中考数学找规律题总结

合集下载

数字规律题

数字规律题

数字规律题Revised on November 25, 2020数字规律题规律探析问题,是近几年中考数学里比较经典的考点问题。

数字规律问题的探析,就是其中的一个重要分支。

1、数列型数字问题探找规律例1、有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为.解析:仔细观察这一数列中的各个数字的构成特点,不难发现如下;第一个数是1,第二个数数1+1,第三个数是1+1+3,第四个数是1+1+3+5,第五个数是1+1+3+5+7,第六个数是1+1+3+5+7+9,为了使规律凸显的明显,我们不妨把第一个数1也写成两个数的和的形式,为1+0,这样,就发现数字1是固定不变的,规律就蕴藏在新数列0,1,4,9,16 中,而0,1,4,9,16 这些数都是完全平方数,并且底数恰好等于这个数字对应的序号与1的差,即1=1+(1-1)2,2=1+(2-1)2,5=1+(3-1)2,10=1+(4-1)2,17=1+(5-1)2,26=1+(5-1)2,这样,第n个数为1+(n-1)2,找到数列变化的一般规律后,就很容易求得任何一个序号的数字了。

因此,第八个数就是当n=8时,代数式1+(n-1)2的值,此时,代数式1+(n-1)2的值为1+(8-1)2=50。

所以,本空填50。

例2、古希腊数学家把1,3,6,10,15,21,……,叫做三角形数,根据它的规律,则第100个三角形数与第98个三角形数的差为 199解析:本题中数列的数字,不容易发现其变化的规律。

我们不妨利用函数的思想去试一试。

当序号为1时,对应的值是1,有序号和对应的数值构成的点设为A ,则A (1,1);当序号为2时,对应的值是3,有序号和对应的数值构成的点设为B ,则B (2,3);当序号为3时,对应的值是6,有序号和对应的数值构成的点设为C ,则C (3,6); 因为,21213=--,32336=--,所以有:23361213--≠--成立,所以,对应的数值y 是序号n 的二次函数,因此,我们不妨设y=an 2+bn+c ,把A (1,1),B (2,3),C (3,6)分别代入y=an 2+bn+c 中,得:a+b+c=1,4a+2b+c=3,9a+3b+c=6,解得:a=21,b=21,c=0, 所以,y= 21n 2+21n ,因此,当n=100时,y= 21×1002+21×100, 当n=98时,y= 21×982+21×98,因此(21×1002+21×100)-(21×982+21×98)=199,所以该空应该填199。

中考数学复习专题——找规律(含答案)

中考数学复习专题——找规律(含答案)

中考数学试复习专题——找规律1、如图所示,观察小圆圈的摆放规律,第一个图中有5个小圆圈,第二个图中有8个小圆圈,第100个图中有个小圆圈.(1) (2) (3)2、 找规律.下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,则第4幅图中有 个菱形,第n 幅图中有 个菱形.3、用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).4、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为.5、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个22⨯的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个33⨯的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个44⨯的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个1010⨯的正方形图案, 则其中完整的圆共有 个.1 2 3n … … 第1个图 第2个图 第3个图 …6、如下图,用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n个图案需要用白色棋子枚(用含有n的代数式表示,并写成最简形式).○○○○○○○○○○○○○●●○○●●●○○●○○●●○○●●●○○○○○○○○○●●●○○○○○○7、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第334个图形需根火柴棒。

8、将正整数按如图5所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是.9、如图2,用n表示等边三角形边上的小圆圈,f(n)表示这个三角形中小圆圈的总数,那么f(n)和n的关系是10、观察图4的三角形数阵,则第50行的最后一个数是()1-2 3-4 5 -67 -8 9 -10。

