二项式定理知识点总结

合集下载

《二项式定理》知识点总结+典型例题+练习(含答案)

《二项式定理》知识点总结+典型例题+练习(含答案)

二项式定理考纲要求1.了解二项式定理的概念.2.二项展开式的特征及其通项公式.3.会区别二项式系数和系数.4.了解二项式定理及简单应用,并运用二项式定理进行有关的计算和证明. 知识点一:二项式定理设a , b 是任意实数,n 是任意给定的正整数,则0011222333110()n n n n n m n m m n n n nn n n n n n n a b C a b C a b C a b C a b C a b C ab C a b------+=++++⋅⋅⋅++⋅⋅⋅++这个公式所表示的定理叫做二项式定理,其中右边的多项式叫的二项式展开式,每项的0n C ,1n C , 2n C ⋅⋅⋅ n n C 叫做该项的二项式系数.注意:二项式具有以下特征:1.展开式中共有1n +项,n 为正整数.2.各项中a 与b 的指数和为n ,并且第一个字母a 依次降幂排列,第二个字母b 依次升幂排列.3.各项的二项式系数依次为0n C , 1n C , 2n C ⋅⋅⋅ nn C . 知识点二:二项展开式通项公式二项展开式中的m n m mn C a b -叫做二项式的通项, 记作 1m T +. 即二项展开式的通项为 1m n m mm n T C a b -+=.注意:该项为二项展开式的第1m +项,而不是第m 项. 知识点三:二项式系数的性质二项式展开式的二项式系数是0n C , 1n C , 2n C ⋅⋅⋅ nn C .1.在二项展开式中,与首末两端距离相等的两项的二项式系数相等,即m n mn n C C -=.2.如果二项式()na b +的幂指数n 是偶数,那么它的展开式中间一项的二项式系数最大即12n+项的二项式系数最大. 3.如果二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.4.二项式()na b +的展开式中,所有二项式系数的和为01232m nn n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=.5.二项式()na b +的展开式中奇数项和偶数项的二项式系数和相等即02413512n n n n n n n C C C C C C -+++⋅⋅⋅=+++⋅⋅⋅=.知识点四:二项式系数与系数的区别 1.二项展开式中各项的二项式系数: mn C .2.二项展开式中各项的系数:除了字母外所有的数字因数的积. 题型一 二项式定理 例1 求51(2)x x-的展开式. 分析:熟记二项式定理.解答:51(2)x x-=05014123232355551111(2)()(2)()(2)()(2)()C x C x C x C x x x x x -+-+-+-4145055511(2)()(2)()C x C x x x+-+-533540101328080x x x x x x=-+-+-题型二 二项展开式通项公式 例2 求91(3)9x x+的展开式中第3项. 分析:灵活运用通项公式. 解答:272532191(3)()9729T T C x x x+===, 所以第3项为5972x . 题型三 二项式系数的性质例3 求7(2)x +的展开式中二项式系数最大的项.分析:根据二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.先求出二项式最大项的项数,再利用通项公式计算.解答:由于7为奇数,所以第4项和第5项的二项式系数最大.即3733343172560T T C x x -+=== 4744454172280T T C x x -+===题型四 二项式系数与系数的区别例4 二项式9(12)x -的二项式系数之和为 . 分析:二项式()na b +的展开式中,所有二项式系数的和为01232m n n n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=。

6.3.1二项式定理课件(人教版)

6.3.1二项式定理课件(人教版)
在二项式定理中,若设a=1,b=x,则得到公式
(1 x) C C x C x
n
0
n
1
n
2 2
n
C x
k k
n
C x
n n
n
学习目标
新课讲授
课堂总结
知识点二:二项式定理的应用
1 6
(
x

