液化石油气卧式储罐课程设计

液化石油气卧式储罐课程设计
液化石油气卧式储罐课程设计

20立方米石油液化气储罐

设计摘要 储罐是石油液化气储存的重要设备之一,石油液化气主要成分:乙烯、乙烷、丙烷、丙烯、丁烷、丁烯等;这些化学成分都对工艺设备腐蚀,在生产过程中设备盛装的介质还具有高温、高压、高真空、易燃易爆的特性,甚至是有毒的气体或液体。根据以上的特点,确定其设备结构、工艺参数、零部件。在设备生产过程中,没有连续运转的安全可靠性,在一定的操作条件下(如温度、压力等)有足够的机械强度;具有优良的耐腐蚀性能;具有良好的密封性能;高效率、低耗能。 关键词:储罐设备结构工艺参数机械强度耐腐蚀强度密封性能

前言 在与普通机械设备相比,对于处理如气体、液体等流体材料为主的化工设备,其所处的工艺条件和过程都比较复杂。尤其在化学工业、石油化工部门使用的设备,多数情况下是在高温、低温、高压、高真空、强腐蚀、易燃易爆、有毒的苛刻条件下操作,加之生产过程具有连续性和自动化程度高的特点,这就需要要求在役设备既要安全可靠地运行,又要满足工艺过程的要求,同时还应具有较高的经济技术指标以及易于操作和维护的特点。 生产过程苛刻的操作条件决定了设备必须可靠运行,为了保证其安全运行,防止事故发生,化工设备应该具有足够的能力来承受使用寿命内可能遇到的各种外来载荷。就是要求所使用的设备具有足够强度、韧性和刚度,以及良好的密封性和耐腐蚀性。 化工设备是由不同的材料制造而成的,其安全性与材料的强度密度切相关。在相同的设计条件下,提高材料强度无疑可以保证设备具有较高的安全性。 由于材料、焊接和使用等方面的原因,化工设备不可避免地会出现各种各样的缺陷;在选材时充分考虑材料在破坏前吸收变形能量的能力水平,并注意材料强度和韧性的合理搭配。设备的设计应该确保具有足够的强度抵抗变形能力。 在相同工艺条件下,为了获得较好的效果,设备可以使用不同的结构内件、附件等。并充分利用材料性能,使用简单和易于保证质量的制造方法,减少加工量,降低制造成本。化工设备除了要满足工艺条件和考虑经济性能,使设备操作简单,便于维护和控制;在结构设计上就应该考虑易损零部件的可维护性和可修理性。 对于化工设备提出的基本要求比较多,全部满足显然是比较困难的,但是主要还是化工设备的安全性、工艺性和经济性,且核心是安全性要求。由此,可以针对化工设备的具体使用情况,优先考虑主要要求,再适当兼顾次要要求。

80m3卧式液化石油气储罐毕业设计开题报告定稿

安徽工程大学 毕业设计开题报告 2013届 毕业设计题目80m3液化石油气储罐设计 院(系)机械与汽车工程学院 专业名称过程装备与控制工程 学生姓名王韶韶 学生学号3090107108 指导教师徐振法老师 安徽工程大学大学学生毕业设计(论文)开题报告表

课题名称80m3卧式液化石油气储罐设计课题类型设计 课题来源分配导师徐振法姓名王韶韶学号3090107108 专业过程装备与控 制工程 一、查阅国内外文献情况(刊物名称、文献题目主要内容) 1.国家质量技术监督局.GB150-1998《钢制压力容器》.中国标准出版社.1998 2.国家质量技术监督局.《压力容器安全技术监察规程》.中国劳动社会保障出版社.1999 3.国家经济贸易委员会. JBT4736-2002《补强圈》.2002 4.全国化工设备设计技术中心站.《化工设备图样技术要求》.2000.11 5.郑津洋、董其伍、桑芝富.《过程设备设计》.化学工业出版社.2001 6.黄振仁、魏新利.《过程装备成套技术设计指南》.化学工业出版社.2002 7.国家医药管理局上海医药设计院.《化工工艺设计手册》.化学工业出版社.1996 8.蔡纪宁.《化工设备机械基础课程设计指导书》.化学工业出版社.2003年 9.贺匡国.《化工容器及设备简明设计手册》.化学工业出版社.2002年8月 10.邵金玲. 液化气储罐设计探讨[J]. 石油化工设备,1999 11.万倩雯. 液化石油气储罐的设计[J]. 河南化工,2000 12.焦伟. 卧式储罐储液体积的计算[J]. 煤气与热力,2001 13.李圣明. 液化石油气储罐设计的几个问题[J].山西化工,2001 14.王利畏. 液化石油气储罐充液高度的计算[J]. 科技情报开发与经济,2006 15.GB150-89《钢制压力容器》 16.JB4731-2000《钢制卧式容器》 17.劳动部.压力容器安全技术监察规程[M].北京:劳动部锅炉压力容器安全杂志社,1990 18.郑津洋,董其伍,桑芝富主编.过程设备设计[M]. 北京:化学工业出版社,2005 19.Perry,R.H.,and Green,D. W Chemical Engi neers’Handbook. 6th ed McGraw-Hill,1984 二、与选题相关的调研报告 1、调研内容 液化石油气贮罐是盛装液化石油气的常用设备,由于该气体具有易燃易爆的特点,因此在设计这种储罐时,要注意与一般气体贮罐的不同点,尤其是安全与防火,还要注意在制造、安装等方面的特点。 (1)液化石油气贮罐的分类 目前我国普遍采用常温压力贮罐, 常温贮罐一般有两种形式: 球形贮罐和圆筒形贮罐。球形贮罐和圆筒形贮罐相比: 前者具有投资少, 金属耗量少, 占地面积少等优点, 但加工制造及安装复杂, 焊接工作量大, 故安装费用较高。一般贮