11、下列图案由边长相等的黑、白两色正方形按一定规律拼接而成,依此规律,第n个图案中白色正方形的个数为.12、观察下列各式:3211=332123+=33221236++=33332123410+++=……猜想:333312310++++=.第一个第二个第三个……第n个第一排第二排第三排第四排6┅┅10 9 8 73 2154答案解析:1解析:1时,5.n再每增加一个数时,m就增加3个数.解答:根据所给的具体数据,发现:8=5+3,11=5+3×2,14=5+3×3,….以此类推,第n个圈中,5+3(1)=32.2解析:分析可得:第1幅图中有1×2-1=1个,第2幅图中有2×2-1=3个,第3幅图中有3×2-1=5个,…,故第n幅图中共有21个3解析:在4的基础上,依次多3个,得到第n个图中共有的棋子数.观察图形,发现:在4的基础上,依次多3个.即第n个图中有4+3(1)=31.当6时,即原式=19.故第6个图形需棋子19枚4解析:此题只要找出截取表一的那部分,并找出其规律即可解.解答:解:表二截取的是其中的一列:上下两个数字的差相等,所以15+3=18.表三截取的是两行两列的相邻的四个数字:右边一列数字的差应比左边一列数字的差大1,所24+25-20+1=30.表四中截取的是两行三列中的6个数字:18是3的6倍,则c应是4的7倍,即28.故选D.认真观察表格,熟知各个数字之间的关系:第一列是1,2,3,…;第二列是对应第一列的2倍;等三列是对应第一列的3倍5解析:据给出的四个图形的规律可以知道,组成大正方形的每个小正方形上有一个完整的圆,因此圆的数目是大正方形边长的平方,每四个小正方形组成一个完整的圆,从而可得这样的圆是大正方形边长减1的平方,从而可得若这样铺成一个10×10的正方形图案,则其中完整的圆共有102+(10-1)2=181个.解答:解:分析可得完整的圆是大正方形的边长减1的平方,从而可知铺成一个10×10的正方形图案中,完整的圆共有102+(10-1)2=181个.点评:本题难度中等,考查探究图形的规律.本题也只可以直接根据给出的四个图形中计数出的圆的个数,找出数字之间的规律得出答案.6解析:解:第1个正方形图案有棋子共32=9枚,其中黑色棋子有12=1枚,白色棋子有(32-12)枚;第2个正方形图案有棋子共42=16枚,其中黑色棋子有22=4枚,白色棋子有(42-22)枚;…由此可推出想第n个图案的白色棋子数为(2)22=4(1).故第n个图案的白色棋子数为(2)22=4(1).点评:根据图形提供的信息探索规律,是近几年较流行的一种探索规律型问题.解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论7解析:根据题意分析可得:搭第1个图形需12根火柴;搭第2个图形需12+6×1=18根;搭第3个图形需12+6×2=24根;…搭第n个图形需12+6(1)=66根.解答:解:搭第334个图形需6×334+6=2010根火柴棒8解析:寻找规律,然后解答.每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.解答:解:观察图表可知:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.实数15=1+2+3+4+5,则17在第6排,第5个位置,即其坐标为(6,5).故答案填:(6,5).对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.9解析:根据题意分析可得:第n行有n个小圆圈.故f(n)和n的关系是ƒ(n)= (n2).10解析:根据题意可得:第n行有n个数;且第n行第一个数的绝对值为+1,最后一个数的绝对值为;奇数为正,偶数为负;故第50行的最后一个数是1275.解答:解:第n行第一个数的绝对值为+1,最后一个数的绝对值为,奇数为正,偶数为负,第50行的最后一个数是1275第一个图中白色正方形的个数为3×3-1;第二个图中白色正方形的个数为3×5-2第三个图中白色正方形的个数为3×7-3;…当其为第n个时,白色正方形的个数为3(21)5312解析:根据所给的等式,可以发现右边的底数是前边的底数的和,指数是平方,则最后的底数是1+2+310=5×11=55,则原式=552.解答:解:根据分析最后的底数是1+2+310=5×11=55,则原式=552.故答案552。

2022年中考数学专题复习 找规律题(含解析)

2022年中考数学专题复习 找规律题(含解析)

2022年中考数学专题复习:找规律1.以下图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,l3,14,l5,20,21,22).假设圈出的9个数中,最大数与最小数的积为192,那么这9个数的和为【】.A.32 B.126 C.135 D.144【答案】D。

