线性多变量系统的运动分析
合集下载
现代控制理论 第九章 现代控制理论-控制系统的数学模型

1 C
∫ i (t )dt
= u c (t )
i (t ) | t = t 0 = i (t 0 )
u c (t ) | t = t 0 = u c (t 0 )
若将 i (t ) 和 u c (t ) 视为一组信息量,则这样一 组信息量就称为状态。这组信息量中的每个变 量均是该电路的状态变量。 状态:表征系统运动的信息和行为 状态 表征系统运动的信息和行为。 表征系统运动的信息和行为 状态变量:系统的状态变量就是确定系 统状态的最小一组变量。(或完全表征 系统运动状态的最小一 组变量。)
di dt
=
R x1 L
1 L
x2+ 1 u( t )
L
x
2
1 x c 1
y = x2 = u c (t )
写成矩阵— 写成矩阵—向量的形式为:
x
1
=
R L
1 L
x1
x
2
1 c
0
x2
+
1 L u( t )
0
y=
x1
0 1
x2
为状态向量
x 1 x2 T 令x =
则:
x=
R L
1 L
1 c
1 x+ L
状态方程 输出方程
一 、状态、状态变量和状态空间
R + u(t)
输入
L
+ + y C uc(t) _ 输出 _
i(t)
_
解:以 i(t) 作为中间变量,列写该回路的微分方程
di (t ) L + Ri (t ) + u c (t ) = u (t ) dt
求解这个微分方程组, 出现两个积分常数。 它们由初始条件
系统的状态变量分析法

出
状
方
态
程
方
程
9-1 连续系统状态空间方程建立
一、引例 t<0,K在2;t=0,K从2打到1。求t>0时,电压uR和uL。
(
状
态
方
程
)
( 输 出
uR t Ri(t)
方 程
uL t Ri(t) uc (t) us (t)
)
状态方程和输出方程通称为
状态空间方程
uc(t)和i(t)称为状态变量
说明:同一系统函数或微分方程,可以有不同的模拟图或信号流图,所以 可以得到不同的状态方程和输出方程,但特征根相同,同一系统,它的系 统矩阵A相似。
练习1:列写状态方程和输出方程,已知系统函数为
状态变量:选积分器输出。
练习2:已知系统函数,用级联型信号流图列写状态方程和 输出方程
状态变量:选积分器输出。来自3、系统函数矩阵与单位冲激响应矩阵 1)系统函数矩阵
2)单位冲激响应矩阵: 3)系统自然频率:
意义:第j个激励单独作用时 与所产生的第i个响应之间的 关系。
3、状态方程:描述系统状态变量和激励与状态变量一阶导数关系 的微分方程组。
4、输出方程:描述系统状态变量和激励与输出响应关系的代数方程组。 5、状态向量:由状态变量做分量所构成的向量。(n维) 6、状态空间:状态变量所有取值的集合。即状态向量所在的空间。 7、状态轨迹:在状态空间中状态向量端点随时间变化所形成的轨迹。
(2)便捷的运用到多输入多输出系统; (3)可以分析系统的“可观测性”和“可控制性”; (4)可以描述非线性系统和时变系统; (5)便于计算机求解(一阶微分方程、差分方程)。
4、分析方法:状态变量法
以系统内部的状
《Simulink与控制系统仿真(第3版)》的课件 线性系统状态空间分析和非线性系统分析

通过本章,读者能了解非线性系统的发展概况、非线性 系统的数学描述和特性、非线性系统的研究方法和特点 ,掌握非线性系统分析和设计的基本概念和方法以及利 用MATLAB/Simulink对非线性系统进行分析。
11.2 非线性系统概述
含有非线性元件或环节的系统称为非线性系统。非线性特性包括 许多类型,典型的静态非线性特性包括死区非线性、饱和非线性、 间隙非线性和继电非线性。
采用MATLAB绘制相轨迹图
绘制相轨迹图的实质是求解微分方程的解。求解微分方程数 值解的算法有多种,MATLAB提供了求解微分方程的函数组, 常用的有ode45,它采用的计算方法是变步长的龙格-库塔4/5 阶算法。 ode45()常用的调用格式如下: [t, y]=ode45(odefun, tspan, y0) 在用户自己编写的MATLAB函数中既可以描述线性系统特性, 也可以描述非线性系统特性。