) 的展开式.
例1 求
x
解:根据二项式定理,
1 6
( x ) ( x x 1 )6
学习目标
课堂总结
新课讲授
项的系数:
an
项是从n个因式中都不取b,有C n0 种;
n 1
项是从n个因式中取1个b,有C n1 种;
a b
a
a
n2
nk
b
2
项是从n个因式中取2个b,有C n2 种;
……
b
k
项是从n个因式中取k个b,有C nk 种;
……
bn
项是从n个因式中都取b,有C nn 种.
1 n 1
6.3.1 二项式定理
学习目标
新课讲授
课堂总结
1.能用多项式法则和计数原理推导二项式定理,会用二项式
定理求解二项展开式.
2.理解二项式定理,会利用定理解决与二项式有关的简单问
题.
学习目标
新课讲授
课堂总结
知识点一:二项式定理的推导
已知,
(a b)2 a 2 2ab b 2 ,
(a b)3 a3 3a 2b 3ab 2 b3 .
新课讲授
课堂总结
例2 (1) 求(1+2x)7的展开式的第4项的系数;

二项式定理知识点总结

二项式定理知识点总结

二项式定理一、二项式定理:ab n CaCabCabCb0n1n1knkknnnnnn (nN)等号右边的多项式叫做nab的二项展开式,其中各项的系数kC(k0,1,2,3n)叫做二项式系数。

n对二项式定理的理解:(1)二项展开式有n1项(2)字母a按降幂排列,从第一项开始,次数由n逐项减1到0;字母b按升幂排列,从第一项开始,次数由0逐项加1到n(3)二项式定理表示一个恒等式,对于任意的实数a,b,等式都成立,通过对a,b取不同的特殊值,可为某些问题的解决带来方便。

在定理中假设a1,bx,则nCxCxCxCx1x(nN)nnnn0n1knknn(4)要注意二项式定理的双向功能:一方面可将二项式nab展开,得到一个多项式;n 另一方面,也可将展开式合并成二项式ab二、二项展开式的通项:knkk T k1Cabn二项展开式的通项knkkT k1Cab(k0,1,2,3n)是二项展开式的第k1项,它体现了n二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用对通项knkkT k1Cab(k0,1,2,3n)的理解:n(1)字母b的次数和组合数的上标相同(2)a与b的次数之和为n(3)在通项公式中共含有a,b,n,k,Tk这5个元素,知道4个元素便可求第5个元素1例1.132933等于()n1nC n CCCnnnA.n4B。

n4n34C。

13D.n431例2.(1)求7(12x)的展开式的第四项的系数;(2)求19(x)x的展开式中3x的系数及二项式系数三、二项展开式系数的性质:①对称性:在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即 0n1n12n2knk C n C,CC,C C,CCnnnnnnn,②增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值。