【考点】分类归纳〔数字的变化类〕,一元二次方程的应用。

【分析】由日历表可知,圈出的9个数中,最大数与最小数的差总为16,又最大数与最小数的积为192,所以设最大数为x,那么最小数为x-16。

∴x〔x-16〕=192,解得x=24或x=-8〔负数舍去〕。

∴最大数为24,最小数为8。

∴圈出的9个数为8,9,10,15,16,17,22,23,24。

和为144。

应选D。

2.某单位要组织一次篮球联赛,赛制为单循环形式〔每两队之间都赛一场〕,方案安排10场比赛,那么参加比赛的球队应有【】A.7队B.6队C.5队D.4队【答案】C。

【考点】分类归纳〔数字的变化类〕,一元二次方程的应用。

【分析】设邀请x个球队参加比赛,那么第一个球队和其他球队打〔x-1〕场球,第二个球队和其他球队打〔x-2〕场,以此类推可以知道共打〔1+2+3+…+x-1〕= x(x1)2-场球,根据方案安排10场比赛即可列出方程:x(x1)102-=,∴x2-x-20=0,解得x=5或x=-4〔不合题意,舍去〕。

应选C。

3.观察以下一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是 ▲ . 【答案】2k2k+1。

【考点】分类归纳〔数字的变化类〕。

【分析】根据得出数字分母与分子的变化规律:分子是连续的偶数,分母是连续的奇数,∴第k 个数分子是2k ,分母是2k +1。

∴这一组数的第k 个数是2k2k+1。

4. 填在以下各图形中的三个数之间都有相同的规律,根据此规律,a 的值是 ▲ .【答案】900。

中考数学找规律问题归纳及解析

中考数学找规律问题归纳及解析

《找规律》专题训练及解析 一:数式问题 1.(湛江)已知22223322333388+=⨯+=⨯,,244441515+=⨯,……,若288a a b b +=⨯(a 、b 为正整数)则a b += .2.(贵阳)有一列数a 1,a 2,a 3,a 4,a 5,…,a n ,其中a 1=5×2+1,a 2=5×3+2,a 3=5×4+3,a 4=5×5+4,a 5=5×6+5,…,当a n =2009时,n 的值等于( )A .2010B .2009C .401D .3343.(沈阳)有一组单项式:a 2,-a 32,a43,-a54,….观察它们构成规律,用你发现的规律写出第10个单项式为 .4.(牡丹江)有一列数1234251017--,,,,…,那么第7个数是 . 5.(南充)一组按规律排列的多项式:a b +,23a b -,35a b +,47a b -,……,其中第10个式子是( )A .1019a b +B .1019a b -C .1017a b -D .1021a b -6.(安徽)观察下列等式:111122⨯=-,222233⨯=-,333344⨯=-,…… (1)猜想并写出第n 个等式;(2)证明你写出的等式的正确性.7.(绵阳)将正整数依次按下表规律排成四列,则根据表中的排列规律,数2009应排的位置是第 行第 列.第1列 第2列 第3列 第4列 第1行1238.(台州)将正整数1,2,3,…从小到大按下面规律排列.若第4行第2列的数为32,则①n=▲;②第i行第j列的数为▲(用i,j表示).第1列第2列第3列…第n列第1行123…n第2行1+n2+n3+n…n2第3行12+n22+n32+n…n3………………二:定义运算问题1.(定西)在实数范围内定义运算“⊕”,其法则为:22a b a b⊕=-,求方程(4⊕3)⊕24x=的解.2.有一列数1a,2a,3a,,na,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若12a=,则2007a为()A.2007B.2C.12D.1-三:剪纸问题1.(2004年河南)如图(9),把一个正方形三次对折后沿虚线剪下则得到的图形是()第2行654第3行789第4行121110……2.(2004年浙江湖州)小强拿了一张正方形的纸如图(10)①,沿虚线对折一次得图②,再对折一次得图③,然后用剪刀沿图③中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是()3.(2004年浙江衢州)如图(11),将一张正方形纸片剪成四个小正方形,然后将其中的一个正方形再剪成四个小正方形,再将其中的一个正方形剪成四个小正方形,如此继续下去,……,根据以上操作方法,请你填写下表:四:数形结合问题1.