Relay:继电非线性; Saturation:饱和非线性; Saturation Dynamic:动态饱和非 线性;
Wrap To Zero:环零非线性。
11.3 相平面法
应用相平面法分析一阶尤其是二阶非线性控制系统,弄清非线性系统的稳定 性、稳定域等基本属性以及解释极限环等特殊现象,具有非常直观形象的效 果。 由于绘制二维以上的相轨迹十分困难,因此相平面法对于二阶以上的系统几 乎无能为力,这是相平面法的局限。
11.2.3 Simulink中的非线性模块
Backlash:间隙非线性; Coulomb&Viscous Friction:库仑 和黏度摩擦非线性;
Dead Zone:死区非线性; Dead Zone Dynamic:动态死区 非线性;
Hit Crossing:冲击非线性; Quantizer:量化非线性; Rate Limiter:比例限制非线性; Rate Limiter Dynamic:动态比例 限制非线性;
11.2 非线性系统概述
含有非线性元件或环节的系统称为非线性系统。非线性特性包括 许多类型,典型的静态非线性特性包括死区非线性、饱和非线性、 间隙非线性和继电非线性。
采用MATLAB绘制相轨迹图
绘制相轨迹图的实质是求解微分方程的解。求解微分方程数 值解的算法有多种,MATLAB提供了求解微分方程的函数组, 常用的有ode45,它采用的计算方法是变步长的龙格-库塔4/5 阶算法。 ode45()常用的调用格式如下: [t, y]=ode45(odefun, tspan, y0) 在用户自己编写的MATLAB函数中既可以描述线性系统特性, 也可以描述非线性系统特性。
Relay:继电非线性; Saturation:饱和非线性; Saturation Dynamic:动态饱和非 线性;
Wrap To Zero:环零非线性。
11.3 相平面法
应用相平面法分析一阶尤其是二阶非线性控制系统,弄清非线性系统的稳定 性、稳定域等基本属性以及解释极限环等特殊现象,具有非常直观形象的效 果。 由于绘制二维以上的相轨迹十分困难,因此相平面法对于二阶以上的系统几 乎无能为力,这是相平面法的局限。
11.2.3 Simulink中的非线性模块
Backlash:间隙非线性; Coulomb&Viscous Friction:库仑 和黏度摩擦非线性;
Dead Zone:死区非线性; Dead Zone Dynamic:动态死区 非线性;
Hit Crossing:冲击非线性; Quantizer:量化非线性; Rate Limiter:比例限制非线性; Rate Limiter Dynamic:动态比例 限制非线性;
04第四章-李雅普诺夫稳定性理论

平衡状态— —又称一致李氏稳定。
几何意义:
当t t0时,系统受扰动,平衡状态受破坏,产生对应初始状态 x0,当t t0后, 运动状态x(t)会发生变化。
若无论多么小球域S( ),总存在一个球域S( ),当
x0 S( )时, x(t)轨线不会超出S( ),则平衡点xe为
Lyapunov意义下稳定。 实际上,工程中的李氏 稳定是临界不稳定
说明:
J P1AP A~J 考察eJt即可看出 e At的有界性
例:
0 0 J1 0 -1
李氏稳定
0 1 J2 0 0
不稳定
0 0 J3 0 0
李氏稳定
0 0 A J1 0 -1
e At
1
0
0
e-t
x(t)
e At x0
1 0
0 e-t
x10
x20
x10
e-t x20
f1
xn
令
x x xe ,
A
f xT
f 2
xe
x1
f2 x2
f2
xn
xe
f
n
fn
fn
x1 x2 xn
则
.
x
x
( xe常数)
判定法:
.
x Ax
(1) A的所有特征值均有负实部,则xe是渐近稳定的, 与R(x)无关. (2) A的特征值至少有一个有正实部,则xe是不稳定的, 与R(x)无关. (3) A的特征值至少有一个实部为0,则xe的稳定性 与R( x)有关, 不能由A来决定.