液化石油气槽车的装卸详细流程

一、准备工作 1、引导罐车对准装卸台位置停车,待司机拉上制动手闸,关闭汽车发动机后,给车轮垫上防滑块。 2、检查液化石油气检验单,检查罐车和接收贮罐的液位、压力和温度,检查装卸阀和法兰连接处有无泄漏。 3、接好静电接地线,拆卸快装接头盖,将装卸台气、液相软管分别与罐车的气、液相管接合牢固后,开启放散阀,用站内液化石油气排尽软管中空气,关闭放散阀。 4、使用手动油压泵打开罐车紧急切断阀,听到开启响声后,缓慢开启球阀。 二、正常装卸车程序 1、液化石油气压缩机卸车作业 ①气相系统:开通接收储罐的气相出口管至压缩机进口管路的阀门;开通压缩机出口管至罐车的气相管阀门。 ②液相系统:开通罐车液相管至接收储罐的进液管阀门。 ③通知运行工启动压缩机。 ④待罐车气相压力高于接收储罐0.2MPa~0.3MPa后,液体由罐车流向接收储罐。当罐车液位接近零位时,及时通知压缩机运行工停车,关闭罐车液相管至接收储罐的进液管阀门,关闭接收储罐气相出口管至压缩机进口管路的阀门,关闭压缩机出口管至罐车的气相管阀门。 ⑤将罐车气相出口管至压缩机进口管路的阀门接通,将压缩机出口至接收储罐气相进口管路的阀门接通,通知运行工启动压缩机回收罐车内气体,回收至罐车压力为~0.2MPa停车,并关闭上述有关阀门。 ⑥关闭罐车紧急切断阀。泄压后拆卸软管和静电接地线,盖上快装接头盖,取出防滑块。开走罐车,卸车作业结束。 ⑦按规定填好操作记录表。 2、液化石油气压缩机装车作业 ①气相系统:开通罐车气相管至压缩机入口管路的阀门;开通压缩机出口管至出液储罐气相入口管路的阀门。 ②液相系统:开通罐车液相管至出液储罐的出液管路的阀门。 ③通知运行工启动压缩机。 ④待出液储罐气相压力高于罐车0.2MPa~0.3MPa后,液体由出液储罐流向罐车。当罐车液位达到最高允许充装液位时,及时通知压缩机运行工停车,关闭罐车液相阀门和出液储罐的出液管阀门。 ⑤关闭罐车气相管至压缩机入口管阀门,关闭压缩机出口管至出液储罐气相入口管路的阀门。关闭罐车紧急切断阀。泄压后拆卸软管和静电接地线,盖上快装接头盖,取出防滑块。开走罐车,装车作业结束。 ⑥按规定填好操作记录表。 3、液化石油气泵卸车作业 ①气相系统:开通罐车气相阀至接收储罐气相管路的阀门。 ②液相系统:开通罐车液相阀至泵进口管路的阀门;开通泵出口至接收储罐进液管路的阀门。 ③通知运行工启动液化石油气泵。

10立方米液化石油气储罐设计_课程设计

10立方米液化石油气储罐设计 目录 目录 (1) 前言 (3) 课程设计任务书 (4) 第一章工艺设计 (6) 1.1液化石油气参数的确定 (6) 1.2设计温度 (6) 1.3设计压力 (6) 1.4设计储量 (7) 第二章机械设计 (8) 2.1筒体和封头的设计: (8) 2.1.1筒体设计 (8) 2.1.2封头设计 (8) 第三章结构设计 (10) 3.1液柱静压力 (10) 3.2圆筒厚度的设计 (10) 3.3椭圆封头厚度的设计 (11) 3.4开孔和选取法兰分析 (11) 3.5安全阀设计 (13) 3.6液面计设计 (16) 3.7接管,法兰,垫片和螺栓的选择 (17) 3.7.1接管和法兰 (17) 3.7.2垫片的选择 (18) 3.7.3螺栓(螺柱)的选择 (19) 3.8人孔的设计 (20) 3.8.1人孔的选取 (20) 3.8.2人孔补强圈设计 (21) 3.9鞍座选型和结构设计 (24) 3.9.1鞍座选型 (24) 3.9.2鞍座位置的确定 (25) 3.10焊接接头的设计 (26) 3.10.1筒体和封头的焊接 (26) 3.10.2接管与筒体的焊接 (26)

第四章强度校核 (28) 结束语 (43) 参考文献 (44)

前言 液化石油气贮罐是盛装液化石油气的常用设备, 由于该气体具有易燃易爆的特点, 因此在设计这种贮罐时, 要注意与一般气体贮罐的不同点, 尤其是安全与防火, 还要注意在制造、安装等方面的特点。目前我国普遍采用常温压力贮罐, 常温贮罐一般有两种形式: 球形贮罐和圆筒形贮罐。球形贮罐和圆筒形贮罐相比: 前者具有投资少, 金属耗量少, 占地面积少等优点, 但加工制造及安装复杂, 焊接工作量大, 故安装费用较高。一般贮存总量大于500m 3或单罐容积大于200m 3时选用球形贮罐比较经济; 而圆筒形贮罐具有加工制造安装简单, 安装费用少等优点, 但金属耗量大占地面积大, 所以在总贮量小于500m 3, 单罐容积小于100m 3时选用卧式贮罐比较经济。圆筒形贮罐按安装方式可分为卧式和立式两种。在一般中、小型液化石油气站内大多选用卧式圆筒形贮罐, 只有某些特殊情况下(站内地方受限制等) 才选用立式。本文主要讨论卧式圆筒形液化石油气贮罐的设计。液化石油气呈液态时的特点。(1) 容积膨胀系数比汽油、煤油以及水等都大, 约为水的16倍, 因此, 往槽车、贮罐以及钢瓶充灌时要严格控制灌装量, 以确保安全;(2) 容重约为水的一半。因为液化石油气是由多种碳氢化合物组成的, 所以液化石油气的液态比重即为各组成成份的平均比重, 如在常温20℃时, 液态丙烷的比重为0. 50, 液态丁烷的比重为0. 56 0. 58, 因此, 液化石油气的液态比重大体可认为在0. 51左右, 即为水的一半。卧式液化石油气贮罐设计的特点。卧式液化石油气贮罐也是一个储存压力容器, 也应按GB150《钢制压力容器》进行制造、试验和验收; 并接受劳动部颁发《压力容器安全技术监察规程》(简称容规) 的监督。液化石油气贮罐, 不论是卧式还是球罐都属第三类压力容器。贮罐主要有筒体、封头、人孔、支座以及各种接管组成。贮罐上设有液相管、液相回液管、气相管、排污管以及安全阀、压力表、温度计、液面计等