高考数学总复习考点知识专题讲解9 二项式定理

高考数学总复习考点知识专题讲解9 二项式定理

高考数学总复习考点知识专题讲解专题9 二项式定理知识点一 二项式定理(a +b )n =C 0n a n +C 1n a n -1b +C 2n a n -2b 2+…+C k n a n -k b k +…+C n n b n (n ∈N *).(1)这个公式叫做二项式定理.(2)展开式:等号右边的多项式叫做(a +b )n 的二项展开式,展开式中一共有n +1项. (3)二项式系数:各项的系数C kn (k ∈{0,1,2,…,n })叫做二项式系数. 知识点二 二项展开式的通项(a +b )n 展开式的第k +1项叫做二项展开式的通项,记作T k +1=C k n an -k b k . 【例1】(2023•上海)设423401234(12)x a a x a x a x a x -=++++,则04a a +=.【例2】(2022•上海)二项式(3)n x +的展开式中,2x 项的系数是常数项的5倍,则n =.【例3】(2021•浙江)已知多项式344321234(1)(1)x x x a x a x a x a -++=++++,则1a =;234a a a ++=.知识点三二项展开式的通项 求二项展开式的特定项的常用方法(1)对于常数项,隐含条件是字母的指数为0(即0次项).(2)对于有理项,一般是先写出通项公式,求其所有的字母的指数恰好都是整数的项.解这类问题必须合并通项公式中同一字母的指数,根据具体要求,令其属于整数集,再根据数的整除性来求解.(3)对于二项展开式中的整式项,其通项公式中同一字母的指数应是非负整数,求解方式与求有理项一致.【例4】(2022•新高考Ⅰ)8(1)()y x y x-+的展开式中26x y 的系数为(用数字作答).【例5】(2022•天津)523)x 的展开式中的常数项为.【例6】(2023•驻马店期末)若7102910012910(2)(1)(1)(1)(1)x x a a x a x a x a x +-=+-+-+⋯⋯+-+-,则5a =.【例7】(2023•海淀区模拟)已知5()x a +的展开式为5432543210p x p x p x p x p x p +++++,若3415p p -=,则a =.知识点四余数和整除的问题利用二项式定理可以解决求余数和整除的问题,通常需将底数化成两数的和与差的形式,且这种转化形式与除数有密切的关系.【例8】(2022秋•杨浦区校级期末)504除以17的余数为.【例9】(2023•沈阳模拟)若20232023012023(1)x a a x a x +=++⋯+,则0242022a a a a +++⋯+被5除的余数是.【例10】(2022•多选•庆阳期末)下列命题为真命题的是() A .61()x x -展开式的常数项为20B .1008被7除余1 C .61()x x-展开式的第二项为46x -D .1008被63除余1知识点五 二项式系数的性质1.对称性:在(a +b )n 的展开式中,与首末两端“等距离”的两个二项式系数相等,即C m n =C n -mn2.增减性与最大值 增减性:当k <n +12时,二项式系数是逐渐增大的;当k >n +12时,二项式系数是逐渐减小的. 最大值:(1)当n 为偶数时,中间一项的二项式系数2C n n最大;当n 为奇数时,中间两项的二项式系数12C n n-,12C n n+相等,且同时取得最大值(2)求二项式系数最大的项,根据二项式系数的性质对(a +b )n 中的n 进行讨论. ①当n 为奇数时,中间两项的二项式系数最大; ②当n 为偶数时,中间一项的二项式系数最大. (3)展开式中系数的最大项的求法求展开式中系数的最大项与求二项式系数最大项是不同的,需要根据各项系数的正、负变化情况进行分析.如求(a +bx )n (a ,b ∈R )的展开式中系数的最大项,一般采用待定系数法.设展开式中各项系数分别为A 0,A 1,A 2,…,A n ,且第k +1项最大,应用⎩⎨⎧A k ≥A k -1,A k ≥A k +1,解出k ,即得出系数的最大项. 3.各二项式系数的和(1)C 0n +C 1n +C 2n +…+C n n =2n ;(2)C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -14.二项展开式中系数和的求法(1)对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R ,m ,n ∈N *)的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可,对(ax +by )n (a ,b ∈R ,n ∈N *)的式子求其展开式的各项系数之和,只需令x =y =1即可.(2)一般地,若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1), 奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.【例11】(2022•北京)若443243210(21)x a x a x a x a x a -=++++,则024(a a a ++=) A .40B .41C .40-D .41-【例12】(2023•新乡开学)若二项式*(2()n x n N∈的展开式中只有第5项的二项式系数最大,则展开式中2x 项的系数为() A .1120-B .1792-C .1792D .1120【例13】(2023•慈溪市期末)若二项式*(12)()n x n N +∈的展开式中第6项与第7项的系数相等,则此展开式中二项式系数最大的项是() A .3448x B .41120x C .51792x D .61792x【例14】(2022秋•葫芦岛期末)设n ∈N +,化简=+++-12321666n n n n n n C C C C ( )A .7nB .C .7n ﹣1D .6n ﹣1【例15】已知(2x -1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5.