P为实对称矩阵 , pij p ji
第二节 李雅普诺夫间接法
李氏间接法利用系统矩阵A的特征值 1, 2,, n 或者说系统极点来判断系统稳定性。
几何意义:
当t t0时,系统受扰动,平衡状态受破坏,产生对应初始状态 x0,当t t0后, 运动状态x(t)会发生变化。
若无论多么小球域S( ),总存在一个球域S( ),当
x0 S( )时, x(t)轨线不会超出S( ),则平衡点xe为
Lyapunov意义下稳定。 实际上,工程中的李氏 稳定是临界不稳定
说明:
J P1AP A~J 考察eJt即可看出 e At的有界性
例:
0 0 J1 0 -1
李氏稳定
0 1 J2 0 0
不稳定
0 0 J3 0 0
李氏稳定
0 0 A J1 0 -1
e At
1
0
0
e-t
x(t)
e At x0
1 0
0 e-t
x10
x20
x10
e-t x20
f1
xn
令
x x xe ,
A
f xT
f 2
xe
x1
f2 x2
f2
xn
xe
f
n
fn
fn
x1 x2 xn
则
.
x
x
( xe常数)
判定法:
.
x Ax
(1) A的所有特征值均有负实部,则xe是渐近稳定的, 与R(x)无关. (2) A的特征值至少有一个有正实部,则xe是不稳定的, 与R(x)无关. (3) A的特征值至少有一个实部为0,则xe的稳定性 与R( x)有关, 不能由A来决定.
P为实对称矩阵 , pij p ji
第二节 李雅普诺夫间接法
李氏间接法利用系统矩阵A的特征值 1, 2,, n 或者说系统极点来判断系统稳定性。
线性控制系统分析

(1)
线性自治系统、非线性自治系统、时不变自治系统、时变自治系统等都 可由(1)式统一描述 。比如线性时变自治系统为:
d X (t) A(t)X (t) 具有(1)式的形式。
dt
对于方程(1),假设在给定的初始条件下有唯一解,则此解既与 X0有关,
又与 t0 有关,记为
X (t) (t;t0, X0)
(4)
dt
和线性时不变系统 d X (t) AX (t)
(5)
dt
来说,它们的稳定性有些特殊性.
定理4 线性系统(4)的零平衡点稳定,则其所有其它非 零平衡点也都稳定.
证:设 Xe 0 为系统(4)的任一非零平衡点,令 X (t) X (t) Xe
则由 A(t)Xe 0, t t0 可得
(t
)u(
)d
t
0
g(t ) u( ) d
t
k1 0
g (t
)d
k1 0
g (
)d
k1k
所以, y(t) 是有界的.
[必要性] 反证法:设
g( ) d
0
1, g(t ) 0,
取
u(
)
sgn(
g
(t
))
0,
g(t ) 0,
1, g(t ) 0
显然, u(t)是有界的输入.由它引起的输出为:
第二章 线性控制系统分析
§1 稳定性
稳定性描述的是初始条件下系统方程的解是否具有收敛性, 是系统的重要特性,一个不稳定的系统是不能付诸实用的.
本部分内容重点是理解稳定性概念;掌握输入-输出描述下 的稳定性判据和状态方程描述下的稳定性判据.