石油液化气储罐的设计

石油液化气储罐的设计 摘要 卧式储罐设计是以应力分析为主要途径,以材料力学为基础,对容器的各个主要受压部分进行设计。其设计的目的主要是确定合理、经济的结构形式,并满足制造、检验、装配、运输和维修等方面要求,设计中主要从强度和刚度两方面进行设计,保证强度不失效,即材料不发生强度破坏;刚度满足要求,即材料的形变量控制在一定范围内,保证容器不因过渡变形而发生泄露失效,最终达到安全可靠的工作性能的要求。 关键词:卧式储罐、应力、刚度、强度、设计

目录 第1章 前言 (1) 第2章 卧式储罐一般结构 (2) 第3章 选材要求 (4) 3.1 材料各种机械性能参数 (4) 3.1.1 R的含义 (4) 3.1.2 Q235系列的含义 (4) 3.2 机械性能指标及符号 (5) 3.2.1 强度 (5) 3.2.2 塑性 (6) 3.2.3 冲击韧性 (7) 3.2.4 硬度 (7) 3.2.5 冷弯 (8) 3.2.6 断裂韧性 (8) 3.3 压力容器常见的失效形式 (8) 3.3.1 强度失效 (8) 3.3.2 刚度失效 (8) 3.3.3 稳定性失效 (9) 3.3.4 腐蚀失效 (9) 3.4 主要部件的选材 (10) 3.4.1 筒体、封头 (10) 3.4.2 接管 (10) 3.4.3 法兰 (10)

第4章 焊接 (12) 4.1 焊接结构的特点和常用的焊接方法 (12) 4.2 焊缝类型及施焊方法 (12) 4.3 对接焊缝构造 (13) 4.3.1 对接焊缝施工要求 (13) 4.3.2 对接焊缝的构造处理 (13) 4.3.3 对接焊缝的强度 (13) 4.4 对接焊缝连接的计算 (14) 4.5 焊条的选用 (14) 第5章 液压试验 (15) 5.1 试验目的和作用 (15) 5.2 试验要求 (15) 5.3 试验方法步骤 (16) 第6章 卧式储罐校核 (17) 6.1 剪力弯矩载荷计算 (17) 6.2 内力分析 (19) 6.2.1 弯矩计算 (19) 6.2.2 剪力计算 (20) 6.2.3 圆筒应力计算和强度校核 (21) 参考文献 (26) 致谢 (27) 附录 (28)

液化石油气储罐设计

油气储运课程设计说明书 1、设计题目:卧式液化石油气储罐设计 2、设计条件: (1)操作温度:15℃ (2)设计温度:20℃ (3)操作压力:0.72MPa (4)设计压力:0.79MPa (5)介质:液化石油气 (6)公称直径:3200mm (7)公称容积:100m3 (8)圆筒长度:11300mm (9)L2=9800mm (10)A=750mm (11)设备及附件材料自选 3、设计任务: 设计参数的确定;结构分析;材料选择;强度计算及校核;焊接结构设计;标准零部件的选型;制造工艺及制造过程中的检验;设计体会;参考书目等。 4、设计要求: 由于设计参数是每个人各不相同,所以,基本上能够保证学生独立完成任务能力的锻炼,并可在碰到确实需要讨论的个别难题时仍然可以相互讨论,从而培养学生合作解决问题的能力。课程设计是在课程学习阶段结束后,学生们独立进行的工程设计工作,是总结性的、重要的教学实践环节,其目的是培养学生综合运用所学知识,理论联系实践,分析解决工程实践问题的能力。本设计学生必须完成一张A1装配图、一张A3鞍式支座图、一张A3零件图和编制技术性设计说明书一份。

摘要: 通过本次设计,锻炼了查找文献的能力,提高了计算机水平,并且对卧式储罐等大型储罐有了进一步的了解,加深了对本专业课程的认识,在设计的同时,也锻炼了学习的逻辑思维能力和实际动手能力,为今后的工作奠定了良好的基础。从液化石油气的特点,探讨有关卧式圆筒形液化石油气储罐的设计主要对其设计参数、材料选择、结构设计、安全附件及制造与检验等几个方面进行分析和计算。 关键字: 液化石油气卧式储罐设计强度

液化石油气的装卸操作

编订:__________________ 单位:__________________ 时间:__________________ 液化石油气的装卸操作 Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4593-64 液化石油气的装卸操作 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 液化石油气的装卸,根据其输送方式的不同,装卸的方法也不同。 由炼油厂通过管路直接输送到储配站的液化石油气,可利用管道的压力压入储罐。 用罐车运输液化石油气时,可根据具体情况,采用不同的装卸方法进行。常用的装卸方法有:压缩机装卸法、烃泵装卸法、加热装卸法、静压差装卸法和气体加压装卸法等。 一、压缩机装卸法 1.原理 利用压缩机抽吸和加压输出气体的性能,将需要灌装的储罐(或罐车)中的气相液化石油气通入压缩机