求下列各式的值:(1)a 0+a 1+a 2+…+a 5;(2)|a 0|+|a 1|+|a 2|+…+|a 5|;(3)a 1+a 3+a 5.(4)a 0+a 2+a 4;(5)a 1+a 2+a 3+a 4+a 5; (6)5a 0+4a 1+3a 2+2a 3+a 4.【例16】(2023•泰州期末)若6652360136()x y a y a xy a x y a x +=++⋯++⋯+,则220246135()()a a a a a a a +++-++的值为()A .0B .32C .64D .128【例17】(2023•静安区期末)在23(3)nx x -+的二项展开式中,533r n r n rnC x--称为二项展开式的第1r +项,其中0r =,1,2,3,⋯,n .下列关于23(3)nx x -+的命题中,不正确的一项是()A .若8n =,则二项展开式中系数最大的项是1426383C xB .已知0x >,若9n =,则二项展开式中第2项不大于第3项的实数x 的取值范围是3540()3x <…C .若10n =,则二项展开式中的常数项是44103C D .若27n =,则二项展开式中x 的幂指数是负数的项一共有12项 【例18】(2023秋•泰兴市月考)设*n N ∈,0101(1)(1)(2)(2)n n n n n x a a x a x b b x b x =+-++-=+-++-,则()A .001132n n n n b a b a b a -+-++-=-B .0101012()nn nb b b a a a a a a +++=+++ C .0101111()211n n a a a a a a n n +++=+++++D .21201(1)4()4n n n n b b n b a a a ++++=+++【例19】(2023•江宁区期末)二项式定理是产生组合恒等式的一个重要源泉,由二项式定理可得:0122*1111(1)(,),1n nn m mn n n n n n C C x C x C x x n N x R C C m n -+++++=+∈∈=+等,则012111231nn n n n C C C C n ++++=+.【例20】(2022•玄武区期末)在231(1)(1)(1)n x x x +++++⋯++的展开式中,含2x 的系数是n a ,8a =;若对任意的*n N ∈,*n N ∈,20n n a λ⋅-…恒成立,则实数λ的最小值是.【例21】(2019•江苏)设2012(1)n n n x a a x a x a x +=+++⋯+,4n …,*n N ∈.已知23242a a a =.(1)求n 的值;(2)设(1n a =+a ,*b N ∈,求223a b -的值.同步训练1.(2021•上海)已知二项式5()x a +展开式中,2x 的系数为80,则a =.2.(2021•上海)已知(1)n x +的展开式中,唯有3x 的系数最大,则(1)n x +的系数和为.3.(2020•浙江)二项展开式52345012345(12)x a a x a x a x a x a x +=+++++,则4a =,135a a a ++=.4.(2020•新课标Ⅲ)262()x x+的展开式中常数项是(用数字作答).5.(2020•天津)在522()x x+的展开式中,2x 的系数是.6.(2023•郫都区模拟)已知921001210(1)(1)x x a a x a x a x --=+++⋯+,则8a =45-.7.(2020•新课标Ⅰ)25()()y x x y x++的展开式中33x y 的系数为()A .5B .10C .15D .208.(2023•湖北模拟)51(1)(12)x x+-的展开式中,常数项是() A .9-B .10-C .9D .109.(2023•曲靖模拟)已知4520222023(1)(12)(12023)(12022)x x x x -++++-展开式中x 的系数为q ,空间有q 个点,其中任何四点不共面,这q 个点可以确定的直线条数为m ,以这q 个点中的某些点为顶点可以确定的三角形个数为n ,以这q 个点中的某些点为顶点可以确定的四面体个数为p ,则(m n p ++=) A .2022B .2023C .40D .5010.(2023•徐汇区期末)1002被9除所得的余数为() A .1B .3C .5D .711.已知f (x )=(3x 2+3x 2)n 的展开式中各项的系数和比各项的二项式系数和大992. (1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.12(2023•河源期末)5(21)x y --的展开式中含22x y 的项的系数为() A .120-B .60C .60-D .3013.(2023•怀化期末)已知10111012n n C C =,设2012(23)(1)(1)(1)n n n x a a x a x a x -=+-+-+⋯+-,下列说法:①2023n =,②20233n a =-,③0121n a a a a +++⋯+=,④展开式中所有项的二项式系数和为1.其中正确的个数有() A .0B .1C .2D .314(2023•青原区期末)若28(1)(1)ax x x -+-的展开式中含2x 的项的系数为21,则(a =) A .3-B .2-C .1-D .115.(2023•常熟市月考)今天是星期五,经过7天后还是星期五,那么经过1008天后是()A .星期三B .星期四C .星期五D .星期六16.(2023•南海区月考)已知012233222281n n n nn n n C C C C C +++++=,则123nn n n n C C C C ++++等于()A .15B .16C .7D .817.(2022•浙江)已知多项式42345012345(2)(1)x x a a x a x a x a x a x +-=+++++,则2a =,12345a a a a a ++++=.。