1.1 输入-输出描述下的稳定性判据
控制系统仿真_薛定宇第五章 线性控制系统的计算机辅助分析

国家级精品课程
控制系统仿真与CAD
第五章 线性控制系统的计算机辅助分析
东北大学信息学院 薛定宇
控制系统仿真与CAD 国家级精品课程
2014-12-31
1/139
本章主要内容
线性系统定性分析 线性系统时域响应解析解法 线性系统的数字仿真分析 根轨迹分析 线性系统频域分析 多变量系统的频域分析
如果系统中所有的状态都是可控的,则称该系 统为完全可控的系统。 系统的可控性就是指系统内部的状态是不是可 以由外部输出信号控制的性质
控制系统仿真与CAD 国家级精品课程
2014-12-31
20/139
线性系统的可控性判定
可控性判定矩阵
若矩阵 为满秩矩阵,则系统完全可控 基于 MATLAB 的判定方法
控制系统仿真与CAD 国家级精品课程
2014-12-31
43/139
离散系统的范数定义
范数的 MATLAB 求解
控制系统仿真与CAD 国家级精品课程
2014-12-31
44/139
例5-9 已知离散系统模型
控制系统仿真与CAD 国家级精品课程
2014-12-31
45/139
5-1 系统性质分析小结
控制系统仿真与CAD 国家级精品课程
2014-12-31
14/139
判定的 MATLAB 函数
内部稳定返回0,内部不稳定但输入输出稳定返 回1,否则返回2
控制系统仿真与CAD 国家级精品课程
2014-12-31
15/139
5.1.3 线性系统的线性相似变换
系统的状态方程表示称为系统实现 不同状态选择下,状态方程不唯一 相似变换
控制系统仿真与CAD
第五章 线性控制系统的计算机辅助分析
东北大学信息学院 薛定宇
控制系统仿真与CAD 国家级精品课程
2014-12-31
1/139
本章主要内容
线性系统定性分析 线性系统时域响应解析解法 线性系统的数字仿真分析 根轨迹分析 线性系统频域分析 多变量系统的频域分析
如果系统中所有的状态都是可控的,则称该系 统为完全可控的系统。 系统的可控性就是指系统内部的状态是不是可 以由外部输出信号控制的性质
控制系统仿真与CAD 国家级精品课程
2014-12-31
20/139
线性系统的可控性判定
可控性判定矩阵
若矩阵 为满秩矩阵,则系统完全可控 基于 MATLAB 的判定方法
控制系统仿真与CAD 国家级精品课程
2014-12-31
43/139
离散系统的范数定义
范数的 MATLAB 求解
控制系统仿真与CAD 国家级精品课程
2014-12-31
44/139
例5-9 已知离散系统模型
控制系统仿真与CAD 国家级精品课程
2014-12-31
45/139
5-1 系统性质分析小结
控制系统仿真与CAD 国家级精品课程
2014-12-31
14/139
判定的 MATLAB 函数
内部稳定返回0,内部不稳定但输入输出稳定返 回1,否则返回2
控制系统仿真与CAD 国家级精品课程
2014-12-31
15/139
5.1.3 线性系统的线性相似变换
系统的状态方程表示称为系统实现 不同状态选择下,状态方程不唯一 相似变换
8.系统分析的状态变量法_信号与系统
8 系统分析的状态变量法
8.2.1 连续时间系统状态方程的建立
一个动态连续系统的时域数学模型可利用信号 的各阶导数来描述。 的各阶导数来描述 。 作为连续系统的状态方程表现 为状态变量的联立一阶微分方程组. 为状态变量的联立一阶微分方程组 标准形式的状态方程为
或记为
8 系统分析的状态变量法 表示状态变量, 式中 表示状态变量, 为常数矩阵。 和 为常数矩阵。 是与外加信号有关的项, 是与外加信号有关的项,