(宁德)已知, A、B、C、D、E是反比例函数16yx(x>0)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图5所示的五操作次数N12345…N…正方形的个数4710……C 2D 2C 1D 1个橄榄形(阴影部分),则这五个橄榄形的面积总和是 (用含π的代数式表示)3.(莆田)如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点12345A A A A A 、、、、分别作x 轴的垂线与反比例函数()20y x x=≠的图象相交于点12345P P P P P 、、、、,得直角三角形1112233344455OP A A P A A P A A P A A P A 2、、、、,并设其面积分别为12345S S S S S 、、、、,则5S 的值为 .四:图形问题1.(本溪)如图所示,已知:点(00)A ,,(30)B ,,(01)C ,在ABC △内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个11AA B △,第2个122B A B △,第3个233B A B △,…,则第n 个等边三角形的边长等2.(大兴安岭)如图,边长为1的菱形ABCD 中,︒=∠60DAB .连结对角线AC ,以AC 为边作第二个菱形11D ACC ,使 ︒=∠601AC D ;连结1AC ,再以1AC 为边作第三个菱形221D C AC ,使︒=∠6012AC D ;……,按此规律所作的第n 个菱形的边长为 .O yx(A )A 1C1 1 2B A 2A 3B 3 B 2 B 1 1题图yxO P 1 P 2 P 3 P4P 5A A A A A (第10题图)2x(第4题)3.(湖州)如图,已知Rt ABC△,1D是斜边AB的中点,过1D作11D E AC⊥于E1,连结1BE交1CD于2D;过2D作22D E AC⊥于2E,连结2BE交1CD于3D;过3D作33D E AC⊥于3E,…,如此继续,可以依次得到点45D D,,…,nD,分别记112233BD E BD E BD E△,△,△,…,n nBD E△的面积为123S S S,,,…nS.则nS=________ABCS△(用含n的代数式表示).4.(长春)用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n个图案中正三角形的个数为(用含n的代数式表示).5.(丹东)如图6,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第100个图案需棋子枚.图6图案1图案2图案3……BCAE1E2E3D4D1D2D3(第3题)6.(抚顺)观察下列图形(每幅图中最小..的三角形都是全等的),请写出第n个图中最小..的三角形的个数有个.7.(哈尔滨)观察下列图形:它们是按一定规律排列的,依照此规律,第16个图形共有个★.五:对称问题1.(伊春)在平面直角坐标系中,已知3个点的坐标分别为1(11)A,、2(02)A,、3(11)A ,. 一只电子蛙位于坐标原点处,第1次电子蛙由原点跳到以1A为对称中心的对称点1P,第2次电子蛙由1P点跳到以2A为对称中心的对称点2P,第3次电子蛙由2P点跳到以3A为对称中心的对称点3P,…,按此规律,电子蛙分别以1A、2A、3A为对称中心继续跳下去.问当电子蛙跳了2009次后,电子蛙落点的坐标是2009P(_______ ,_______).第1个图第2个图第3个图第4个图(第16题图)2.(2004年宁波)仔细观察下列图案,如图(12),并按规律在横线上画出合适的图形。

中考专题复习-坐标找规律

中考专题复习-坐标找规律

初中数学找规律(5)--坐标类一、选择题1、如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()A、(13,13)B、(﹣13,﹣13)C、(14,14)D、(﹣14,﹣14)第2题第1题2、一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是()【列举找规律】A、(16,16)B、(44,44)C、(44,16)D、(16,44)第n圈0 1 2 3 ……n每圈移动次数 1 3 5 7 2n+1中点所在轴y X Y X总的运动次数为S=1+3+5+7+……+2n+1=(n+1)2,452=2025,n+1=45,n=44,终点落在y 轴上,后退17到2008步。