《二项式定理》 知识清单

《二项式定理》 知识清单

《二项式定理》知识清单一、二项式定理的定义对于任意正整数 n,有\((a + b)^n = C_{n}^0 a^n + C_{n}^1 a^{n 1}b + C_{n}^2 a^{n 2}b^2 +\cdots + C_{n}^r a^{nr}b^r +\cdots + C_{n}^n b^n\)这就是二项式定理。

其中,各项的系数\(C_{n}^r\)(\(r = 0, 1, 2, \cdots, n\))叫做二项式系数,通项公式为\(T_{r + 1} = C_{n}^r a^{n r}b^r\)。

二、二项式系数的性质1、对称性与首末两端“等距离”的两项的二项式系数相等,即\(C_{n}^r =C_{n}^{n r}\)。

2、增减性与最大值当\(n\)是偶数时,中间一项\(C_{n}^{\frac{n}{2}}\)取得最大值;当\(n\)是奇数时,中间两项\(C_{n}^{\frac{n 1}{2}}\)和\(C_{n}^{\frac{n + 1}{2}}\)相等且同时取得最大值。

从函数角度看,二项式系数先单调递增,然后单调递减。

3、各二项式系数的和\((1 + 1)^n = 2^n = C_{n}^0 + C_{n}^1 + C_{n}^2 +\cdots + C_{n}^n\)\(C_{n}^0 + C_{n}^2 + C_{n}^4 +\cdots = C_{n}^1 +C_{n}^3 + C_{n}^5 +\cdots = 2^{n 1}\)三、二项展开式的通项公式通项公式\(T_{r + 1} = C_{n}^r a^{n r}b^r\)(\(r = 0, 1, 2, \cdots, n\))在求特定项、系数等问题中具有重要作用。

例如,求\((x + 2)^6\)展开式中\(x^3\)的系数。

首先,通项公式为\(T_{r + 1} = C_{6}^r x^{6 r} \times 2^r\)令\(6 r = 3\),解得\(r = 3\)所以\(x^3\)的系数为\(C_{6}^3 \times 2^3 = 20 \times 8 =160\)四、二项式定理的应用1、近似计算当\(n\)较大且\(|x|\)较小时,\((1 + x)^n \approx 1+ nx\)例如,计算\((1002)^{10}\),可近似看作\((1 + 0002)^{10} \approx 1 + 10 \times 0002 = 102\)2、整除与余数问题通过二项式定理将式子展开,分析各项系数来解决整除和余数问题。

二项式定理知识点总结

二项式定理知识点总结

二项式定理知识点总结二项式定理的陈述:对于任意正整数nnn和非负整数kkk,二项式(a+b)n(a+b)^n(a+b)n的展开式中的第k+1k+1k+1项可以表示为Tk+1=Cnk⋅an−k⋅bkT_{k+1} = C_n^k \cdot a^{n-k} \cdotb^kTk+1=Cnk⋅an−k⋅bk其中CnkC_n^kCnk表示从nnn个不同项中选取kkk个的组合数,即Cnk=n!k!(n−k)!C_n^k = \frac{n!}{k!(n-k)!}Cnk=k!(n−k)!n!2. 二项式展开的通项公式:二项式(a+b)n(a+b)^n(a+b)n的展开式的通项公式为Tr+1=Cnr⋅an−r⋅br,r=0,1,2,…,nT_{r+1} = C_n^r \cdot a^{n-r} \cdot b^r, \quad r=0,1,2,\ldots,nTr+1=Cnr⋅an−r⋅br,r=0,1,2,…,n3. 二项式系数的性质:* 对称性:$C_n^k = C_n^{n-k}$* 最大值:当$n$为偶数时,二项式系数在$k = \frac{n}{2}$时取得最大值;当$n$为奇数时,二项式系数在$k = \frac{n-1}{2}$和$k = \frac{n+1}{2}$时取得最大值。

