第五章横向分布系数计算例
人群荷载 横向分布系数

人群荷载横向分布系数摘要:1.人群荷载的定义2.横向分布系数的作用3.横向分布系数的计算方法4.横向分布系数的应用实例正文:1.人群荷载的定义人群荷载是指在某一时间段内,某一地点或区域所承受的人流量。
在城市规划、交通管理等领域,对人群荷载的研究和分析具有重要意义。
通过对人群荷载的统计和分析,可以为城市基础设施建设、交通路线规划以及公共安全管理提供科学依据。
2.横向分布系数的作用在人群荷载的研究中,横向分布系数是一个关键参数。
横向分布系数(Lateral Distribution Coefficient)是用来描述人群在通过某一区域时,人流量在横向上的分布情况。
它可以反映出不同时间、不同地点的人流量分布规律,对于优化交通设施布局、提高道路通行能力具有重要作用。
3.横向分布系数的计算方法横向分布系数的计算通常基于大量的实地观测数据。
具体计算方法如下:首先,根据实地观测数据,统计出某一时间段内通过某一区域的总人流量。
其次,根据人流量在横向上的分布情况,计算出各个时间段内的人流量分布系数。
最后,对各个时间段的人流量分布系数进行平均,得到横向分布系数。
4.横向分布系数的应用实例横向分布系数在城市规划、交通管理等领域具有广泛的应用。
以下是一些具体的应用实例:(1)优化交通设施布局:通过对横向分布系数的研究,可以发现人流量在横向上的分布规律,从而为地铁、公交等交通设施的布局提供依据。
(2)提高道路通行能力:根据横向分布系数,可以合理设置道路的宽度、车道数量等参数,以提高道路的通行能力。
(3)公共安全管理:了解人群荷载和横向分布系数,可以为大型活动、紧急事件等场景中的公共安全管理提供参考。
总之,人群荷载和横向分布系数是城市规划、交通管理等领域中重要的研究参数。
横向分布系数

横向分布系数荷载横向分布系数:表示某根主梁所承担的最大荷载占各个轴重的倍数。
为使荷载横向分布的计算能更好地适应各种类型的结构特性,就需要按不同的横向结构简化计算模型拟定出相应的计算方法。
目前最常用的几种方法:杠杆原理法:把横向结构(桥面板和横隔梁)视作在主梁上断开而简支在其上的简支梁。
适用于双主梁桥、荷载位于靠近主梁支点处。
偏心压力法:把横隔梁视作刚性极大的梁,故又称刚性横梁法。
当计及主梁抗扭刚度影响时此法又称为修正偏心压力法(修正刚性横梁法)。
适用于窄桥(宽跨比B /l 小于或接近0.5的情况)。
G-M 法:由比拟正交异性板法发展而来,能利用计算机工具或编就的计算图表得出相对来说比较精确的结果。
此法概念明确,计算简捷,对于各种桥面净空宽度和多种荷载组合的情况,可以很快的求出各片主梁的相应内力值。
例:如图所示桥梁横断面,在公路-Ⅰ级荷载作用下,分别用杠杆原理法和偏心压力法求①和②号梁的荷载横向分布系数。
杠杆原理法:首先在①号梁和②号梁横向影响线上,按最不利方式布载,如图所示:①号梁:11900180011219002m −=×+× 11110.0530.521922=×+≈×+ 0.5265= ②号梁:1190018001119001300121900221900m −−=×+×+× 1111611 10.0530.50.316219221922=×+×+×≈×++× 0.6845=偏心压力法:首先画①号梁和②号梁横向影响线,那就要先找到其影响线的两个控制竖标值,由于各主梁的截面均相同,故可按下式计算:()()()()()()422222212341122222221112122114212121 1.5 1.90.5 1.90.5 1.9 1.5 1.918.05m 1.5 1.911=0.250.450.7418.051.5 1.911=0.250.450.2418.051=n ii i i n ii n i i i a a a a a a a n a a n a a a n a