鸡兔同笼知识点
六年级鸡兔同笼问题知识点

六年级鸡兔同笼问题知识点鸡兔同笼问题是一道经典的数学问题,常在小学数学课本中出现。
它既能锻炼学生的逻辑思维能力,又能帮助他们理解代数方程的应用。
以下是关于六年级鸡兔同笼问题的知识点。
1. 问题的描述和分析鸡兔同笼问题常常以以下方式描述:假设鸡和兔共有n只,它们的总脚数为2n。
如果鸡和兔的总脚数为64,那么它们各有多少只?对于这个问题,我们可以采取代数方程的方法进行分析。
设鸡的数量为x,兔的数量为n-x,根据鸡和兔的脚数总和为2n,可以得到方程式:2x + 4(n-x) = 642. 解方程求解问题通过解上述方程,我们可以得到鸡和兔的数量。
应用解方程的知识,我们可以将方程简化:2x + 4n - 4x = 64-2x + 4n = 644n = 2x + 642n = x + 32然后,将上式带入鸡和兔数量之和的方程(x + n = 32),得到:2n = 32 - n3n = 32n = 10在此基础上,我们可以求得鸡的数量:x = 32 - n= 32 - 10= 22所以,鸡的数量为22只,兔的数量为10只。
3. 进一步思考鸡兔同笼问题不仅限于上述描述的条件,我们还可以通过调整问题条件进行推广和扩展。
假如鸡和兔的总数目为m只,总脚数为2m,我们可以做出以下观察:- 当m为偶数时,可以令其中一种动物的数量为m/2,另一种动物的数量为0。
例如,当m为4时,可以认为有4只鸡和0只兔。
- 当m为奇数时,无法找到确切的解决方案。
例如,当m为5时,无法找到鸡兔数量均为整数的情况。
这说明了鸡兔同笼问题在某些条件下可能无解,这也是培养学生观察和推理能力的机会。
4. 实际问题中的应用鸡兔同笼问题不仅仅是一个抽象的数学问题,它也可以与实际生活中的问题联系起来。
例如,当我们需要将一定数量的鸡和兔装箱运输时,我们可以利用鸡兔同笼问题的方法来计算需要的箱子数量。
通过解方程,我们可以确定需要多少个装鸡的箱子和兔的箱子。
鸡兔同笼(含答案)

鸡兔同笼(含答案)一、知识点1、由来大约在1500年前,《孙子算经》中就记载了这个有趣的问题。
书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?2、方法回顾画图法列表法砍足法3、假设法鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到。
如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍二、学习目标1、熟悉鸡兔同笼的“砍足法”和“假设法”。
2、利用鸡兔同笼的方法解决一些实际问题。
三、典型例题例题1鸡兔同笼,头共46只,足共128只,鸡兔各几只?练习1修远家养了一些鸡和兔子,同时养在一个笼子里,修远数了数,它们共有35个头,94只脚。
问:修远家养的鸡和兔各有多少只?例题2动物园里养了一些梅花鹿和鸵鸟,共有脚208只,鸵鸟比梅花鹿多20只,梅花鹿和鸵鸟各有多少只?练习2一个养殖园内,鸡比兔多36只,共有脚792只,鸡兔各几只?例题3在一个停车场上,现有车辆41辆,其中汽车有4个轮子,摩托车有3个轮子,这些车共有127个轮子,那么三轮摩托车有多少辆?练习3体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元、裤子每件19元,问老师买上衣和裤子各多少件?例题4一百个和尚刚好喝一百碗粥,一个大和尚喝三碗粥,三个小和尚喝一碗粥,那么大和尚有多少个,小和尚有多少个?练习4100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?选讲题工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元。
运完这批花瓶后,工人共得4400元,则损坏了多少个?练习乐宝百货商店委托搬运站运送100只花瓶。
经典鸡兔同笼问题基本知识-0星题(含解析)全国通用版