3、在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:(1)、f(a,b)=(﹣a,b).如:f(1,3)=(﹣1,3);(2)、g(a,b)=(b,a).如:g(1,3)=(3,1);(3)、h(a,b)=(﹣a,﹣b).如:h(1,3)=(﹣1,﹣3).按照以上变换有:f(g(2,﹣3))=f(﹣3,2)=(3,2),那么f(h(5,﹣3))等于()A、(﹣5,﹣3)B、(5,3)C、(5,﹣3)D、(﹣5,3)4、在直角坐标系中,一只电子青蛙每次向上或向下或向左或向右跳动一格,现知这只青蛙位于(2,﹣3),则经两次跳动后,它不可能跳到的位置是()A、(3,﹣2)B、(4,﹣3)C、(4,﹣2)D、(1,﹣2)5、如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)(4,0)根据这个规律探索可得,第100个点的坐标为 (14,8) .6、如图,已知A l (1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1),….则点A 2007的坐标为 .【除A1外,四步一循环,一定要和圈数建立函数关系列举A 4n (-n,-n)A 4n-1(-n,n) A 4n-2(n,n),A 4n-3(n,-n+1)】7、已知甲运动方式为:先竖直向上运动1个单位长度后,再水平向右运动2个单位长度;乙运动方式为:先竖直向下运动2个单位长度后,再水平向左运动3个单位长度.在平面直角坐标系内,现有一动点P 第1次从原点O 出发按甲方式运动到点P 1,第2次从点P 1出发按乙方式运动到点P 2,第3次从点P 2出发再按甲方式运动到点P 3,第4次从点P 3出发再按乙方式运动到点P 4,….依此运动规律,则经过第11次运动后,动点P 所在位置P 11的坐标是 .第100次运动后P 100点的坐标是 第2013点的坐标P 2013【提示:两次合起来结果如何 (x,y) →(x+2,y+1)→(x+2-3,y+1-2) →(x-1,y-1)】8、一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是 (5,0) . 9、如图,在平面直角坐标系上有个点P (1,0),点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P 第100次跳动至点P 100的坐标是 .点P 第2009次跳动至点P 2009的坐标是 (503,1003) . 【跳动四次一变化】P0(1,0) P1(1,1) P2(-1,1) P3(-1,2) P4(2,2) P5(2,3) P6(-2,3) P7(-2,4) P8(3,4) P9(3,5) P10(-3,5) P11(-3,6) P12(4,6) …… ………………P4n-3(n,2n-3)P4n-2(-n,2n-10P4n-1(-n ,2n ) P4n(n+1,2n)第8题 第5题第6题10、如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,0)→(1,0)→(1,1)→(2,2)→(2,1)→(2,0)…根据这个规律探索可得,第100个点的坐标是___(13,8)______.11、如图,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…,则点A2010的坐标是(503,-503) .【易错】第11题第12题12、电子跳蚤游戏盘为△ABC(如图),AB=8,AC=9,BC=10,如果电子跳蚤开始时在BC边上P0点,BP0=4,第一步跳蚤跳到AC边上P1点,且CP1=CP0;第二步跳蚤从P1跳到AB边上P2点,且AP2=AP1;第三步跳蚤从P2跳回到BC边上P3点,且BP3=BP2;…跳蚤按上述规定跳下去,第2008次落点为P2008,则点P2008与A点之间的距离为4.13、以0为原点,正东,正北方向为x轴,y轴正方向建立平面直角坐标系,一个机器人从原点O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2,再向正西方向走9米到达A3,再向正南方向走12米到达A4,再向正东方向走15米到达A5,按此规律走下去,当机器人走到A6时,A6的坐标是.A1(3,0) A2 (3,6) A3 (-6, 6) A4 (-6,-6) A5 (9,-6)A6 (9,12) A7 (-12,12) A8 (-12,-12) A9 (15,-12)……………………A4n-2 (6n-3,6n)A4n-1 (-6n,6n) A4n (-6n,-6n) A4n+1(6n+3,-6n) 14、观察下列有规律的点的坐标:依此规律,A11的坐标为,A12的坐标为.【析:观察图中数据,分下标为奇数和偶数两种情况分析解答.解答:解:观察点的坐标可以得到以下规律:点的横坐标的值就等于对应的点下标的数值;纵坐标,当下标是奇数时是正数,后一偶数项的纵坐标依次比前一偶数项的纵坐标多3,故A11的坐标为(11,16),当下标是偶数时纵坐标是负数,后一偶数项的纵坐标依次为前一偶数项的纵坐标的、、…,故A12的坐标为(12,﹣).故答案分别为:(11,16)、(12,﹣).】15、设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳动1个单位,经过5次跳动质点落在点(3,0)(允许重复过此点)处,则质点不同的运动方案共有种.【注意列举】16、已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为.第16题第17题17.(2013•湛江)如图,所有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则顶点A3的坐标是_________,A92的坐标是_________.18在平面直角坐标系中,一动点从原点0出发,按向上,向右,向下,向右的方向不断移动,每次移动一个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),……那么点A(4n﹢1)(n 为自然数)的坐标为什么?19、(2012•泰安)如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为第18题【解:根据图形,以最外边的正方形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,】练习1(综合题)如图,在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),若点C到直线AB的距离为4,且△ABC是直角三角形,则满足条件的点第19题C有若干个.(1)请在坐标系中把所有这样的点C都找出来,画上实心点,这些点用C1,C2,…表示;(2)写出这些点C1,C2,…对应的坐标.【问题解决的大致步骤已经知道,只是想问一下,根据A、B两点的坐标特点,直线AB∥x 轴,则到直线AB的距离为4的点在平行于直线AB的直线上且距离为4,有两条直线,根据直角三角形斜边上的中线等于斜边的一半,以AB的中点为圆心,半径5画弧与两直线的交点即为直角三角形的第三个顶点,这样的作法的理论依据是什么。