8 系统分析的状态变量法 6.状态轨迹 在描述一个动态系统的状态空间中, 在描述一个动态系统的状态空间中,状态向 量的端点随时间变化所经历的路径称为系统的状 态轨迹。一个动态系统的状态轨迹不仅取决于系 态轨迹。 统的内部结构,还与系统的输入有关,因此, 统的内部结构,还与系统的输入有关,因此,系 统的状态轨迹可以形象地描绘出在确定的输入作 用下系统内部的动态过程。 用下系统内部的动态过程。
8 系统分析的状态变量法 【例】 试写出下图所示电路的状态方程。 试写出下图所示电路的状态方程。
ቤተ መጻሕፍቲ ባይዱ
根据电路结构可知,电容电压、 根据电路结构可知,电容电压、电感电流 可作为为状态变量即 . 建立状态变量 之间的方程为 和激励
8 系统分析的状态变量法 状态变量分析法优点: 状态变量分析法优点: (1)便于研究系统内部物理量的变化 (1)便于研究系统内部物理量的变化 (2)适合于多输入多输出系统 (2)适合于多输入多输出系统 (3)也适用于非线性系统或时变系统 (3)也适用于非线性系统或时变系统 (4)便于分析系统的稳定性 (4)便于分析系统的稳定性 (5)便于采用数字解法 便于采用数字解法, (5)便于采用数字解法,为计算机分析系统提供了 有效途径 (6)引出了可观测性和可控制性两个重要概念 引出了可观测性和可控制性两个重要概念。 (6)引出了可观测性和可控制性两个重要概念。
《现代控制理论基础》梁慧冰 孙炳达 1. 线性系统的状态空间描述修改
2、内部描述 、
由于六十年代以来,控制工程向复杂化、 由于六十年代以来,控制工程向复杂化、高性能 方向发展,所需利用的信息不局限于输入量、输出量、 方向发展,所需利用的信息不局限于输入量、输出量、 误差等,还需要利用系统内部的状态变化规律, 误差等,还需要利用系统内部的状态变化规律,加之 利用数字计算机技术进行分析设计及实时控制,因而 利用数字计算机技术进行分析设计及实时控制, 可能处理复杂的时变、非线性、 系统的问题, 可能处理复杂的时变、非线性、MIMO系统的问题, 系统的问题 但传递函数法在这新领域的应用受到很大限制。 但传递函数法在这新领域的应用受到很大限制。于是 需要用新的对系统内部进行描述的新方法: 需要用新的对系统内部进行描述的新方法:状态空间 分析法。 分析法。
系统的外部描述 ⇒ 传递函数 系统的内部描述 ⇒ 状态空间描述
3
1、外部描述 、
经典控制理论中, 经典控制理论中,系统一般可用常微分方程在时域 内描述,对复杂系统要求解高阶微分方程, 内描述,对复杂系统要求解高阶微分方程,这是相当困 难的。 难的。 经典控制理论中采用拉氏变换法在复频域内描述系 得到联系输入-输出关系的传递函数 输出关系的传递函数, 统,得到联系输入 输出关系的传递函数,基于传递函数 设计SISO系统极为有效,可从传递函数的零点、极点分 系统极为有效, 设计 系统极为有效 可从传递函数的零点、 布得出系统定性特性, 布得出系统定性特性,并已建立起一整套图解分析设计 至今仍得到广泛成功地应用。 法,至今仍得到广泛成功地应用。 但传递函数对系统是一种外部描述, 但传递函数对系统是一种外部描述,它不能描述处 于系统内部的运动变量;且忽略了初始条件。 于系统内部的运动变量;且忽略了初始条件。因此传递 4 函数不能包含系统的所有信息。 函数不能包含系统的所有信息。
第二章现代控制理论状态空间表达式
diL R1 R1 R2 R2 = uC − iL + e(t ) dt L( R1 + R2 ) L( R1 + R2 ) L( R1 + R2 )
即
(2-11)
(3) 列出状态空间描述iL 1 − ( R + R )C 1 2 R1 L( R1 + R2 ) − R1 1 ( R1 + R2 )C uC ( R1 + R2 )C (2-12) + e(t ) R1 R2 iL R2 − L( R + R ) L( R1 + R2 ) 1 2