应用题-经典应用题-鸡兔同笼问题基本知识-0星题课程目标知识提要鸡兔同笼问题基本知识•鸡兔同笼的由来大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚.问笼中各有几只鸡和兔?•假设法解鸡兔同笼(1)假设全是兔子鸡数=(每只兔子脚数×鸡兔总数−实际脚数)÷(每只兔子脚数−每只鸡的脚数)鸡数=鸡兔总数−鸡数(2)假设全是鸡兔数=(实际脚数−每只鸡脚数×鸡兔总数)÷(每只兔子脚数−每只鸡的脚数)鸡数=鸡兔总数−兔数•分组法解鸡兔同笼腿数相同,2鸡1兔为一组;头数相同,1鸡1兔为一组。
精选例题鸡兔同笼问题基本知识1. 某班学生在运动会上,进入前三名的有10人次,已知获第一名可得9分,获第二名可得5分,获第三名可得2分,其他名次不记分,该班共计得64分,其中获第一名的至多有人次.【答案】5【分析】假设获得第一名的有10人次,那么共计应该得10×9=90(分),而实际上得了64分相差了90−64=26(分).每把一个第一名变成第二名会少得4分,每把一个第一名变成第三名会少得7分.要求获得第一名的要尽可能多,那么把第一名变成第三名的就要尽可能多,26=7×2+4×3,所以第二名有3人次,第三名有2人次,第一名有5人次.2. 传说中的九头鸟每只有9个头,1条尾巴;而九尾鸟每只有9条尾巴,1个头.有一些九头鸟和九尾鸟在一起,数它们的头共有580个,数它们的尾共有900条.那么九头鸟和九尾鸟共有只.【答案】148【分析】将所有的九头鸟和九尾鸟的头数和尾巴数加起来,应该是它们总数的总和的10倍,所以九头鸟和九尾鸟共有(580+900)÷10=148(只).3. 一次英语考试只有20道题,做对一题加5分,做错一题倒扣3分(不做算错).皮皮这次没考及格,不过他发现,只要他少错一题就能刚好及格.他做对了道题.【答案】14【分析】根据题意可知皮皮这次得了60−5−3=52(分),假设皮皮20道题全做对,应得20×5=100(分),少了100−52=48(分),因此皮皮错了48÷(5+3)=6(道),做对了20−6=14(道).4. 在一次去动物园时,丁丁看到了许多鸟和四足兽共36只,数一数它们共有100只脚,那么丁丁见到了只鸟和只四足兽.【答案】22;14【分析】假设36只都是四足兽,因此共有36×4=144(只)脚,比现在多了144−100=44(只)脚,原因是没有鸟,用一只鸟换一只四足兽,会少两只脚,因此需要换44÷(4−2)= 22(只)鸟,因此丁丁看到了22只鸟,36−22=14(只)四足兽.5. 2角和5角硬币共30枚,总钱数是102角,2角硬币有枚,5角硬币有枚.【答案】16;14【分析】假设全是5角硬币,那么应有5×30=150(角),实际有102(角),那么2角硬币有(150−102)÷(5−2)=16(枚),5角硬币有30−16=14(枚).6. 一些奇异的动物在草坪上聚会.有独脚兽(1个头、1只脚)、双头龙(2个头、4只脚)、三脚猫(1个头、3只脚)和四脚蛇(1个头、4只脚).如果草坪上的动物共有58个头、160只脚,且四脚蛇的数量恰好是双头龙的2倍,那么其中独脚兽有只.【答案】7【分析】2只四脚蛇和1只双头龙共有4个头和12只脚,相当于4只三脚猫.按照鸡兔同笼问题的解法有(58×3−160)÷(3−1)=7(只).所以共有7只独脚兽.7. 一张试卷共有21道题,答对一道得8分,答错一道扣6分.小明答完了所有的题目,却得了零分,他答对道题.【答案】9【分析】若全部答对,则小明应得21×8=168(分).在这168分中,小明若用1道答对题目换1道答错题目,则损失了8分(应得的)+6分(扣掉的)=14分,而此时小明得了0分,说明小明的168分全部损失掉了,即错了168÷14=12(道),则答对的题数为21−12=9(道).8. 一个奥特曼与一群小怪兽战斗.已知奥特曼有一个头、两条腿,开始时每只小怪兽有两个头、五条腿.在战斗过程中有一部分小怪兽分身了,一只小怪兽分成了两只,分身后的每只小怪兽有一个头、六条腿(不能再次分身),某个时刻战场上一共有21个头,73条腿,那么这时共有只小怪兽.