* 帕斯卡三角形(Pascal's Triangle):二项式系数可以排列成一个三角形,称为帕斯卡三角形,每一行的数字是上一行相邻两个数字的和。

二项式定理的应用:二项式定理广泛应用于代数、组合数学、概率论和统计学等领域。

它常被用于计算二项式幂的展开式、求解组合问题、推导数列的通项公式等。

通过掌握二项式定理的知识点,可以更好地理解和应用二项式展开的相关概念和方法。

高中数学二项式定理知识点总结

高中数学二项式定理知识点总结一、二项式定理的概念和公式二项式定理是指两个数的整数次幂之和在展开时,任意一个数都可以拆开成两个数相乘的形式。

根据二项式定理,可以得到以下的公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²(a+b)³ = a³ + 3a²b + 3ab² + b³(a-b)³ = a³ - 3a²b + 3ab² - b³对于一般情况下的二项式展开,可以根据组合数的知识得出下列公式:(a+b)ⁿ = C(n,0) * aⁿ+ C(n,1) * aⁿ⁻¹b + C(n,2) * aⁿ⁻²b² + ... + C(n,n) * bⁿ其中,C(n,m)表示从n个元素中取m个元素的组合数。

二、二项式定理的应用1. 计算二项式的展开式利用二项式定理,可以将任意形式的二项式展开成为多项式,从而方便进行计算。

例如,对于 (x+2)³的展开式,根据二项式定理可以得到:(x+2)³ = x³ + 3x²*2 + 3x*2² + 2³= x³ + 6x² + 12x + 82. 求解组合数在概率论、统计学等领域中,经常需要计算组合数。

而组合数实际上就是二项式展开中的系数。

因此,通过二项式定理可以方便地求解组合数。

3. 计算二项式的特定项有时候并不需要将整个二项式展开,只需求解其中的某一项。

例如,对于(x+2)⁵ 的展开式,如果只需要求解其中x⁴ 的系数,可以直接利用二项式定理计算得出,而无需展开整个式子。

4. 解决数学问题在数学建模、求解等问题中,二项式定理也可以被广泛应用。

通过利用二项式定理,可以简化问题的表达和计算,从而更加方便地求解问题。

二项式定理八份

知识点一:二项式定理二项式定理:,其中:①公式右边的多项式叫做的二项展开式;②展开式中各项的系数叫做二项式系数;③式中的第r+1项叫做二项展开式的通项,用表示;二项展开式的通项公式为. 知识点二:二项展开式的特性①项数:有n+1项;②次数:每一项的次数都是n次,即二项展开式为齐次式;③各项组成:从左到右,字母a降幂排列,从n到0;字母b升幂排列,从0到n;④系数:依次为.知识点三:二项式系数的性质①对称性:二项展开式中,与首末两端“等距离”的两项的二项式系数相等②单调性:二项式系数在前半部分逐渐增大,在后半部分逐渐减小,在中间取得最大值.其中,当n为偶数时,二项展开式中间一项的二项式系数最大;当n为奇数时,二项展开式中间两项的二项式系数,相等,且最大.③二项式系数之和为,即其中,二项展开式中各奇数项的二项式系数之和等于各偶数项的二项式系数之和,即例1.求的展开式中分别符号下列条件的各项:(1)常数项(2)有理项(3)二项式系数最大项(4)系数绝对值最大的项例2.求的常数项.例3.求(x+2)10(x2-1)2的展开式中含x4的项.例4.已知.求(1)a0;(2)a20+a19+……+a1+a0;(3)a20+a18+a16+……+a2+a0.例5.试证:32n+2-8n-9(n∈N)能被64整除.例6.求0.9886的近似值,使误差小于0.001.课外练习:1.求(1-x)9展开式中系数最小的项.2.求(x+y+z)6的展开式中,含x3y2z项的系数值.3.化简.4.求(1+x)6(1-x)4的展开式中,x3的系数.5.若(63x+10y)73展开式中各项系数之和为A,(63x-10y)53展开式中各项项数之和为B,求A+B除以10所得余数.。

完整版)二项式定理知识点及典型题型总结

完整版)二项式定理知识点及典型题型总结二项式定理一、基本知识点1、二项式定理:(a+b)^n = C(n,0)a^n + C(n,1)a^(n-1)b +。

+ C(n,n)b^n (n∈N*)2、几个基本概念1)二项展开式:右边的多项式叫做(a+b)^n的二项展开式2)项数:二项展开式中共有n+1项3)二项式系数:C(n,r) = n!/r!(n-r)!4)通项:展开式的第r+1项,即T(r+1) = C(n,r) * a^(n-r) * b^r3、展开式的特点1)系数都是组合数,依次为C(n,1)。