的入口,经压缩升压后输送到准备卸液的罐车(或储罐)中,从而降低灌装罐(或罐车)的压力,提高卸液罐车(或储罐)中的压力,使二者之间形成装卸所需的压差(0.2~0.3MPa),液态液化石油气便在压力差的作用下流进灌装的储罐(或罐车),以达到装卸液化石油气的目的。 2.工艺流程 压缩机装卸、倒罐的工艺流程如图1-5-4所示。由图可以看出,当要将罐车中的液化石油气灌注到储罐中去时,打开阀门9和13,关闭阀门10和12,按压缩机的操作程序开启压缩机,把储罐中的气态液化石油气抽出,经压缩后进入罐车,使罐车内气相压力升高,罐车中的液态液化石油气在此压力作用下经液相管进入储罐。气、液态液化石油气的流动方向如图1-5-4所示。 图1-5-4压缩机装卸、倒罐工艺流程

立方液化石油气储罐设计方案

25立方液化石油气储罐 一.设计背景 该储罐由菏泽锅炉厂有限公司设计,是用来盛装生产用的液化石油气的容器。设计压力为,温度在-19~52摄氏度范围内,设备空重约为5900Kg,体积为25立方米,属于中压容器。石油液化气为易燃易爆介质,且有毒,因此选材基本采用Q345R。此液化石油气卧式储罐是典型的重要焊接结构,焊接接头是其最重要的连接结构,焊接接头的性能会直接影响储存液化石油气的质量和安全。 二.总的技术特性: 三.储气罐基本构成 储气罐是一个承受内压的钢制焊接压力容器。在规定的使用温度和对应的工作压力下,应保证安全可靠,罐体的基本结构部件应包括人孔、封头、筒体、法兰、支座。

图1储气罐的结构简图 筒体 本产品的简体是用钢板卷焊成筒节后组焊而成,这时的简体有纵环焊缝。 封头 按几何形状不同,有椭圆形封头,球形封头,蝶形封头,锥形封头和平盖等各种形式。封头和简体组合在一起构成一台容器壳体的主要部分,也是最主要的受压元件之一。此储气罐选择的是椭圆形封头。 从制造方法分,封头有整体成形和分片成形后组焊成一体的两种。当封头直径较大,超出生产能力时,多采用分片成形方法制造,分片成形控制难度大,易出现不合格产品。对整体成形的封头尺寸、形状,虽然易控制但一般需要有大型冲压模具的压力机或大型旋压设备,工艺设备庞大,制造成本高。 从封头成形方式讲,有冷压成形、热压成形和旋压成形。对于壁厚较薄的封头,一般采用冷压成形。 采用调质钢板制造的封头或封头瓣片,为不破坏钢板调质状态的力学性能,节省模具制造费用,往往采用多点冷压成形法制造。 当封头厚度较大时,均采用热压成形法,即将封头坯料加热至900℃~1000℃。钢板在高温下冲压产生塑性变形而成形,此时对于有些材料(如正火态钢板),由于改变了原始状态的力学性能,为恢复和改善其力学性能,封头冲压成形后还要做正火、正火+回火或淬火+回火等相应的热处理。对于直径大且厚度薄的封头,采用旋压成形法制造是最经济最合理的选择。

液化石油气站的安全技术和事故预防措施(标准版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 液化石油气站的安全技术和事故 预防措施(标准版)

液化石油气站的安全技术和事故预防措施 (标准版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 1引言 在城市内建设的液化石油气站(如小区气化站、混气站和加气站等)应安全使用。保证安全有二种途径,一是主要通过比较大的安全间距来减少事故的危害,二是主要通过技术措施保证运行的安全。为减少事故而需设置的安全间距是很大的。为了防止较大事故(如发生连续液体泄漏,泄漏时间30min)的安全距离:静风为36m,风速≤1.0m/s 时下风向为80m;为防止重大事故(如爆发性液体泄漏)的安全距离:静风为65m,风速≤1.0m/s时下风向为150m.这对一般液化石油气储罐难以实现。城市用地十分紧张,很难找到一片空地专用于液化石油气站建设。这就要求液化石油气站的建设应以安全技术为主,即应采用先进成熟的技术和可靠的防止燃气泄漏措施,满足液化石油气站的建设的发展的需要。 2主要安全技术措施

储罐课程设计

目录 摘要 ............................................................................................................................... I ABSTRACT ................................................................................................................. I I 第一章绪论 (1) 1.1液化石油气储罐的用途与分类 (1) 1.2液化石油气特点 (1) 1.3液化石油气储罐的设计特点 (2) 第二章工艺计算 (3) 2.1设计题目 (3) 2.2设计数据 (3) 2.3设计压力、温度 (3) 2.4主要元件材料的选择 (4) 第三章结构设计与材料选择 (5) 3.1筒体与封头的壁厚计算 (5) 3.2筒体和封头的结构设计 (6) 3.3鞍座选型和结构设计 (7) 3.4接管,法兰,垫片和螺栓的选择 (10) 3.5人孔的选择 (15) 3.6安全阀的设计 (15) 第四章设计强度的校核 (19) 4.1水压试验应力校核 (19) 4.2筒体轴向弯矩计算 (20) 4.3筒体轴向应力计算及校核 (20) 4.4筒体和封头中的切向剪应力计算与校核 (21) 4.5封头中附加拉伸应力 (22) 4.6筒体的周向应力计算与校核 (22) 4.7鞍座应力计算与校核 (23) 第五章开孔补强设计 (26) 5.1补强设计方法判别 (26) 5.2有效补强范围 (26) 5.3有效补强面积 (27) 5.4.补强面积 (28)

卧式储罐设计..

