式计算,但注意观察,两个因式中的“2x”、“5”两项同号,“y”、“z”两项异号,因而,可运用添括号的技巧使原式变形为符合平方差公式的形式.解:原式=〔2x+5+y-z〕〔2x+5-y-z〕=2x+52-y-z2=4x2+20x+25-y+2yz-z2.例4 计算a-12a2+a+12a6+a3+12分析:若先用完全平方公式展开,运算十分繁冗,但注意逆用幂的运算法则,则可利用乘法公式,使运算简便.解:原式=a-1a2+a+1a6+a3+12=a3-1a6+a3+12=a9-12=a18-2a9+1例5 计算2+122+124+128+1.分析:此题乍看无公式可用,“硬乘”太繁,但若添上一项2-1,则可运用公式,使问题化繁为简.解:原式=2-12+122+124+128+1=22-122+124+128+1=24-124+128+1=28-128+1=216-1三、注意公式的推广计算多项式的平方,由a+b2=a2+2ab+b2,可推广得到:a+b+c2=a2+b2+c2+2ab+2ac+2bc.可叙述为:多项式的平方,等于各项的平方和,加上每两项乘积的2倍.例6 计算2x+y-32解:原式=2x2+y2+-32+2·2x·y+2·2x-3+2·y-3=4x2+y2+9+4xy-12x-6y.四、注意公式的变换,灵活运用变形公式例7 1已知x+y=10,x3+y3=100,求x2+y2的值;2已知:x+2y=7,xy=6,求x-2y2的值.分析:粗看似乎无从下手,但注意到乘法公式的下列变形:x2+y2=x+y2-2xy,x3+y3=x+y3-3xyx+y,x+y2-x-y2=4xy,问题则十分简单.解:1∵x3+y3=x+y3-3xyx+y,将已知条件代入得100=103-3xy·10,∴xy=30 故x2+y2=x+y2-2xy=102-2×30=40.2x-2y2=x+2y2-8xy=72-8×6=1.例8 计算a+b+c2+a+b-c2+a-b+c+b-a+c2.分析:直接展开,运算较繁,但注意到由和及差的完全平方公式可变换出a+b2+a-b2=2a2+b2,因而问题容易解决.解:原式=a+b+c2+a+b-c2+c+a-b2+c-a-b2=2a+b2+c2+2c2+a-b2=2a+b2+a-b2+4c2=4a2+4b2+4c2五、注意乘法公式的逆运用例9 计算a-2b+3c2-a+2b-3c2.分析:若按完全平方公式展开,再相减,运算繁杂,但逆用平方差公式,则能使运算简便得多.解:原式=a-2b+3c+a+2b-3ca-2b+3c-a+2b-3c=2a-4b+6c=-8ab+12ac.例10 计算2a+3b2-22a+3b5b-4a+4a-5b2分析:此题可以利用乘法公式和多项式的乘法展开后计算,但逆用完全平方公式,则运算更为简便.解:原式=2a+3b2+22a+3b4a-5b+4a-5b2=2a+3b+4a-5b2=6a-2b2=36a2-24ab+4b2四、怎样熟练运用公式:一、明确公式的结构特征这是正确运用公式的前提,如平方差公式的结构特征是:符号左边是两个二项式相乘,且在这四项中有两项完全相同,另两项是互为相反数;等号右边是乘式中两项的平方差,且是相同项的平方减去相反项的平方.明确了公式的结构特征就能在各种情况下正确运用公式.二、理解字母的广泛含义乘法公式中的字母a、b可以是具体的数,也可以是单项式或多项式.理解了字母含义的广泛性,就能在更广泛的范围内正确运用公式.如计算x+2y-3z2,若视x+2y为公式中的a,3z为b,则就可用a-b2=a2-2ab+b2来解了;三、熟悉常见的几种变化有些题目往往与公式的标准形式不相一致或不能直接用公式计算,此时要根据公式特征,合理调整变化,使其满足公式特点.常见的几种变化是:1、位置变化 如3x +5y 5y -3x 交换3x 和5y 的位置后即可用平方差公式计算了.2、符号变化 如-2m -7n 2m -7n 变为-2m +7n 2m -7n 后就可用平方差公式求解了思考:不变或不这样变,可以吗3、数字变化 如98×102,992,912等分别变为100-2100+2,100-12,90+12后就能够用乘法公式加以解答了.4、系数变化 如4m +2n 2m -4n 变为22m +4n 2m -4n 后即可用平方差公式进行计算了.5、项数变化 如x +3y +2zx -3y +6z 变为x +3y +4z -2zx -3y +4z +2z 后再适当分组就可以用乘法公式来解了.四、注意公式的灵活运用有些题目往往可用不同的公式来解,此时要选择最恰当的公式以使计算更简便.如计算a 2+12·a 2-12,若分别展开后再相乘,则比较繁琐,若逆用积的乘方法则后再进一步计算,则非常简便.即原式=a 2+1a 2-12=a 4-12=a 8-2a 4+1.对数学公式只会顺向从左到右运用是远远不够的,还要注意逆向从右到左运用.如计算1-2211-2311-241…1-2911-2101,若分别算出各因式的值后再行相乘,不仅计算繁难,而且容易出错.若注意到各因式均为平方差的形式而逆用平方差公式,则可巧解本题.即原式=1-211+211-311+31×…×1-1011+101=21×23×32×34×…×109×1011 =21×1011=2011. 有时有些问题不能直接用乘法公式解决,而要用到乘法公式的变式,乘法公式的变式主要有:a 2+b 2=a +b 2-2ab ,a 2+b 2=a -b 2+2ab 等.用这些变式解有关问题常能收到事半功倍之效.如已知m +n =7,mn =-18,求m 2+n 2,m 2-mn + n 2的值.面对这样的问题就可用上述变式来解,即m 2+n 2=m +n 2-2mn =72-2×-18=49+36=85,m 2-mn + n 2= m +n 2-3mn =72-3×-18=103.下列各题,难不倒你吧1、若a +a 1=5,求1a 2+21a ,2a -a 12的值. 2、求2+122+124+128+1216+1232+1264+1+1的末位数字.答案:1.123;221.2. 6。

相关文档
最新文档