C(n,2)。

…。

C(n,n)2)指数的特点①a的指数由n到0(降幂)。

②b的指数由0到n(升幂)。

XXX和b的指数和为n。

3)展开式是一个恒等式,a,b可取任意的复数,n为任意的自然数。

4、二项式系数的性质:1)对称性: 在二项展开式中,与首末两端等距离的任意两项的二项式系数相等.2)增减性与最值: 二项式系数先增后减且在中间取得最大值当n是偶数时,中间一项取得最大值C(n,n/2)当n是奇数时,中间两项相等且同时取得最大值C(n,(n-1)/2)C(n-1.m) = C(n。

m) + C(n。

m-1)C(n,0) + C(n,1) +。

+ C(n,n) = 2^n3)二项式系数的和:奇数项的二项式系数的和等于偶数项的二项式系数和.即 C(n,0) - C(n,2) + C(n,4) -。

= 2^(n-1)二项式定理的常见题型一、求二项展开式1.“(a+b)^n”型的展开式例1.求(3x+2y)^42.“(a-b)^n”型的展开式例2.求(3x-2y)^43.二项式展开式的“逆用”例3.计算1-3C(n,1) + 9C(n,2) - 27C(n,3) +。

+(-1)^n*3nC(n,n)二、通项公式的应用1.确定二项式中的有关元素例4.已知((-ax)/(9x^2+1))^9的展开式中x^3的系数为9,常数a的值为1/32.确定二项展开式的常数项例5.(x-3/x)^10展开式中的常数项是2433.求单一二项式指定幂的系数例6.(x^2-3y)^6中x^3y^3的系数为-540三、求几个二项式的和(积)的展开式中的条件项的系数例7.(x-1)^-1(x-1)^2(x-1)^3(x-1)^4(x-1)^5的展开式中,x^2的系数等于-101.展开式中,求(x-2)(x^2+1)^7展开式中x^3的系数。

排列组合与二项式定理知识点精选全文

可编辑修改精选全文完整版§10. 排列组合二项定理 知识要点一、两个原理.1. 乘法原理、加法原理.2. 可.以有..重复..元素..的排列. 从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:nm 种)二、排列.1. ⑴对排列定义的理解.定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.⑵相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同.⑶排列数.从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ⑷排列数公式:),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--= 注意:!)!1(!n n n n -+=⋅ 规定0! = 1111--++=⋅+=m n m n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10==n n n C C 2. 含有可重元素......的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于!!...!!21k n n n n n =. 例如:已知数字3、2、2,求其排列个数3!2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1!3!3==n . 三、组合.1. ⑴组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.⑵组合数公式:)!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n-=+--== ⑶两个公式:①;m n n m n C C -= ②m n m n m n C C C 11+-=+①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有1m n 111m n C C C --=⋅一类是不含红球的选法有m n C )②根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-1个元素,所以有C 1-m n ,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C m n 种,依分类原理有m n m n m n C C C 11+-=+.⑷排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系. ⑸①几个常用组合数公式n n nn n n C C C 2210=+++ 11111121153142011112++--++++++-+=+==++=+++=+++kn k n k n kn m n m m n m m m m m m n n n n n n n n C n C k nC kC C C C C C C C C C C C②常用的证明组合等式方法例.i. 裂项求和法. 如:)!1(11)!1(!43!32!21+-=++++n n n (利用!1)!1(1!1n n n n --=-) ii. 导数法. iii. 数学归纳法. iv. 倒序求和法.v. 递推法(即用m n m n mn C C C 11+-=+递推)如:413353433+=+++n n C C C C C . vi. 构造二项式. 如:n n n n n n C C C C 222120)()()(=+++证明:这里构造二项式n n n x x x 2)1()1()1(+=++其中n x 的系数,左边为22120022110)()()(n n n n n n n n n n n n n nn n C C C C C C C C C C C +++=⋅++⋅+⋅+⋅-- ,而右边nn C 2= 五、二项式定理.1. ⑴二项式定理:n n n r r n r n n n n nn b a C b a C b a C b a C b a 01100)(+++++=+-- .展开式具有以下特点:① 项数:共有1+n 项;② 系数:依次为组合数;,,,,,,210n n r n n n n C C C C C③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开. ⑵二项展开式的通项.n b a )+(展开式中的第1+r 项为:),0(1Z r n r b a C T r r n r n r ∈≤≤=-+.⑶二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等;②二项展开式的中间项二项式系数.....最大. I. 当n 是偶数时,中间项是第12+n 项,它的二项式系数2nn C 最大; II. 当n 是奇数时,中间项为两项,即第21+n 项和第121++n 项,它们的二项式系数2121+-=n n n n C C 最大.③系数和:1314201022-=++=+++=+++n n n n n n n n n n n C C C C C C C C附:一般来说b a by ax n ,()(+为常数)在求系数最大的项或最小的项...........时均可直接根据性质二求解. 当11≠≠b a 或时,一般采用解不等式组11111(,+-+-+⎩⎨⎧≤≤⎩⎨⎧≥≥k k k k k k k k k k T A A A A A A A A A 为或的系数或系数的绝对值)的办法来求解.⑷如何来求n c b a )(++展开式中含r q p c b a 的系数呢?其中,,,N r q p ∈且n r q p =++把n n c b a c b a ])[()(++=++视为二项式,先找出含有r C 的项r r n r n C b a C -+)(,另一方面在r n b a -+)(中含有q b 的项为q p q r n q q r n q r n b a C b a C ----=,故在n c b a )(++中含r q p c b a 的项为r q p q r n r n c b a C C -.其系数为r r q p n p n q r n r n C C C p q r n q r n q r n r n r n C C --==---⋅-=!!!!)!(!)!()!(!!. 2. 近似计算的处理方法.当a 的绝对值与1相比很小且n 不大时,常用近似公式na a n +≈+1)1(,因为这时展开式的后面部分n n n n na C a C a C +++ 3322很小,可以忽略不计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二项式定理知识点总结
一、二项式的定义:
二项式是指两个数的和或差,可以用如下形式表示:
(a+b)^n或(a-b)^n
其中,a和b是常数,n是正整数,n称为指数。