2023中考一轮复习:选填压轴之找规律(学生版)

2023中考一轮复习:选填压轴之找规律(学生版)

04选填压轴之找规律目录中考考点解读 (1)重点知识重拾 (1)知识点1、关于x轴、y轴或原点对称的点的坐标的特征 (1)知识点2、点的平移 (1)知识点3、两点间的距离 (1)知识点4、旋转 (2)选填常考题型整理 (2)选填小题狂做 (5)中考考点解读规律探究型问题在中考数学中一般以选择题或者填空题中的压轴题形式出现,出题难度一般在中上等。

主要命题方式有数式规律、图形变化规律、点的坐标规律等。

虽然规律探索问题却并不是每个城市的必考题,个别省市经常出。

又因为各省市模拟考或者月考中出现几率较大且难度也较大,所以掌握其基本的考试题型及解题技巧还是非常有必要的。

重点知识重拾知识点1、关于x轴、y轴或原点对称的点的坐标的特征点P(a,b)与关于x轴对称点的坐标为(a,-b)点P(a,b)与关于y轴对称点的坐标为(-a,b)点P(a,b)与关于原点对称点的坐标为(-a,-b)口诀:关于谁对称,谁不变,另一个变号,关于原点对称都变号知识点2、点的平移点P(a,b)沿x轴向右(或向左)平移m个单位后对应点的坐标是a±m,b;点P(a,b)沿y轴向上(或向下)平移n个单位后对应点的坐标是a,b±n.口诀:横坐标右加左减,纵坐标上加下减.知识点3、两点间的距离在x轴或平行于x轴的直线上的两点P1(x1,y),P2(x2,y)间的距离为x1−x2在y轴或平行于y轴的直线上的两点P1(x,y1),P2(x,y2)间的距离为y−y2任意两点P1(x1,y1),P2(x2,y2),则线段P1P22,2任意两点P(x,y),P(x,y),则线段P知识点4、旋转1.旋转的三要素:旋转角度,旋转中心和旋转方向。

2.旋转的性质:旋转前后对应的图形全等,对应的旋转角度相等。

3.中心对称:特别的,如果旋转角度为180︒,那么旋转前后两个图形成中心对称。

注意:两个图形成中心对称和中心对称图形要区别清楚,两个图形成中心对称指的是两个图形,中心对称图形指的是一个图形,比如说平行四边形是一个中心对称图形。

中考数学找规律题型汇总与解析

中考数学找规律题型汇总与解析

中考数学找规律题型扩展及解析“有比较才有鉴别”。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b 为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