ηηη=====+++=×+×+−×+−×=×+=+=+=×−=−=−=−×+∑∑∑∑()()()()212424210.5 1.9 1.5 1.910.250.150.4418.050.5 1.9 1.5 1.911=0.250.150.1418.05n i ni i a a n aη==×××=+=+=××××−=−=−=∑∑然后在①号梁和②号梁横向影响线上,按最不利方式布载,如图所示:①号梁:()10.7160.4320.2260.508=0.6582m =×++− ②号梁:()10.4050.3110.2420.147=0.55252m =×+++ 荷载横向分布系数延桥垮的变化:通常用“杠杆原理法”来计算荷载位于支点处的横向分布系数m 0,其他方法均适用于计算荷载位于跨中的横向分布系数m c 。
2-5-3横向分布系数

2(1+γ+β)g1-(1-γ)g2=1 -(1-γ)g1+2(1+γ+β)g2-(1-γ)g3=0 -(1-γ)g2+2(1+γ+β)g3-(1-γ)g4=0 -(1-γ)g3+2(1+γ+β)g4=0
(2-5-56)
可知:只要定了γ和β,其它步骤完全同铰接板。 值得注意的是:当悬臂不长(在0.7~0.8m左右)和跨度L≥10m 时,参数γ一般比β值显著要大(β/(1+γ)不足5﹪),因而在不 影响计算精度的条件下,可忽略β的影响而直接利用铰接板桥的计 算用表(附录I)以简化铰接梁桥的计算。
图2-5-18
图2-5-19
图2-5-20
对于荷载位于主梁支点时,一般采用杠杆法求解 是偏于安全的。对于无中间横隔梁的桥梁,用杠杆法 算的 对中间主梁将偏大,对边梁则偏小,对于无横隔 梁的装配式箱梁,求横向影响线时,可假定箱梁的竖 坐标值为1。
2.3 杆杠法求横向分布系数步骤 ① 作出每根主梁的反力影响线。 注意:ⅰ 靠边的悬臂板和1#梁板联成一体; ⅱ 由对称性只需作桥中线左(右)任一侧各主梁的影响线。 ② 对每根主梁进行影响线最不利荷载布载.[参见P38,图1-4-2 及图1-4-3] 注意: ⅰ汽车外轮至人行道边缘距离最小为0.5米,挂车为1米; ⅱ按最不利布载,一般将一个轮放在影响线最大位置。 ③ 按杆杠分配计算出荷载对应的影响线竖标。 ④ 计算横向分布系数mc ⑤ 比较每根mc,取最大值mcmax作为控制设计。
图2-5-22
3.3计算方法(偏心压法求横向分布系数的公式推导) ① 求每根主梁的反力计算公式 ⅰ 偏载分解 相当于偏心受压构件 P
空心板横向分布系数

空心板横向分布系数
空心板的横向分布系数(also known as the flexural distribution factor or shear distribution factor)是指在横向荷载作用下,板
的弯矩或剪力在截面内的分布情况。
横向分布系数是根据板的几何形状和材料特性来计算的。
对于矩形横断面的空心板,横向分布系数可以通过以下公式计算:
α = 1 - 0.4 × (h/d)
其中,α为横向分布系数,h为板的高度,d为内缘边距离。
横向分布系数的值范围从0到1,其中1表示均匀分布,0表
示完全集中在板的内侧边缘。
横向分布系数的值对于确定板的设计弯矩或剪力分配至关重要。
较高的横向分布系数表示板对荷载的弯矩或剪力在截面内更均匀地分布,从而减小了构件的局部破坏风险。
需要注意的是,横向分布系数仅适用于符合一定几何条件的空心板,并且基于假设材料的弹性行为。
在实际设计中,仍需根据具体情况和施工要求进行结构分析和验证。
桥梁荷载横向分布系数计算方法

桥梁荷载横向分布系数计算方法桥梁是交通系统中重要的基础设施,承载着大量的车辆和行人荷载。
桥梁荷载横向分布系数的计算对于桥梁设计和施工具有重要意义。
本文将详细介绍桥梁荷载横向分布系数的计算方法,包括计算原理、步骤和注意事项,并通过具体算例进行分析和说明。