【答案】13【分析】可知小怪兽共有20个头和71条腿.1个头、6条腿的小怪兽肯定为偶数,把它们两个一对捆在一起,则每组有2个头和12条腿.用假设法易得2个头、12条腿的小怪兽有(71−10×5)÷(12−5)=3(组),2个头5条腿的小怪兽有10−3=7(只),共2×3+7= 13(只).9. 1千克大豆可以制成3千克豆腐,制成1千克豆油则需要6千克大豆.大豆2元1千克,豆腐3元1千克,豆油15元1千克.一批大豆进价920元,制成豆腐或豆油销售后得到1800元,这批大豆中有千克被制成了豆油.【答案】360【分析】共买920÷2=460(千克),6千克大豆可以制作18千克豆腐,18千克豆腐共54元,6千克大豆可以制作1千克豆油,1千克豆油15元,假设大豆都制成了豆腐,则买460÷6×54=4140(元)因为其中(4140−1800)÷(54−15)=60(份)制成了豆油,则制成豆油的有60×6=360(千克).10. 围棋24元一副,象棋18元一副,用300元恰好可以购买两种棋共14副,其中象棋有副.【答案】6【分析】假设全是围棋24×14=336(元),则象棋有(336−300)÷(24−18)=6(副).11. 甲乙二人相距30米面对面站好.两人玩“石头、剪子、布”.胜者向前走3米,负者向后退2米.平局两人各向前走1米.玩了15局后,甲距出发点17米,乙距出发点2米.甲胜了次.【答案】7【分析】有胜有负的局,两人距离缩短1米;平局两人距离缩短2米.15局后两人之间的距离缩短15~30米.(1)如果两人最后的效果都是后退,两人之间的距离会变大,与上述结论矛盾.(2)如果两人最后的效果是“一人前进,另一人后退”,如果乙前进,甲后退,两人距离增大,这与(1)矛盾.则一定是甲前进,乙后退,两人距离会缩短15米.但如果两人距离缩短15米,只能是15局都是“胜负局”.假设甲15局都是胜者,他会前进45米,每把一次“胜者”换成一次“负者”,他会少前进5米.45减去多少个5都不可能等于17,这种情况不成立.(3)如果两人最后的效果是都向前进,两人的距离缩短19米.假设15局都是“胜负局”,两人之间距离缩短15米,每把一局“胜负局”换成平局,两人之间距离多缩短1米.由“鸡兔同笼”法求出,“胜负局”共11局,平局4局.4局平局中甲前进了4米.假设甲其余11局都是胜者,他一共前进33+4=37(米).每把一局胜局改为败局,他会退5米,要想前进17米,则改(37−17)÷5=4(局).验算:甲7胜4平4败,前进21+4−8=17(米);乙4胜7败4平,前进12+4−14=2(米).12. 甲种农药每千克兑水20千克,乙种农药每千克兑水40千克,现为了提高药效,根据农科所意见,甲乙两种农药混合使用,已知两种农药共5千克,要兑水140千克,则其中甲种农药有千克.【答案】3【分析】假设这5千克都是乙种农药,应兑水40×5=200(千克),少了200−140=60(千克),因此甲种农药有60÷(40−20)=3(千克).13. 张阿姨给幼儿园两个班的孩子分水果,大班每人分得5个橘子和2个苹果,小班每人分得3个橘子和2个苹果.张阿姨一共分出了135个橘子和70个苹果,那么小班有个孩子.【答案】20【分析】两班共有70÷2=35(人),假设每个孩子都分到5个橘子和2个苹果,则可以得到小班的人数为(35×5−135)÷(5−3)=20(人).14. 张明、李华两人进行射击比赛,规定每射中一发得20分,脱靶一发扣12分,两人各射了10发,共得208分,其中张明比李华多64分,则张明射中发.【答案】8【分析】张明得分(208+64)÷2=136(分),假设张明10发全中,应得20×10=200(分),多了200−136=64(分),因此张明脱靶64÷(20+12)=2(发),射中8发.15. 动物园里有鸵鸟和梅花鹿若干,共有腿122条.如果将鸵鸟与梅花鹿的数目互换,则应有腿106条,那么鸵鸟有只,梅花鹿有头.【答案】15;23【分析】将一个梅花鹿“变”成鸵鸟,腿减少2条;腿一共减少122−106=16条,所以一共有16÷2=8头梅花鹿“变”成鸵鸟,即,原先梅花鹿比鸵鸟多8头.