中考数学找规律问题归纳及解析

中考数学找规律问题归纳及解析

中考数学找规律问题归纳及解析多练出技巧,巧思出硕果本文是一篇数学题目集,包含了数式问题、定义运算问题和剪纸问题三个部分。

数式问题部分包括了五个题目,需要运用数学知识进行计算和推理。

其中第一个题目需要根据已知条件求解多个未知数,需要进行代数运算;第二个题目需要根据已知数列的规律求解未知项,需要进行数列的推理;第三个题目需要观察一组单项式的规律并推理出第十个单项式,需要进行代数推理;第四个题目需要观察一列数的规律并求解第七个数,需要进行数列的推理;第五个题目需要观察一组按规律排列的多项式并求解第十个式子,需要进行多项式的推理。

定义运算问题部分包括两个题目,需要根据已定义的运算法则进行计算和推理。

第一个题目需要求解一个方程,需要进行代数运算;第二个题目需要根据已知数列的定义进行推理,需要进行数列的推理。

剪纸问题部分只有一道题目,需要根据已知的剪纸图案进行推理并回答问题,需要进行几何推理。

练这些数学题目可以帮助我们巩固数学知识,培养数学思维和推理能力。

只有多练,才能巧思出硕果。

1.在边长为1的菱形ABCD中,通过连接对角线AC,按照规律制作菱形ACC1D1,再制作菱形AC1C2D2,使得每个菱形的内角都为60度。

求第n个菱形的边长。

2.按照规律,从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形。

求第n个图案中正三角形的个数。

3.按照规律摆放同样大小的黑色棋子,第100个图案需要多少枚棋子。

4.观察一系列图形,每个图形中最小的三角形都是全等的。

求第n个图形中最小的三角形的个数。

5.在平面直角坐标系中,已知三个点的坐标分别为A1(1,2)、A2(0,0)、A3(-1,1)。

一只电子蛙从原点开始,按照规律跳到以A1、A2、A3为对称中心的对称点,问电子蛙跳了2009次后,落点的坐标是多少?6.观察图案,按照规律在横线上画出合适的图形,缺少的是字母E的对称。

7.分析图中阴影部分的分布规律,按照规律在图中画出其中的阴影部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

探索规律与定义新运算
知识集结
知识元
数字规律
知识讲解
数字规律就是一列数按一定规律排列起来,常见的规律有:
1、正整数规律:1、
2、
3、
4、
5、……可以表示为n(其中n为正整数)
2、奇数规律:1、
3、5、7、9、……可以表示为(其中n为正整数)
3、偶数规律:2、
4、6、8、10、……可以表示为2n(其中n为正整数)
4、正、负交替规律变化:一组数,不看他们的绝对值,只看其性质,为正负交替
(1)-、+、-、+、-、+、-、+可以表示为
(2)+、-、+、-、+、-、+、-可以表示为
5、平方数规律:1、4、9、1
6、……可以表示为(其中n为正整数),能看得出:上面的规律数+1、+2、-1、-2
例题精讲
数字规律
例1.
已知一组数:1,3,5,7,9,…按此规律,第n个数是.
例2.
观察下列顺序排列的式子:9×0+1=1;9×1+2=11;9×2+3=21;9×3+4=31;9×4+5=41;…猜想:第个式子应为___________________。

例3.
观察下列算式:;;;,…
(1)左边各项的底数与右边幂的底数之间的关系是什么?
(2)猜想的规律是什么?
(3)用第五个关系式进行验证。

算式规律
知识讲解
算式规律就是一些等式按一定的规律排列起来,这类规律寻找的方法一般是:应对的一般原则:
①找出等式中的各个部分;
②找出等式中的各个部分中不变的部分;
③找出等式中的各个部分中变化的部分、并寻找他们的变化规律.
例题精讲
算式规律
例1.
观察下列顺序排列的式子:9×0+1=1;9×1+2=11;9×2+3=21;9×3+4=31;9×4+5=41;…猜想:第个式子应为___________________。