二、二项式的展开:
1.二项式定理(加法形式):
(a+b)^n=C(n,0)a^nb^0+C(n,1)a^(n-1)b^1+C(n,2)a^(n-
2)b^2+...+C(n,n-2)a^2b^(n-2)+C(n,n-1)a^1b^(n-1)+C(n,n)a^0b^n
其中,C(n,k)表示从n个不同元素中取出k个元素的组合数,也称为二项系数。

2.二项式定理(减法形式):
(a-b)^n=C(n,0)a^nb^0-C(n,1)a^(n-1)b^1+C(n,2)a^(n-2)b^2-...+(-1)^(n-2)C(n,n-2)a^2b^(n-2)-(-1)^(n-1)C(n,n-1)a^1b^(n-1)+(-1)^nC(n,n)a^0b^n
注意,在减法形式的展开中,减号和负号交替出现。

三、二项式的性质:
1.二项式展开的项数为n+1个;
2.二项式展开的项之和为2^n;
3.二项式展开式中各项的指数和为n;
4.二项式展开式中各项的系数为C(n,k)。

四、二项式系数的计算:
使用组合数的性质可以计算二项系数:
C(n,k)=n!/(k!*(n-k)!)
其中,!表示阶乘。

五、二项式定理的应用:
另外,二项式展开还可以用于解决数学中的各种问题,如排列组合、概率论、代数等等。

在组合数学中,二项式系数有很多应用,例如计算排列数、二项式系数的性质等。

六、帕斯卡三角形与二项式系数:
帕斯卡三角形是由二项式系数构成的一种数列,其性质如下:
1.三角形的第n行有n+1个数;
2.三角形的边界数都是1;
3.三角形的每个数等于它上方两个数之和;
4.三角形的第n行第k个数等于C(n,k)。

通过帕斯卡三角形可以方便地计算二项系数,也可以获得二项式展开的各项系数。

综上所述,二项式定理是数学中的重要概念,它描述了二项式的展开形式,可以方便地计算逐项系数和整个展开式。

在数学的各个分支中,二
项式定理都有广泛的应用,特别是在组合数学中。

因此,熟练理解和掌握二项式定理对于深入理解和应用数学知识非常重要。

相关文档
最新文档