补上这8只鸵鸟,鸵鸟的数量和梅花鹿一样多,但腿增加了2×8=16条腿,共有腿122+16=138条;一只鸵鸟加一头梅花鹿有6条腿,所以共有138÷6=23只鸵鸟加梅花鹿.所以梅花鹿有23头,鸵鸟有23−8=15只.16. 40只脚的蜈蚣与9个头的龙在同一个笼子中,共有50个头和220只脚,如果每只蜈蚣有1个头,那么每条龙有只脚.【答案】4【分析】蜈蚣有40只脚,总脚数为220,所以蜈蚣的头数不大于5;总头数为50,且龙的头数是9的倍数,所以蜈蚣只能有5只,龙有5条.则每条龙有(220−40×5)÷5=4(只)脚.17. 迷宫里的灯有两种:一种是上吊3个大灯,下缀6个小灯的九星连环灯;一种是上吊3个大灯,下缀15个小灯的十八星连环灯.已知大灯有408个,小灯有1437个,那么,九星连环灯有个,十八星连环灯有个.【答案】67;69【分析】根据题意两种类型的灯共有408÷3=136(盏),假设这136盏都是上吊3个大灯,下缀6个小灯的九星连环灯,共有小灯136×6=816(个),少了1437−816=621(个).因此十八星连环灯有621÷(15−6)=69(个),九星连环灯有136−69=67(个).18. 有一场球赛,售出50元、80元、100元的门票共800张,收入56000元.其中80元的门票和100元的门票售出的张数相同.请回答:售出50元的门票张;售出80元的门票张;售出100元的门票张.【答案】400;200;200【分析】假设这800张门票都是50元,应得收入800×50=40000(元),少了56000−40000=16000(元),因此80、100元门票各有16000÷(80+100−50−50)=200(张),50元门票800−200−200=400(张).19. 王伯伯养了一些鸡、兔和鹤.其中鹤白天双足站立,夜间则单足站立;鸡晚上睡觉时则把头藏起来.细心的悦悦发现:不论白天还是晚上,足数和头数的差都一样,那么,如果白天悦悦可以数出 56 条腿,晚 上会数出 个头.【答案】 14【分析】 白天比晚上多了一个鸡头,还多了一只鹤脚;由不论晚上还是白天,足数和头数的差都一样,所以,鹤的数量和鸡的数量是一样的.将鸡和鹤打一个包,则在白天这个包和兔子腿数一样为 4,在晚上这个包和兔子头数一样为 1;则可以得出晚上的头数为 56÷4=14(个).20. 某班共 36 人买了铅笔,共买了 50 支,有人买了 1 支,有人买了 2 支,有人买了 3 支.如果买 1 支的人数是其余人数的 2 倍,则买 2 支铅笔的人数是 .【答案】 10【分析】 设买 1 支铅笔的人数为 x ,其余人数则为 x 2,则有 x =72÷3=24,买 2 支和 3 支铅笔的总人数为 36−24=12(人),他们共买铅笔数为 50−24=26(支).为求出买 2 支铅笔的学生数,假设买 2 支、3 支的学生每人都买 3 支,则可求出买 2 支的学生数是:(12×3−26)÷(3−2)=10(人).说明:也可以设买 2 支和 3 支铅笔的人数分别为 y 和 z ,则可列出方程: {y +z =122y +3z =26即可得出 y =12×3−26=10.21. 甲乙二人相距 30 米面对面站好.两人玩“石头剪刀布”.胜者向前走 8 米,负者向后退 5 米.平局两人各向前走 1 米.玩了 10 局后,两人相距 7 米.那么两人平了 局.【答案】 7【分析】 因为每赛完一局,胜者向前走 8 米,负者向后退 5 米.而平局两人各向前走 1 米.相当于,如果分出胜负两人的距离减少 3 米,平局两人的距离减少 2 米.玩了 10 局后,两人的距离减少了 30−7=23(米).所以利用假设法可以求得两人平了 (3×10−23)÷(3−2)=7(局).22. 2008 年春,我国南方遭受到重大雪灾,实验小学三年级一班的 42 名同学给南方的灾区捐款 450 元,其中有 12 名同学每人捐 5 元,其他同学捐 10 元或 20 元,则捐 10 元的有 名,捐 20 元的有 名.【答案】 21;9【分析】由题意,42−12=30(名)同学捐10元或20元,一共捐了450−12×5=390(元),假设30名同学全部捐10元,少了390−300=90(元),那么捐20元的同学有:90÷(20−10)=9(人),捐10元的有:30−9=21(人).23. 