安徽工程大学 课程设计说明书 题目名称:卧式储罐设计 专业班级:食品122班 学生姓名:王飞腾 指导教师:季长路 完成日期: 2015-09-24

目录 摘要 (3) 第一章绪论 (4) 1.1设计任务: (4) 1.2设计思想: (4) 1.3设计特点: (4) 第二章材料及结构的选择与论证 (5) 2.1材料选择 (5) 2.2结构选择与论证 (5) 2.2.1 封头的选择 (5) 2.2.2容器支座的选择 (5) 2.3法兰型式 (6) 2.4液面计的选择 (6) 第三章结构设计 (7) 3.1壁厚的确定 (7) 3.2封头厚度设计 (7) 3.2.1计算封头厚度 (7) 3.2.2水压试验及强度校核 (8) 3.3储罐零部件的选取 (8) 3.3.1储罐支座 (8) 3.3.2 罐体质量 (8) 3.3.3封头质量 (9) 3.3.4液氨质量 (9) 3.3.5附件质量 (9) 第四章接管的选取 (10) 4.1液氨进料管 (10) 4.2平衡口管 (10) 4.3液位指示口管 (10) 4.4放空口管 (10) 4.5液体进口管 (11) 4.6液体出口管 (11) 第五章压力计选择 (12) 符号说明 (13) 总结 (14)

摘要 本说明书为《1.2m3液氨储罐设计说明书》。扼要介绍了卧式储罐的特点及在工业中的广泛应用,详细的阐述了卧式储罐的结构及强度设计计算及制造、检修和维护。 本文采用分析设计方法,综合考虑环境条件、液体性质等因素并参考相关标准,按工艺设计、设备结构设计、设备强度计算的设计顺序,分别对储罐的筒体、封头、鞍座、接管进行设计,然后采用1SW6-1998对其进行强度校核,最后形成合理的设计方案。 设计结果满足用户要求,安全性与经济性及环保要求均合格。 关键词:压力容器、卧式储罐、结构设计、强度校核、开孔补强

液化石油气卧式储罐的规则设计

液化石油气卧式储罐的规则设计 【摘要】结合《固定式压力容器安全技术监察规程》和《压力容器》的实施,围绕20m3液化石油气卧式储罐的设计,来探讨在液化石油气卧式储罐的规则设计中参数的确定、材料的选择、结构的设计以及制造技术要求。 【关键词】液化石油气卧式储罐设计 盛装液化石油气的卧式储罐是具有爆炸危险的特种承压设备,为了它的安全运行,必须从设计、制造、使用和维护等各个环节都要严格要求。下面结合20m3液化石油气卧式储罐的设计,来探讨在液化石油气卧式储罐的规则设计中参数的确定、材料的选择、结构的设计以及制造技术要求等。 2 确定设计压力 对于常温储存液化石油气的储罐,根据TSG R0004-2009《固定式压力容器安全技术监察规程》第3.9.3条款的规定[1],常温储存液化石油气压力容器规定温度下的工作压力,按照不低于50℃时的混合液化石油气组分的实际饱和蒸汽压来确定。应当在图样上注明限定的组分或者对应的压力。本例中液化石油气的主要组分是丙烷,丙烷50℃时的饱和蒸气压为1.6MPa,依据此工作压力确定了这台20m3液化石油气卧式储罐的设计压力是1.77 MPa。 3 确定储罐的装量系数 液化石油气在平衡状态时的饱和蒸汽压随温度的升高而增大,其液体的膨胀性较强,因此储存液化石油气的储罐内必须留有一定的气相空间,以防止由于温度升高而导致储罐内的压力剧增。储罐的储存量直接影响到储罐的工作压力,关系到储罐的设计和使用安全。TSG R0004-2009《固定式压力容器安全技术监察规程》第3.13条[1]规定储存液化气体的压力容器应当规定设计储存量,装量系数不得大于0.95。本例中储罐的装量系数确定为0.9。 4 确定腐蚀裕量 由所选定受压元件的材质、工作介质对受压元件的腐蚀率、容器使用环境和用户期待的使用寿命来确定,实际上应先选定受压元件的材质,再确定腐蚀裕量。工作介质对受压元件的腐蚀率主要按实测数据和经验来确定,受使用环境影响很大,变数很多,目前无现成的数据。一般介质无腐蚀的容器,其腐蚀裕量取1~2mm即可满足使用寿命的要求。本例为石油化工设备,介质为轻微腐蚀,取腐蚀裕量为2mm。5 确定焊接接头系数 焊接接头系数,应根据受压元件的焊接接头型式及无损检测的长度比例确定。双面焊焊接接头和相当于双面焊的全焊透对接接头:100%无损检测φ=1.00;局部无损检测φ=0.85.单面焊对接接头(沿焊缝根部全长有紧贴基本金属的垫

