位移法基本概念汇总

合集下载

第八章位移法new

第八章位移法new

1)在B结点增加附加转动约束(附加刚臂)( )。
附加转动约束只能阻止刚结点的转动,不能阻止结
点之间的相对线位移。此时产生固端弯矩
M
F。
BC
q
锁A 住
B 0
B
C
q
M
F BA

0,
M
F BC


ql2 。 8
B
M
F BC
C
2)令B结点产生转角

(
B
)。此时AB、BC杆类似
于B端为固端且产生转角 B 的单跨超静定梁。 4
20
三. 固端弯矩
单跨超静定梁在荷载作用下产生的杆端弯矩称为 固端弯矩。固端弯矩以顺时针方向为正,逆时针方向 为负。
1. 两端固定的梁:
q
ql 2 12
A
ql 2 24
l
ql 2 12 FP l 8
B
A
FP
FP l 8
B
FP l
l/2
8
l/2
M
F AB


ql 2 12
,
M
F BA

ql 2 。 12
增加附加链杆:
B EA C
Z1 BH CH
B EA = 有限值 C
Z1 BH
Z2 CH
A
DA
Z3 D
D
Z1 B
Z2 C
C
Z1 B
Z4 BH B
A
C
Z5 CH
Z2


B
BH
E A
D
当BD杆: EI无限大
D

12
§8-2 等截面直杆的刚度(转角位移)方程

结构力学上第8章 位移法

结构力学上第8章 位移法

(非独立角位移) l FQBA
M AB M BA
F 3i A 3i M AB l 0
3、一端固 FQAB
A
B1
B
l
F M AB i A i B M AB F M BA i A i B M BA
(非独立线位移)
q B EI C L
Z1
q B
EI C
Z2 4i
Z1=1
EI A 原结构
L
=
Z2=1
EI A qL2 8 基本体系
=
3i
M1图×Z1 2i
+
6EI L2 6EI M2图×Z2 L2
+
qL2 8 MP图
在M1、M2、MP三个 图中的附加刚臂和链杆 中一定有约束反力产生, 而三个图中的反力加起 来应等于零。
M
q
应用以上三组转角位移方程,即可求出三种基本的单跨超 静定梁的杆端弯矩表达式,汇总如下:
F 1)两端固定梁 M AB 4i A 2i B 6i M AB
M BA
l F 2i A 4i B 6i M BA l
2)一端固定另一端铰支梁
F M AB 3i A 3i M AB l M BA 0 3)一端固定另一端定向支承梁 F M AB i A i B M AB
3
2
1
结点转角的数目:7个
独立结点线位移的数目:3个
D
E
A
B
C
C
D
刚架结构,有两个刚结点D、E, 故有两个角位移,结点线位移由铰 结体系来判断,W=3×4-2×6=0, 铰结体系几何不变,无结点线位移。
A
B

10-1位移法的基本概念教学文案

10-1位移法的基本概念教学文案

2a
12 345
(b)
A i
Ai
li
B
ui
B
B
o
x
(c)
FN1
FN 5
y
B
FP
B
FN i
(d)
B
ui sini
B
B
FNi
EAi li
ui
(1)
EAi 杆件的刚度系数 li
✓图(d),各杆位移ui与基本未知量的关系为
ui sini
(2)
✓由结点B的平衡
5
Fy0, FNi sini FP
(3)
i1
即得i 51: Eli iA si2niFP
(4)
位移法的基本方程
由此解 得 i 51Eli: F iA P si2ni
(5)
✓将式(5)代入式(2),再代回(1)式得各杆内力:
Fi
EAi li
sin
i
5 i 1
EAi li
sin 2 i
FP
(6)
✓设各杆EA相同,将图(a)的尺寸代入得:
b. 再把杆件组合成结构,进行整体分析,得 平衡方程。
➢ 解方程,求位移。再代回刚度方程得杆端力。
位移法基本思路——通过一拆、一搭,把复 杂问题转化为简单杆件的分析和综合的问题
§10-1 位移法的基本概念
•以结点位移作为基本未知量求解超静定问题的方法。
1、基本未知量
•Z1为该刚架的位移法基本未知量。
0.63F P 7 a, EA
F N 1 F N5 0.15 F P,9F N2 F N4 0.25 F P,5F N 3 0.31 F P9
位移法的基本要点
➢ 确定基本未知量 (如B点的竖向位移Δ ) ➢ 建立位移法基本方程 (力的平衡方程)

位移法

位移法

F B 端为铰支座固端弯矩 M AB 由上式得: F M BA F F 铰 支 M AB M AB (c) 2 B 端为滑动支座:q B FQBA 0
P M A 0 FQBAl M AB M BA M A 0
把式(a) 、(b)代入上式,得:
D F F P 6iq A 12i M AB M BA M A P M AB M BA M A l FQBA 0 l l F F P 6iq Al M ABl M BAl M A l 1 l F F P D q Al ( M AB M BA M A ) (d) 12i 2 12i
§8-3 无侧移刚架的计算
1、无侧移刚架基本未知量的判定:
其位移法基本未知量数目
结构上刚结点的独立角位移数 等于结构上的自由刚结点数 。
(a)
1 D E 2 C F
A
(b)
B
D
EA=
C
1 C
B
1 A
2 B
A
(c)
(d)
说明:
1)强调位移法基本未知量是结 构中自由结点上的独立结点位移。 结点上的独立角位移是自由刚结 点上的角位移。
(2) B 端为铰支座
式(8-5)中
M BA 0
,得:
D M AB 4iq A 2iq B 6i L D 0 2iq A 4iq B 6i L
整理上式得:
M AB
D 3iABq A 3i L
(8-9)
(3) B 端为滑动支座
代入(8-5)式,得:
D 1 qA 式(8-6)中 q B FQAB FQBA 0 ,得: L 2
(8-10)

结构力学I第7章 位移法

结构力学I第7章 位移法

2015-12-21
Page 25
LOGO §7-2单跨超静定梁的形常数与载常数
2015-12-21
Page 26
LOGO
§7-3 位移法解无侧移刚架
如果刚架的各结点只有角位移而没有线位移,这种刚架 称为无侧移刚架。
位移法计算:
为什么不选结点C?
取结点角位移 ������������ 作为基本位置量。 C为支座结点!