鸡兔同笼,共有40个头,兔脚的数目比鸡脚的数目的10倍少8只,那么兔有只.【答案】33【分析】(1)加2只兔子后,等于加了8只兔脚,那么兔脚的数目是鸡脚的数目的10倍,每只兔脚是每只鸡脚的2倍,所以兔的只数是鸡的只数的5倍.(2)转化成和倍问题:共42只,兔是鸡的5倍.兔:40−42÷(5+1)=33(只).24. 小兔与蜘蛛共50名学员参加踢踏舞训练营,一段时间后,小兔学员走了一半,蜘蛛学员增加了一倍,但老师发现学员的脚既没有增加也没有减少,那么原有小兔只.(注:蜘蛛有8只脚)【答案】40【分析】一只蜘蛛的脚数是一只小兔脚数的2倍,而原来所有小兔一半的脚数等于原来所有蜘蛛1倍的脚数,所以原来小兔只数是原来蜘蛛只数的4倍,所以原有小兔50÷(4+1)×4=40只.25. 某学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍?【答案】24【分析】如果30间都是小宿舍,那么只能住4×30=120(人),而实际上住了168人.又大宿舍比小宿舍每间多住6−4=2(人),所以大宿舍有(168−120)÷2=24(间).26. 鸡与兔共100只,兔的脚数比鸡的脚数多40只,问鸡、兔各有几只?【答案】鸡:60只;兔:40只【分析】假设100只全是兔,那么脚的总数应是4×100=400(只)这时鸡的脚数是0,兔的脚比鸡多400只,但实际上兔脚比鸡脚仅多40只,两者的差数是400−40=360(只)造成差异的原因是我们将鸡假设成兔了。
四年级数学上册数学广角-鸡兔同笼问题(完整版)

鸡兔同笼问题学生/课程年级学科授课教师日期时段核心内容鸡兔同类问题课型一对一教学目标1.理解鸡兔同笼问题的数量关系2.会根据题目所给条件,选择假设法,分组法等方法解题;3.理解鸡兔同笼中各数量间的关系,并能够灵活运用解决实际生活问题重、难点重点:教学目标2,3 难点:教学目标3知识导图导学一:鸡兔同笼——基本题型知识点讲解 1:列表法解鸡兔同笼当题中数字比较小时,可以用列表法解决鸡兔同笼问题例 1. 笼子里有若干只鸡和兔。
从上面数,有8个头,从下面数,有26只脚。
鸡和兔各有几只?我爱展示1.笼子里有若干只鸡和兔。
从上面数,有8个头,从下面数,有26只脚。
鸡和兔各有几只?知识点讲解 2:假设法解鸡兔同笼(1)使用假设法的前提:已知鸡与兔头的和,腿的和,求鸡和兔的只数。
(2)解题步骤(3)公式解法1:假设全部都是兔:设兔得鸡(兔的脚数×总只数-总脚数)÷鸡与兔的腿差=鸡的只数总只数-鸡的只数=兔的只数解法2:假设全部都是鸡:设鸡得兔(总脚数-鸡的脚数×总只数)÷鸡与兔的腿差=兔的只数总只数-兔的只数=鸡的只数例 1. 笼子里有若干只鸡和兔。
从上面数,有35个头,从下面数,有94只脚。
鸡和兔各有多少只?我爱展示1.鸡兔同笼,共有头100个,足316只,那么鸡有多少只?兔有多少只?知识点讲解 3:鸡兔同笼变形题对错得分题:腿差=得分+扣分赔偿型:腿差=运费+赔偿解题关键:学会找题中的鸡或兔,找头的和,腿的和例 1.乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。
问:搬运过程中共打破了几只花瓶?例 2. 小红的储钱罐里有面值2元和5元的人民币共65张,总钱数为205元,两种面值的人民币各多少张?例 3.开心辞典智力竞赛中,开心队抢答了10道题,如果以100分开始算分,答对一题加10分,答错一题减10分,最后开心队得了140分,开心队答错了几题?我爱展示1.运输2000只陶瓷碗,运费按到达时完好的数目计算,每只3角,如有破损,破损1个陶瓷碗还要倒赔7角,结果得到运费535元,问这次搬运中陶瓷碗损坏了( )只。
人教版四年级数学下册第九单元鸡兔同笼问题

4.【杭州市·钱塘区】如图甲、乙两种模型都是由面积为1平 方厘米的小正方形构成的。现在用这两种模型共9块,拼 成了一个面积是30平方厘米的长方形。那么甲、乙两种 模型各用了多少块?