液化石油气储罐设计

第一章 工艺设计 参数的确定 液化石油气的主要组成部分由于石油产地的不同,各地石油气组成成分也不同。取其大致比例如下: 表一 组成成分 异辛烷 乙烷 丙烷 异丁烷 正丁烷 异戊烷 正戊烷 乙炔 各成分百分比 0.01 2.25 49.3 23.48 21.96 3.79 1.19 0.02 对于设计温度下各成分的饱和蒸气压力如下: 表二,各温度下各组分的饱和蒸气压力 温度,℃ 饱和蒸汽压力,MPa 异辛烷 乙烷 丙烷 异丁烷 正丁烷 异戊烷 正戊烷 乙炔 -25 0 1.3 0.2 0.06 0.04 0.025 0.007 0 -20 0 1.38 0.27 0.075 0.048 0.03 0.009 0 0 0 2.355 0.466 0.153 0.102 0.034 0.024 0 20 0 3.721 0.833 0.294 0.205 0.076 0.058 0 50 7 1.744 0.67 0.5 0.2 0.16 0.0011 1、设计温度 根据本设计工艺要求,使用地点为太原市的室外,用途为液化石油气储配站工作温度为-20—48℃,介质为易燃易爆的气体。 从表中我们可以明显看出,温度从50℃降到-25℃时,各种成分的饱和蒸气压力下降的很厉害,可以推断,在低温状态下,由饱和蒸气压力引起的应力水平不会很高。 由上述条件选择危险温度为设计温度。为保证正常工作,对设计温度留一定的富裕量。所以,取最高设计温度t=50℃,最低设计温度t=﹣25℃。根据储罐所处环境,最高温度为危险温度,所以选t=50℃为设计温度。 1、设计压力 该储罐用于液化石油气储配供气站,因此属于常温压力储存。工作压力为相应温度下的饱和蒸气压。因此,不需要设保温层。 根据道尔顿分压定律,我们不难计算出各种温度下液化石油气中各种成分的饱和蒸气分压,如表三: 表三,各种成分在相应温度下的饱和蒸气分压 温度, ℃ 饱和蒸气分压, MPa 异辛烷 乙烷 丙烷 异丁烷 正丁烷 异戍烷 正戍烷 乙烯 -25 0 0.029 0.0946 0.014 0.0088 0.00095 0.000083 0 -20 0 0.031 0.127 0.0176 0.0105 0.00114 0.000109 0 0 0 0.053 0.2204 0.0359 0.0224 0.00129 0.000256 0 20 0 0.084 0.394 0.069 0.045 0.00288 0.00063 0 50 0 0.158 0.0825 0.1573 0.1098 0.00758 0.0019 0 有上述分压可计算再设计温度t=50℃时,总的高和蒸汽压力 P= i n i i p y ∑8 1 ===0.01%×0+2.25%×7+47.3%×1.744+23.48%×0.67+21.96%×0.5+3.79%×

《压力容器与管道安全》课程设计.

湖南大学 《压力容器与管道安全》课程设计 专业安全工程 姓名刘恶 学号023412229 课程名称压力容器与管道安全 指导教师杨有豪马莲 市政与环境工程学院 2019年12月

目录 1. 目的与任务 (2) 2. 储罐的设计要求 (2) 2.1 设计题目 (2) 2.2 设计要求 (2) 3. 卧式液氨储罐的结构设计 (3) 3.1储罐主要结构的设计 (3) 3.1.1筒体和封头的结构选择 (3) 3.1.2用方案一计算筒体和封头的厚度 (4) 3.1.3用方案二计算筒体和封头的厚度 (5) 3.1.4两种方案的比较 (6) 3.2计算鞍座反力 (7) 3.3支座及其位置选取 (8) 3.3.1鞍座数量的确定 (8) 3.3.2鞍座安装位置的确定 (8) 3.3.3鞍座标准的选用 (10) 3.4储罐应力校核 (10) 3.4.1筒体轴向应力校核 (10) 3.4.2筒体和封头切向剪应力校核 (12) 3.4.3筒体周向应力校核 (12) 3.4.4鞍座有效断面的平均应力校核 (13) 3.5 入孔设计 (13) 3.6开孔补强计算 (14) 3.7接管与法兰联结设计 (16) 参考文献 (19)

1. 目的与任务 本课程设计是在学完《压力容器与管道安全》之后综合利用所学知识完成一个压力容器设计。该课程设计的主要任务 1.是通过解决一、两个实际问题,巩固和加深对压力容器的结构、原理、特性的认识和基本知识的理解,提高综合运用课程所学知识的能力。 2.培养根据课题需要选学参考书籍,查阅手册、图表和文献资料的自学能力。通过独立思考,深入钻研有关问题,学会自己分析解决问题的方法。 3.通过实际设计方案的分析比较,设计计算,元件选择等环节,初步掌握工程中压力容器设计方法。 4.培养严肃认真的工作作风和科学态度。通过课程设计实践,逐步建立正确的生产观点、经济观点和全局观点,获得初步的应用经验,为以后从事生产和科研工作打下一定的基础。 2. 储罐的设计要求 2.1 设计题目 某厂需添置一台液氨贮罐,设计原始数据:设计压力P=1.9Mpa,设计温度T=43℃,容器内径D=1230mm,容积V=3.1m3,设备充装系数0.9。采用鞍式支座。试设计该设备。 2.2 设计要求 根据已知的条件,按照以下顺序进行设计: 1.主要结构设计—筒体、封头、接管、法兰密封、鞍座及其位置。 2.主要材料—焊缝和探伤 3.筒体和封头的厚度计算 4.计算鞍座反力

30m3液化石油气储罐设计

课程设计任务书 题目:303m 液化石油气储罐设计 设计条件表 序号 项目 数值 单位 备注 1 最高工作压力 1.893 MPa 由介质温度确定 2 工作温度 -20~48 ℃ 3 公称容积(s V ) 30 3 m 4 装量系数(V ) 0.9 5 工作介质 液化石油气 6 使用地点 太原市,室内 管口条件: 液相进口管 DN50;液相出口管DN50;安全阀接口DN80;压力表接口DN25;气相管DN50;放气管DN50;排污管DN50。 液位计接口和人孔按需设置。