桥梁荷载是指作用在桥梁上的各种力量,包括车辆荷载、人群荷载、风荷载等。
横向分布系数是用来描述桥梁荷载在桥面横向分布的系数,其大小与桥梁的形状、结构形式等因素有关。
桥梁荷载横向分布系数的计算是桥梁设计的重要环节,也是施工过程中的关键步骤。
计算桥梁荷载横向分布系数的方法可以分为理论计算和数值模拟两种。
理论计算方法包括集中力作用下的横向分布系数计算和均布力作用下的横向分布系数计算。
数值模拟方法则是利用计算机进行模拟分析,得到更精确的横向分布系数。
根据集中荷载作用下的弯矩和剪力,计算横向分布系数。
根据车道均布荷载的弯矩和剪力,计算横向分布系数。
数值模拟方法可以利用有限元软件进行模拟分析,得到更精确的横向分布系数。
具体步骤如下:通过对模型的应力、应变等进行分析,得出横向分布系数。
下面通过一个简单的算例来说明桥梁荷载横向分布系数的计算方法。
该桥梁为简支梁结构,跨度为20米,桥面宽度为10米。
车辆荷载为50吨的重车,速度为20公里/小时,作用在桥上长度为10米。
通过集中力作用下的横向分布系数计算方法,来计算该桥梁的横向分布系数。
计算桥梁单位长度的自重为5吨/米。
然后,确定车辆荷载的大小为50吨,位置为桥面中心线偏左1米处。
根据车辆荷载作用下的弯矩和剪力,可以得出横向分布系数为67。
根据横向分布系数的定义可知,该桥梁在车辆荷载作用下的横向分布系数为67。
桥梁荷载横向分布系数的计算是桥梁设计和施工中的重要环节,对于保证桥梁的安全性和正常使用具有重要意义。
本文详细介绍了桥梁荷载横向分布系数的计算方法,包括计算原理、步骤和注意事项,并通过具体算例进行了分析和说明。
随着计算机技术和数值模拟方法的发展,未来的研究方向将更加倾向于开发更加精确、便捷的计算方法和模型,以便更好地应用于实际工程中。
桥梁横向分布系数计算 63页PPT文档

第二章 简支板、梁桥-3
15
无横隔梁装配式箱梁桥的 主梁横向影响线
第二章 简支板、梁桥-3
16
计按 算杠 横杆 向原 分理 布 系 数
a)
Por 1
Pr
人群
a
2
挂车 汽车
ηr Aη
1号梁η 1
3
4
mog= 41∑η g moq= 21∑η q
mor=η r
b)
2号梁η
1
例题
图示为一桥面净空为净—7附2×0.75m人 行道的钢筋混凝土T梁桥,共设五根主梁。 试求荷载位于支点处时1号梁和2号梁相 应于汽车—20级、挂车—100和人群பைடு நூலகம்载 的横向分布系数。
第二章 简支板、梁桥-3
18
0.437 1.000
0.437
a) 75
700
75
⑤ ④ ③ ② ①
105 160
160
160
160
105
1.422 1.000 0.875
0.563
Por 50 180
100 90
b)
90
c)
130 90 90
180 90 90
180
汽车-20 级 挂车-100
汽车-20 级 挂车-100
§2.3 简支梁桥内力计算
2.3.1 主梁内力计算 2.3.2 荷载横向分布计算 2.3.3 结构挠度与预拱度计算 2.3.4 斜交板桥的受力性能
第二章 简支板、梁桥-3
1
2.3.2 荷载横向分布计算
2.3.2.1 2.3.2.2 2.3.2.3 2.3.2.4 2.3.2.5 2.3.2.6 2.3.2.7
桥梁工程荷载横向分布计算简介
•由于跨中截面车轮加载值占总荷载的绝大多 数, 近似认为其它截面的横向分布系数与跨中 相同 •对于剪力
从影响线看跨中与支点均占较大比例 从影响面看近似影响面与实际情况相差较大
计算剪力时横向分布沿桥纵向的变化
与铰接板、梁的区别: 未知数增加一倍, 力法方程数增加一倍
5 .铰接板桥计算m举例:
如图所示,l=12.60m的铰接空心板桥横截面布置。 桥面净空为净-7+2x0.75m人行道。全桥由9块预应力混凝 土空心板组成,欲求1、3.5号板的公路-I级和人群荷载作用 的跨中横向分布系数?