假设全用乙种模型。 4×9-30=6(平方厘米) 甲种模型块数:6÷(4-3)=6(块) 乙种模型块数:9-6=3(块) 答:甲种模型用了6块,乙种模型用了3块。
5.(新情境)德老师要为课后托管美食DIY准备材料。她带了 20元、50元和100元三种人民币共50张,共2400元,其中20 元和50元的张数相同,那么100元的有( 10 )张。
解析:假设全部是100元的,则面值是50×100=5000(元),比实际 多出5000-2400=2600(元),因为1张100元比1张50元多50元,1张 100元比1张20元多80元,所以2张100元比1张50元和1张20元多(100 -50+100-20)元,用2600元除以(100-50+100-20)元可求得20 元或50元的张数,从而求得100元的张数。
第9单元 数学广角——鸡兔同笼 鸡兔同笼问题
知 识 点 鸡兔同笼问题的解题方法
1.鸡兔同笼,共有9个头,24只脚,鸡和兔各有多少只? 解法一:列表法。
鸡
9
8
7
6
5
4
兔
0
1
2
320
22
24
26
28
鸡有( 6 )只,兔有( 3 )只。
解法二:假设法。 ①如果笼子里都是兔,那么就有( 36 )只脚,这样就少
了( 12 )只脚。 ②一只鸡比一只兔少( 2 )只脚,也就是有( 6 )只鸡。 ③所以鸡有( 6 )只,兔有( 3 )只。
列式解答: 4×9-24=12(只) 12÷(4-2)=6(只) 9-6=3(只) 答:鸡有6只,兔有3只。
《鸡兔同笼问题》

鸡兔同笼知识点:鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?1.画图法:给每只动物先画上2条腿(也就是都看成鸡),这样一共用16条腿,还剩下10条腿。
一次增加2条腿,一只鸡就变成了一只兔,要把10条画完,要把5只鸡变成兔。
总结:画图的方法非常便于观察、非常容易理解。
2. 列表法:先假设有8只鸡这样一共就有16条腿,显然不对,再减去一只鸡,加上3. 假设法:观察上面的表格我们发现。
如果8只都是鸡,则一共只有16条腿,这样就比26条腿少10条腿,这是因为实际每只兔子比每只鸡多2条腿。
一共多了10条腿,于是兔就有10÷2=5(只),所以我们还可以这样去想:方法一:假设8只都是鸡那么兔有:(26-8×2)÷(4-2)=5(只)鸡有8-5=3(只)方法二:假设8只都是兔那么鸡有:(4×8-26)÷(4-2)=3(只)兔有8-3=5(只)公式1:(总脚数﹣鸡的脚数×总只数)÷(兔的脚数﹣鸡的脚数)=兔的只数;总只数﹣兔的只数=鸡的只数公式2:(兔的脚数×总只数﹣总脚数)÷(兔的脚数﹣鸡的脚数)=鸡的只数;总只数﹣鸡的只数=兔的只数1. 鸡兔同笼,共有6个头,20条腿,那么鸡有多少只?(画图法)2. 鸡兔一共有10颗头,32条腿,那么鸡有多少只?兔子有多少只?(列表法)3. 鸡兔同笼,有26个头,64条腿,鸡、兔各有几只?(假设法)4. 一个笼子里关了一些鸡和兔,从上面数头有100个,从下面数脚共有220只,笼子中有鸡,兔各多少只?(假设法)5. 乌龟和仙鹤同在一个池塘里,共有8个头,22只脚.请问:池塘里各有乌龟和仙鹤多少只?6. 一只蜘蛛有8条腿,一只蝉有6条腿,现在有蜘蛛和蝉共43只,共有292条腿,蜘蛛和蝉各有多少只?7. 停车场上停着三轮车和小轿车共10辆,总共37个轮子,三轮车和小轿车各有多少辆?8. 新星小学“环保卫士”小分队12人参加植树活动.男同学每人栽3棵树,女同学每人栽了2棵树,一共栽了28棵树.男女同学各几人?9. 2元一张的人民币和5元一张的人民币共63张,共计171元.2元一张和5元一张的人民币各有多少张?10.章老师收藏了8角的邮票和1元5角的邮票共80枚,总面值85元.他收藏的这两种邮票各有多少枚?11. 一名篮球运动员在一场比赛中一共投中10次,有2分球,也有3分球.已知这名运动员一共得了23分,他投中2分和3分球各多少个?12. 坪市中心小学有42位同学参加18桌乒乓球决赛,请问参加单打和双打决赛的各有几桌?13. 四(1)班同学去赤壁公园划船,全班43人,共租了11条船,大船、小船正好都坐满.大、小船各租了几条?(大船限坐5人,小船限坐3人)14.60个和尚吃了60个馒头,大和尚一人吃2个,小和尚2人吃一个,大和尚和小和尚各有多少人?15.某小学举行数学竞赛,每做对一题得9分,做错一题倒扣3分,共12道题,小华全做了,得了84分,他做对了多少道题?参考答案1.【答案】2【解析】2.【答案】4只鸡、6只兔。