例2.
观察下列各式:
;;;;…,把发现的规律用含自然数的式子表示:_______________________。

数字循环的规律
知识讲解
循环排列规律是运动着的规律,就是一列数或图形按几个固定的数或图形循环重复出现,我们只要根据题目的已知部分分析出图案或数据每隔几个就会循环出现,看看最后所求的与循环的第几个一致即可,关键是找出“循环节数”。

其次,就是利用“余数”。

例题精讲
数字循环的规律
例1.
如图是钢琴键盘的一部分,若从4开始,依次弹出4,5,6,7,1,4,5,6,7,1,…按照上述规律弹到第2016个音符是.
例2.
如图所示的运算程序中,若开始输入的的值为48,我们发现第一次输出的结果为 24,第二次输出的结果为12,…,第2017出的结果为__________。

例3.
观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…通过观察,用你所发现的规律确定227的个位数字是().
图形规律
知识讲解
图形规律题是根据一组图形,根据图形的序号与数量的关系,把图形转化为数或算式,再从数或算式中找出规律。

例题精讲
图形规律
例1.
观察下列图形,则第个图形中三角形的个数是().
A.2n+2B.4n+4C.4n-4D.4n
例2.
下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第个图中所贴剪纸“○”的个数为.
数表规律
知识讲解
数表规律即具有数的规律,又具有图形规律的特点,解决这类问题时我们应从数表中数的位置中获取一个数字与其前后左右的数字的关系,找出共同规律,再根据数字规律或算式规律用字母或代数式把它们表示出来即可。

例题精讲
数表规律
例1.
将正偶数排成5列,如下表:
根据上面排列规律,则2000应在().
A.第25行,第1列B.第125行,第2列
C.第250行,第1列D.第250行,第2列
例2.
已知一列数:1,―2,3,―4,5,―6,7,…将这列数排成如下所示的形式:按照上述规律排下去,那么第10行从左边数第5个数等于.
第1行 1
第2行-2 3
第3行-4 5 -6
第4行 7 -8 9 -10
第5行 11 -12 13 -14 15
………………
定义新运算
知识讲解
新运算是指用特定的符号表示与加、减、乘、除不相同的一种规定运算.
新运算的实质是有理数的几种混合运算,关键是观察出用到了哪些运算,要特别注意运算的顺序.
例题精讲
定义新运算
例1.'
如果2△3=2+3+4,5△4=5+6+7+8,且1△x=15,求x。

'
例2.'
设a、b都表示数,规定:a△b表示a的3倍减去b的2倍,即:a△b = a×3-b×2。

(1)求5△6;6△5。

(2)求(17△6)△2 ;17 △(6△2)。

(3)如果已知4 △ b=2,求b。

'
练习题
单选题
练习1.
观察图给出的四个点阵,s表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n个点阵中的点的个数s为().
A.3n-2B.3n-1C.4n+1D.4n-3
填空题
练习1.
有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为__________.
练习2.
-1,2,-4,8,-16,32,______,______,______,…,第个数是__________。

练习3.
数字解密第一个数是3=2+1,第二个数是5=3+2,第三个数是9=5+4,第四个数是
17=9+8,…,观察并猜想第六个数是__________________。

练习4.
观察下列顺序排列的式子:9×0+1=1;9×1+2=11;9×2+3=21;9×3+4=31;9×4+5=41;…猜想:第个式子应为___________________。

练习5.
如图是钢琴键盘的一部分,若从4开始,依次弹出4,5,6,7,1,4,5,6,7,1,…按照上述规律弹到第2016个音符是.
练习6.
根据下列图形的排列规律,第2008个图形是福娃__________(填写福娃名称即可).
练习7.
将按一定规律排列如下:
第1行 1
第2行
第3行
第4行
第5行

请你写出第20行从左至右第10个数是。

解答题
练习1.'
设a、b都表示数,规定:a*b=3×a+2×b。

试计算:
(1)(5*6)*7 (2)5*(6*7)
'
练习2.'
有两个整数是A、B,A▽B表示A与B的平均数。

已知A▽6=17,求A。

'。

相关文档
最新文档