分析: 荷载横向分布影响线竖标值与刚度参数γ ,板 块数n以及荷载作用位置有关。 5.8 I (b)2
4.目前常用的荷载横向分布计算方法: (1)梁格系模型
①杠杆原理法
②偏心压力法
③横向铰接梁(板)法
④ 横向刚接梁法 (2)平板模型——比拟正交异性板法(简称G—M法) 各计算方法的共同点: (1)横向分布计算得m (2)按单梁求主梁活载内力值
二、杠杆原理法 (一)计算原理 1.基本假定:
忽略主梁间横向结构的联系作用,假设桥面 板在主梁上断开,当作沿横向支承在主梁上的简 支梁或悬臂梁来考虑。
荷载横向分布计算
一、概述
荷载: 恒载: 均布荷载(比重×截面积)
活载: 荷载横向分布
1.活载作用下,梁式桥内力计算特点:
(1)单梁 (平面问题)
P
S=P·η1(x)
x
L/4
1
(2)梁式板桥或由多片主梁组成的梁桥(空间问题): S=P·η(x,y) 实际中广泛使用方法: 将空间问题转化成平面问题
S P (x, y) P 2 (y) 1(x)
为求1号梁的荷载 假设: a、P=1作用于1号梁梁轴, 跨中,偏心距为e; b、 各主梁惯性矩Ii不相等; c、横隔梁刚度无穷大。 则由刚体力学: 偏心力P=1 <====> 中心荷载 P=1+偏心力矩M=1·e
横向分布系数和偏载系数
一、 横向分布如图3—2—1a所示,梁桥的上部结构由承重结构(①~④号主梁)及传力结构(横隔梁、行车道板)两大部分组成,各片主梁靠横隔梁和行车道板连成空间整体结构,当桥上作用荷载(桥面板上作用2个车轴,前轴轴重为P1,后轴轴重为P2)时,各片主梁共同参与工作,形成了各片主梁之间的内力分布。
在计算恒载时,除主梁的自重外,一般将桥面铺装、人行道、栏杆等的重量近似平均分配给各片主梁,即计算出桥面铺装、人行道、栏杆等的总重量除以梁的片数(本例4片梁),得到每片主梁承担的桥面铺装、人行道、栏杆的重量。
由于人行道、栏杆等构件一般位于边梁上(①、④号主梁),精确计算时,也可考虑它们的重量在各梁间的分布,即中梁(②、③号主梁)也分担一部分人行道、栏杆的重量。
在计算活载时,需要考虑活载在各片主梁间的分布。
《标准》规定,车道荷载的横向分布系数应按设计车道数布置车辆荷载进行计算。
车辆荷载的横向布置如图3—2—1c所示。
对于车道荷载,最外车轮距人行道缘石之距不得小于0.5m,车道荷载的横向轮距为1.8m,两列车道荷载车轮的横向间距不得小于1.3m。
如图3—2—1b所示,在车道荷载的作用下,①号边梁所分担的荷载,也就是说,①号边梁所分担的荷载R1为轴重P1的。
若将第i号梁所承担的力R i表示为系数m i与轴重P的乘积(R i=m i×P),则m i称为第i号梁的荷载横向分布系数。
由此,1号梁的横向分布系数。
荷载所引起的各片主梁的内力大小(横向分布)与桥梁的构造特点、荷载的作用位置有关,因此求解荷载作用下各主梁的内力是一个空间问题,目前广泛采用的方法是将复杂的空间问题转化为平面问题。
本节将着重介绍几种横向分布系数的计算方法。
二、杠杆法基本原理:杠杆法忽略了主梁之间横向结构的联系作用,即假设桥面板在主梁上断开,把桥面板看作沿横向支承在主梁上的简支梁或悬臂梁。
如图3—2—1b所示,由于杠杆法忽略了主梁之间横向结构的联系作用,当桥上作用车道荷载时,左边的轮重P1/2仅传递给1号和2号梁,右边的轮重P1/2传递给2号梁和3号梁。
荷载横向分布系数的计算