鸡兔同笼的知识点总结大全

鸡兔同笼的知识点总结大全一、问题的提出鸡兔同笼这个问题最早可以追溯到中国古代的《孙子算经》和《张丘建算经》两书,它们都记录了这个问题的相关内容。
鸡兔同笼问题的提出是这样的:假设一个笼子里面关着若干只鸡和若干只兔子,它们的总共有n只脚。
问笼中鸡和兔的数量各是多少?二、解决方法1. 代数解法鸡兔同笼问题可以用代数方程组来解决。
假设鸡的数量为x,兔的数量为y,根据题意,我们可以列出如下方程:x + y = 总数量2x + 4y = 总脚数通过解这个方程组,我们可以得到鸡和兔的具体数量。
2. 图形解法我们可以通过画图的方式来解决鸡兔同笼问题。
我们可以假设鸡的数量为x,兔的数量为y,然后画出对应数量脚的鸡和兔的图形。
通过观察图形,我们可以得出鸡和兔的具体数量。
3. 逻辑解法鸡兔同笼问题也可以通过逻辑推理来解决。
我们可以通过观察鸡和兔的共同特点和不同特点,来得出它们的具体数量。
三、相关数学原理1. 代数方程组解决鸡兔同笼问题的代数方法需要用到代数方程组的知识。
代数方程组是指由若干个代数方程组成的方程的集合,通过求解这个方程组,可以得到方程组的未知数的值。
2. 图形解法通过画图的方式来解决鸡兔同笼问题需要用到几何学的知识。
我们可以通过绘制对应数量脚的鸡和兔的图形,来得出鸡和兔的具体数量。
3. 逻辑推理通过逻辑推理来解决鸡兔同笼问题需要用到逻辑学的知识。
我们可以通过观察鸡和兔的共同特点和不同特点,来得出它们的具体数量。
四、相关例题1. 一个笼子里关着鸡和兔,一共有35个头,94只脚。
问笼中鸡和兔各有多少只?解:设鸡的数量为x,兔的数量为y,根据题意,我们可以列出方程组:x + y = 352x + 4y = 94通过求解这个方程组,可以得到鸡和兔的数量。
2. 一个笼子里关着鸡和兔,一共有20个头,50只脚。
问笼中鸡和兔各有多少只?解:同样地,我们可以设鸡的数量为x,兔的数量为y,根据题意,我们可以列出方程组:x + y = 202x + 4y = 50通过求解这个方程组,可以得到鸡和兔的数量。
小学数学鸡兔同笼知识点总结

小学数学鸡兔同笼知识点总结一、鸡兔同笼问题这是古典的算术问题。
已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。
已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
二、数量关系第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)三、解题思路解“鸡兔同笼问题”的常用方法是“替换法”、“转换法”、“置换法”等。
解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。
如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。
这类问题也叫置换问题。
通过先假设,再置换,使问题得到解决。
四、鸡兔同笼问题五种基本题型1、小学奥数应用题鸡兔同笼:已知总头数和总脚数(两数之和)已知总头数和总脚数(两数之和)(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