§2.1 状态空间描述的概念 2.1.2 控制系统的状态空间描述举例
例2-1 R-L-C系统,求其状态空间描述
R
u
L i
C
uC
解 (1) 确定状态变量 选择电容两端电压 uC (t )、电感通过的电流 i (t ) (2) 列写微分方程并化为一阶微分方程组 基尔霍夫(Kirchhoff)电压定律,
(2-13)
令
1 − ( R + R )C 1 2 A= R1 L( R + R ) 1 2
1 ( R + R )C 2 b= 1 R2 L( R + R ) 1 2
−
R1 ( R1 + R2 )C R1 R2 − L( R1 + R2 )
n 维列向量,状态向量
a12 a1n a22 a2 n an 2 ann
n×n方阵,系统矩阵(或状态矩阵), 反映系统状态的内在联系
§2.1 状态空间描述的概念
即
(2-11)
(3) 列出状态空间描述iL 1 − ( R + R )C 1 2 R1 L( R1 + R2 ) − R1 1 ( R1 + R2 )C uC ( R1 + R2 )C (2-12) + e(t ) R1 R2 iL R2 − L( R + R ) L( R1 + R2 ) 1 2
§2.1 状态空间描述的概念 2.1.2 控制系统的状态空间描述举例
例2-1 R-L-C系统,求其状态空间描述
R
u
L i
C
uC
解 (1) 确定状态变量 选择电容两端电压 uC (t )、电感通过的电流 i (t ) (2) 列写微分方程并化为一阶微分方程组 基尔霍夫(Kirchhoff)电压定律,
(2-13)
令
1 − ( R + R )C 1 2 A= R1 L( R + R ) 1 2
1 ( R + R )C 2 b= 1 R2 L( R + R ) 1 2
−
R1 ( R1 + R2 )C R1 R2 − L( R1 + R2 )
n 维列向量,状态向量
a12 a1n a22 a2 n an 2 ann
n×n方阵,系统矩阵(或状态矩阵), 反映系统状态的内在联系
§2.1 状态空间描述的概念
现代控制理论 王孝武
建立方程:
L
di(t dt
)
Ri(t
)
uC
(t
)
u(t
)
i C duC (t) dt
初始条件:
i(t) t t0
i(t0 )
uC (t) tt0 uC (t0 )
i(t) 和 uC (t) 可以表征该电路系统的行为,就是该系统的一组状态
变量
9
1.1.2 状态空间表达式
前面电路的微分方程组可以改写如下,并且写成矩阵形式:
本章内容为:
1、状态空间表达式 2、由微分方程求出系统状态空间表达式 3、传递函数矩阵 4、离散系统的数学模型 5、线性变换 6、组合系统的数学描述 7、利用MATLAB进行模型之间的变换
7
1.1 状态空间表达式
1.1.1 状态、状态变量和状态空间 状态——动态系统的状态是一个可以确定该系统行为的信息集合。 这些信息对于确定系统未来的行为是充分且必要的。
(一)待定系数法 首先考察三阶系统,其微分方程为
y a2 y a1 y a0 y b3u b2u b1u b0u
选择状态变量: x1 y 0u x2 y 0u 1u x1 1u x3 y 0u 1u 2u x2 2u
其中,待定系数为: 0 b3 1 b2 a20 2 b1 a10 a21 2 b0 a00 a11 a22
) 2
( sin
)
线性化:当 和 较小时 ,有 sin cos 1 2 0
化简后,得
(M m)y ml u
my ml mg
求解得: y mg 1 u MM
(M m)g 1 u
Ml
Ml
21
选择状态变量 x1 y ,x2 x1 y ,x3 ,x4 x3