设计计算说明书 1. 储存物料性质 1.1物料的物理及化学特性 1.2 物料储存方式 常温常压保存,不加保温层。 2. 压力容器类别的确定 储存物料液氯为高度危害液体,工作压力为 1.303MPa ,储罐属低压容器。PV ≧0.2MPa.3m ,根据《压力容器安全技术监察规程》][2,所以设计储罐为第三类容器。 3.1储罐筒体公称直径和筒体长度的确定 公称容积g V =303m ,则 4 πi D L =30。 L D i = 3 1计算,得 i D =2.335m ,L =7.006.。 取D=2.3m,此时11] [查表 ,得封头容积1V =2×1.7588=3.517 3 m ,直边段长度为40mm 。计 算筒体容积2V =4824 .267588.1230=?-3 m , 4824 .264 12 =L D ,解得 mm L 3772.61=。取筒体长度为6.4m 。 10.307588.124.63.24 V 2 =?+?=)(真π 此时5%.3%0100%)/303010.30(/)(≤=?-=-V V V 真,所以合适,画图发现比例也合适。 最后确定公称直径为2300mm ,筒体长度为6400mm 。 3.2封头结构型式尺寸的确定

液化石油气站操作规程

操作规程汇编

目录 槽罐车卸车操作规程错误!未定义书签。 压缩机操作规程错误!未定义书签。 烃泵操作规程错误!未定义书签。 气瓶抽真空操作规程错误!未定义书签。 气瓶倒残操作规程错误!未定义书签。 气瓶充装供液操作规程错误!未定义书签。 气瓶充装操作规程错误!未定义书签。 倒罐操作规程错误!未定义书签。 液化石油气排放操作规程错误!未定义书签。消防泵操作规程错误!未定义书签。 事故应急救援操作规程错误!未定义书签。 配电房安全操作规程错误!未定义书签。

槽罐车卸车操作规程 卸车前准备 槽车按指定位置停好后,关闭发动机,拉紧手动制动器。 连接槽车与卸车台的静电接地线。 将气、液相软管与槽车气,液相接头连接,打开放气阀, 放出连接处管中的空气,然后关闭放气阀。 操作顺序 确定卸液罐,打开卸液罐的进液阀,气相阀。 打开压缩机房气相阀门组卸液罐的下排阀门。 打开气相阀门组卸车柱的上排阀门。 打开压缩机的进气阀门。 打开压缩机分离器的进出口阀门。 打开压缩机的出气阀门。 打开卸车柱气液相阀门。 打开槽车紧急切断阀,气液相软管上的球阀。 开启压缩机进行卸车。 当槽车内液相卸完后,关闭压缩机,关闭液相管路阀门。 关闭气相阀门组卸液罐的下排阀门,打开上排阀门;关闭气相阀门组装卸柱的上排阀门,打开下排阀门;或不改变阀门组阀的开、关状态,将压缩机四通阀的方向改变,将槽车内的气相抽至储罐内,直至槽车内的压力小于,但不低于。 关闭压缩机。 关闭槽车紧急切断阀。 关闭气相系统管路上的阀门,打开气液相软管末端放气阀,放出连接管处的液化气,卸下气液相软管,卸车结束。 注意事项 作业现场,严禁烟火,严禁使用易产生火花的工具和用品。 卸车人员必须穿戴防静电的工作服、防护手套。 卸车时卸车人员必须严密监视储罐的液位、压力、温度,发现异常立即停止卸气。卸车结束后,应检查阀门关闭情况。 填写《罐车卸车操作记录》并签字。

液化石油气储罐防火间距

表4.4.1 液化石油气储罐或罐区与建筑物、储罐、堆场、铁路、道路的防火间距(m) 注:1 容积大于1 000m3的液化石油气单罐或总储量大于5000m3的罐区,与明火或散发火花地点的防火间距不应小于120.0m,与民用建筑的防火间距不应小于100.0m,与其他建筑的防火间距应按本表的规定增加25%; 2 防火间距应按本表总容积或单罐容积较大者确定; 3 直埋地下液化石油气储罐的防火间距可按本表减少50%,但单罐容积不应大于50m3,总容积不应大于400m3; 4 与本表以外的其他建、构筑物的防火间距,可按现行国家标准《城镇燃气设计规范》GB50028的有关规定执行。 4.4.2液化石油气气化站、混气站、瓶组站,其储罐与工业建筑、重要公共建筑和其他民用建筑、道路等之间的防火间距,可按现行国家标准《城镇燃气设计规范》GB50028的有关规定执行。 总容积不大于10m3的工业企业内的液化石油气气化站、混气站的储罐,当设置在专用的独立建筑物内时,其外墙与相邻厂房及其附属设备之间的防火间距,可按甲类厂房有关防火间距的规定执行。当设置在露天时,与建筑物、储罐、堆场的防火间距应按本规范第4.4.1条的规定执行。 4.4.3液化石油气储罐之间的防火间距,不应小于相邻较大罐的直径。 数个储罐的总容积大于3000m3时,应分组布置。组内储罐宜采用单排布置。组与组之间相邻储罐的防火间距,不应小于20.0m。 4.4.4液化石油气储罐与所属泵房的距离不应小于1 5.0m。当泵房面向储罐一侧的外墙采用无门窗洞口的防火墙时,其防火间距可减少至 6.0m。液化石油气泵露天设置时,泵与储罐之间的距离不限,但不宜布置在防火堤内。 4.4.5液化石油气瓶装供应站的瓶库,其四周宜设置不燃烧体的实体围墙,但面向出入口一侧可设置不燃烧体非实体围墙。液化石油气瓶装供应站的瓶库与站外建、构筑物之间的防火间距,不应小于表4.4.5的规定。当总容积大于30m3时,其防火间距应符合本规范第4.4.1条的规定。 表4.4.5 瓶库与站外建、构筑物之间的防火间距(m) 注:总存瓶容积应按实瓶个数与单瓶几何容积的乘积计算。