【例1】一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?【解】我们把这份稿件平均分成30份(30是6和10的最小公倍数),甲每小时打30÷6=5(份),乙每小时打30÷10=3(份).现在把甲打字的时间看成"兔"头数,乙打字的时间看成"鸡"头数,总头数是7."兔"的脚数是5,"鸡"的脚数是3,总脚数是30,就把问题转化成"鸡兔同笼"问题了.根据前面的公式:"兔"数=(30-3×7)÷(5-3)=4.5,"鸡"数=7-4.5=2.5,也就是甲打字用了4.5小时,乙打字用了2.5小时.答:甲打字用了4小时30分.【例2 】今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年?【解】:4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们可以把兄的年龄看作"鸡"头数,弟的年龄看作"兔"头数.25是"总头数".86是"总脚数".根据公式,兄的年龄是(25×4-86)÷(4-3)=14(岁).1998年,兄年龄是14-4=10(岁).父年龄是(25-14)×4-4=40(岁).因此,当父的年龄是兄的年龄的3倍时,兄的年龄是(40-10)÷(3-1)=15(岁).这是2003年.答:公元2003年时,父年龄是兄年龄的3倍.2、小学奥数应用题鸡兔同笼:已知总头数和鸡兔脚数的差数首先,请先弄明白上面三个算式的由来,然后与"鸡兔同笼"公式比较,这三个算式只是有一处"-"成了"+".其奥妙何在呢?当你进入初中,有了负数的概念,并会列二元一次方程组,就会明白,从数学上说,这一讲前两节列举的所有例子都是同一件事.(1)当鸡的总脚数比兔的总脚数多时:(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鸡兔同笼知识点
1. 问题描述
鸡兔同笼是一个经典的数学问题,它描述了一个笼子里有若干只鸡和兔子,总共有一定数量的头和脚。
问题的目标是确定笼子里分别有多少只鸡和兔子。
2. 问题分析
在鸡兔同笼问题中,我们需要根据已知的头和脚的数量来求解鸡和兔子的数量。
设鸡的数量为x,兔子的数量为y,则有以下关系:
•头的数量:x + y
•脚的数量:2x + 4y
我们可以根据这两个关系式来建立一个方程组,从而求解鸡和兔子的数量。
3. 解题思路
鸡兔同笼问题可以通过代数方法来解决。
具体的解题思路如下:
1.建立方程组:根据头和脚的数量关系,可以建立以下方程组:
–x + y = 头的数量
–2x + 4y = 脚的数量
2.求解方程组:通过解方程组可以得到鸡和兔子的数量。
可以使用代入法、消
元法等方法求解方程组。
3.验证解的合法性:得到鸡和兔子的数量后,需要验证解的合法性。
合法的解
应满足以下条件:
–鸡和兔子的数量必须为正整数
–鸡和兔子的数量之和等于头的数量
–鸡和兔子的脚的数量之和等于脚的数量
4. 解题示例
下面通过一个具体的例子来演示鸡兔同笼问题的解题过程。
假设笼子里的头的数量为10,脚的数量为26。
我们需要求解鸡和兔子的数量。
1.建立方程组:
–x + y = 10
–2x + 4y = 26
2.求解方程组:可以使用代入法求解方程组。
将第一个方程的x表示为y的函
数,代入第二个方程中,得到:
–2(10 - y) + 4y = 26
–20 - 2y + 4y = 26
–2y = 6
–y = 3
将y的值代入第一个方程,得到:
–x + 3 = 10
–x = 7
所以,鸡的数量为7,兔子的数量为3。
3.验证解的合法性:验证鸡和兔子的数量是否满足条件。
–鸡和兔子的数量为正整数,满足条件。
–鸡和兔子的数量之和等于头的数量:7 + 3 = 10,满足条件。
–鸡和兔子的脚的数量之和等于脚的数量:27 + 43 = 26,满足条件。
所以,解(7, 3)是合法的解。
5. 注意事项
在解鸡兔同笼问题时,需要注意以下几点:
•方程组的建立:根据头和脚的数量关系建立方程组时,需要注意头和脚的数量的对应关系。
•解的唯一性:鸡兔同笼问题的解不一定是唯一的,可能存在多组解。
在实际问题中,需要根据实际情况来判断最符合实际的解。
•解的合法性:解的合法性需要进行验证,确保解满足条件。
6. 总结
鸡兔同笼问题是一个经典的数学问题,通过建立方程组、求解方程组和验证解的合法性,可以求解鸡和兔子的数量。
在解题过程中,需要注意方程组的建立、解的唯一性和解的合法性。
通过解鸡兔同笼问题,可以培养数学建模和问题求解的能力,提高逻辑思维和数学思维能力。