适用情况 ①只有邻近两根主梁参与受力 ②虽为多主梁,但计算梁端支承处荷载 ③无中间横隔梁
2、荷载横向分布系数的计算方法
(1)杠杆分配法
作业1:画 及出单3车、辆4荷号载梁作的用荷下载3横、向4分号布梁影荷响载线横,向
0.75m
分布系数 7m
0.75m
1
2 2m
3
4
(2)刚性横梁法(偏心受压法) 假定 ①横梁是刚性的:宽跨比B/l≤0.5 ②忽略主梁抗扭刚度
▪ 该方法视梁系为超静定结构,用力法求解, 适用于翼缘板之间是刚性连接的肋梁桥。
④ 比拟正交异性板法(G-M法)
▪ 适用情况:对于由主梁、连续桥面板及多根横隔板 组成的钢筋混凝土桥中,当其宽跨比>1/2。
▪ 每根主梁的截面抗弯惯矩和抗扭惯矩分别为Ix、ITx, 横隔梁的截面抗弯惯矩和抗扭惯矩分别为Iy、ITy。
▪ 三、荷载横向分布的计算
5、荷载在顺桥跨不同位置时主梁荷载横向分布系数 的取值
荷载在桥跨纵向作用位置不同,对某一主梁产生 的横向分布系数也不同。
处理方法:通常用杠杆原理法确定支点处的横向 分布系数m0,用其他各方法计算荷载位于跨中的横 向分布系数mc。
▪ 三、荷载横向分布的计算
5、荷载在顺桥跨不同位置时主梁荷载横向分布系数 的取值
荷载横向分布系数:
ηki
Ik
n
β ak Ike n
Ii
ai2 Ii
i 1
i 1
修正系数:
β
1
1 Gl2
12E
1 ITi ai2 I i
竖向反力与扭矩的关系
转动时的扭矩平衡
e、ai
同侧取正号, 异侧取负号
横向分布系数
横向分布系数1. 概念介绍横向分布系数(Coefficient of Horizontal Distribution)是一种用来衡量某个属性在地理空间上的分布趋势的统计指标。
它主要用于分析该属性在不同地理单元(如行政区域、网格等)之间的差异程度,从而帮助我们理解其空间分布规律。
2. 计算方法横向分布系数的计算方法基于某个属性的数值数据,通常采用以下步骤进行:1.第一步,确定研究区域的地理单元划分方式,如行政区域划分、等面积网格划分等,以便将空间数据离散化。
2.第二步,计算每个地理单元中该属性的平均值(mean)。
对于行政区域划分的情况,可以根据该区域内的样本点数据进行计算;对于等面积网格划分的情况,则根据该网格内的样本点数据计算平均值。
3.第三步,计算整个研究区域中该属性的全局平均值(global mean)。
这可以通过对所有地理单元中该属性的平均值取算术平均值得到。
4.第四步,计算每个地理单元中该属性与整个研究区域平均值的差异(deviation)。
这可以通过将每个地理单元中该属性的平均值减去全局平均值得到。
5.第五步,计算所有地理单元中该属性与整个研究区域平均值差异的绝对值之和(sum of absolute deviations)。
这可以通过对所有地理单元中该属性与整个研究区域平均值差异的绝对值进行求和得到。
6.第六步,计算横向分布系数(coefficient of horizontal distribution)。
这可以通过将第五步的结果除以整个研究区域中地理单元的个数得到。
横向分布系数的取值范围通常在0到1之间。
当横向分布系数接近0时,表示该属性在地理空间上的分布相对均匀;当横向分布系数接近1时,表示该属性在地理空间上的分布较为集中。
3. 应用案例横向分布系数在空间分析和地理统计学领域有着广泛的应用。
以下是一些常见的应用案例:•经济发展研究:可以通过计算各地区的横向分布系数来衡量经济发展的不均衡程度。