中北大学--玻璃钢卧式储罐课程设计

概述 在当前已经开发的复合材料制品中,玻璃纤维增强树脂基复合材料(俗称玻璃钢)的贮罐占有相当的比重。玻璃钢贮罐有较好的耐腐蚀性和承载能力,与金属贮罐相比,制造工艺比较简单且容易修补,所以,在石油,化工等部门已有逐步替代金属贮罐的趋势。近几年来,我国生产的玻璃钢贮罐已由中小吨位向大吨位发展,最大的玻璃钢贮罐容积已达到3 m 1500。 目前玻璃钢贮罐的设计方法有两种,一种是以强度为标准,在已经的安全系数下,使贮罐的应力小于材料的许用应力;另一种是以变形为标准,使贮罐的应变不超过规定值。在实际产品设计中,由于材料强度极限的数据积累较充分,而且能方便的使用最大应力失效准则及相应的设计标准,所以第一种方法较通用,而应变设计方法在变形需严格控制时才使用。 玻璃贮罐按使用功能与放置场地的不同,可以有多种结构形式。按使用压力不同,有压力贮罐和常压贮罐之分;按形状不同有圆柱形、球形、箱形等结构形式;按置于地面或运输车上有静置贮罐和运输贮罐之分。 由于玻璃钢贮罐具有耐腐蚀性、质量轻、强度高、易制造、运输安装费用低等特点,已广泛应用与化工、石油,造纸、医药、食品、冶金、粮食、饲料等领域。 (1)玻璃钢贮罐化学应用:贮存酸、碱、盐及各类化学用品。 (2)玻璃钢地下油罐:用于汽车加油站代替钢油罐。 (3)玻璃钢运输贮罐:分为汽车运输和火车运输贮罐两种。 & 本文着重讨论了卧式玻璃钢贮罐的造型设计、性能设计、结构设计、工艺设计、安装、及检 验等各方面。 {

2.性能设计 原材料的选择原则 ()比强度,比刚度高的原则 ()材料与结构的使用环境相适应的原则 】 ()满足结构特殊性能的原则 ()满足工艺要求的原则 ()成本低效益高的原则 树脂基体的选择 树脂的选择按如下要求选取: ()要求基体材料能在结构使用温度范围内正常工作; ()要求基体材料具有一定的力学性能; ()要求基体材料的断裂伸长率大于或者接近纤维的断裂伸长率; ( ()要求基体材料具有满足使用要求的物理、化学性能; ()要求基体材料具有一定的公益性。 玻璃钢制品所用的树脂原料有:聚酯、环氧、酚醛、呋喃树脂及改性树脂等。目前可供选择的的树脂主要有两类:一类为热固性树脂,其中包括环氧树脂、聚酰亚胺是指、酚醛树脂和聚酯树脂。连一类为热塑性树脂,如聚醚醚酮、尼龙、聚苯乙烯、聚醚酰亚胺等。 目前树脂基复合材料中用得较多的基体是热固性树脂,它们有较高的力学性能,但工作温度低。对于需耐高温的复合材料,主要是用聚酰亚胺作为基体材料,目前较新的树脂基体有双马来酰胺、聚醚醚酮等,能满足一般高温的要求,且韧性好,有较大的复合材料强度许用值。 贮罐储存质量分数的硫酸,根据耐酸性,力学性能和经济效益综合考虑,可选用酚醛树脂。 增强材料的选择 目前已有多种纤维可作为复合材料的增强材料,如加各种玻璃纤维、凯夫拉纤维、氧化铝纤维、硼纤维、碳纤维等,有些纤维已经有多种不同性能的品种。 选择纤维类别,是根据结构的功能选取能满足一定的力学、物理和化学性能的纤维。

液化石油气储罐设计毕业论文

四川理工学院毕业设计(论文)500m3液化石油气储罐设计 学生: 学号:0901******* 专业:过程装备与控制工程 班级:2009.2 指导教师:林海波 四川理工学院机械工程学院 二O一三年六月 四川理工学院

毕业设计任务书 设计题目:500m3液化石油气储罐设计 学院:机械工程专业:过程装备与控制工程班级:2009级2班学号:0901******* 学生:指导教师:林海波接受任务时间2013年3月1日 系主任(签名)院长(签名) 1.毕业设计(论文)的主要内容及基本要求 设计题目:500m3液化石油气储罐设计 介质:液化石油气容积:500m3 放置地点:四川自贡,进行选型论证和结构设计。 完成:0#总装配图一张,零部件图0#图总量1张,设计说明书一份。 2.指定查阅的主要参考文献及说明 NB/T 47001-2009 .钢制液化石油气卧式储罐型式与基本参数 GB150—2011.钢制压力容器 卧式储罐焊接工程技术 我是储罐和大型储罐 3.进度安排 设计(论文)各阶段名称起止日期 1 资料收集,阅读文献,完成开题报告3月 1 日至3月24日 2 完成所有结构设计和设计计算工作3月25日至4月21日 3 完成所有图纸的绘制、完成设计说明书的撰写4月22日至5月22日 4 完成图纸和说明书的修改、答辩的准备和毕业 答辩5月23日至6月7日 5 毕业设计修改与设计资料整理6月 8 日至6月14日

摘要 用于储存或盛装气体、液体、液化气体等介质的储罐,在化工、石油、能源、轻工、环保、制药及食品等行业得到广泛应用。本设计运用常规设计的方法,对卧式液化石油气储罐的筒体、封头进行厚度设计计算,对水压试验进行校核,并对所开人孔进行补强设计。按照相关标准选择密封装置、人孔、支座、接口管以及部分安全附件。根据设计时的需要附上一些储罐零件图与储罐装配简图。完成了一个相对比较完整的卧式液化石油气储罐的设计。 关键字:储罐;压力容器;设计;计算

相关文档
最新文档