6i 6i
/ /
l l

2015-12-21
A
=
1 3i
M
AB

1 6i
M
BA

l
M BA =0
B
=

1 6i
M
AB
+
1 3i
M
BA

l


M AB 3iA 3i / l
B 0

FQAB FQBA 0
M AB M BA

第七章 位移法
结构力学 I
浙江大学海洋学院 Tel : Email:
LOGO
§7-1 位移法基本概念
位移法是计算超静定结构的基本方法之一。
P
力法计算太困难了!
用力法计算,9个未知量 如果用位移法计算, 1个基本未知量
1个什么样的基本未知量?
Page 2
LOGO
§7-1位移法基本概念
一、位移法的提出(Displacement Method)


Page 20
LOGO §7-2单跨超静定梁的形常数与载常数
用位移法进行结构分析的基础是杆件分析。位移法的基 本结构为以下三种单跨超静定梁:

位移法——位移法的概念

位移法——位移法的概念

加约束 →求内力 →建立平衡方程 →求位移 →求内力



第 七 章 位移法
§7-2 等截面直杆的转角位移方程
1. 杆端弯矩的表示方法和正负号规定:
表示方法:双下标 如 : M AC , M AB 等 前一个下标表示近端,另一个下标表示远端。
转角: 结点转角——顺时针为正
杆端转角——顺时针为正
杆端相对线位移---使杆轴顺时针转为正
M AC M AB
qA
A
Aq A M AB = 3iq A
M BA = 0
B
FP C
M AC
=
4iq A
FPl 8
MCA
=
2iq A
FPl 8
由 MA = 0 得:
7iq A
FPl 8
=0
4.求内力
q = FPl A 56i
A
FP C
EI
L
EI
B
3 FP l
56
LF/2P
L9/2FPl 56
M AB
m
弯矩: 杆端——顺时针为正
AC
结点——逆时针为正
当结点上有荷载时,仍以顺时针为正
B
2. 杆端力与杆端位移的关系 ——建立杆端力与杆端位移和荷载之间关系 即:由杆端位移求杆端力
3. 转角位移方程 ——建立杆端力与杆端位移和荷载之间关系
单跨超静定梁在荷载、温改和支座移动共同作用下
x
M
AB
=
4i A
=
3iq A
=
3 56
FP L
M BA = 0
M (kN.m)
= F L MAC
=
4iq A
FPl 8

第8章 位移法

第8章 位移法
第八章 位移法
§8-1 概述
基本方法——力法、位移法
结构:外因→内力~位移——恒具有一定关系 力 法: 内力 → 位移 位移法:位移 → 内力
基本未知量 力法——多余未知力 位移法——结点位移(线位移,转角位移)
基本概念:(以刚架为例)
n=2 (超静定次数) 忽略轴向变形,
结点位移
Z1(角位移,无线位移) 变形协调条件
§8-2 等截面直杆的转角位移方程
单跨超静定梁——由杆端位移及荷载求杆端力 两端固定等截面梁(两端约束杆) 杆AB有杆端位移φA、φB、ΔAB, 只考虑相对线位移ΔAB
弦转角βAB = ΔAB∕l 顺时针为(+)
求杆端力 ——力法求支座移动引起的内力
11x1 12 x2 1 A 21x1 22 x2 2 B
1、基本未知量的确定 刚架 —— 除结点角位移外还有结点线位移 假定 ①理想刚结点,铰结点 ②忽略轴力产生的轴向变形 ③小变形(直杆弯曲两端距离不变) 角位移数=刚结点数
固定端角位移=0 铰结点、铰支座处杆端转角不独立
线位移数=独立的结点线位移数
a.观察——φ、Δ
b.独立线位移数——几何构造分析方法确定: (1)将所有刚结点(包括固定支座)变铰结点 (2)铰结体系的自由度数=独立的线位移数
图8-7 M1:r11=3i + 3i=6i MP: R1P=96-120=-24kN∙m Z1=-R1P/r11=4kN∙m/i M=MP+Z1M1
无侧移刚架: 【题9-9】2个转角位移 (对称性利用——1个转角位移)
例:(图8-9) (a)有侧移结构
计算步骤 (1)基本未知量 z1(φ1)、z2(Δ2) 刚结点——附加刚臂(只约束转动,不约束移动) 结点——附加支座链杆(独立线位移方向)

第8章_位移法

第8章_位移法

k11
MP
3i
3
1
k11 4i 3i 7i
4i
将以上两式代入基本方程,得:
kR1111
4i
1
2
3Pl 7i Z1 16 0
1=Z1
Z1=
3i 1
3Pl Z1 112i
3
2i
M1
4、根据叠加原理作最后弯矩图
M M1Z1 MP
3Pl Z1 112i
3Pl 28
1
2
11Pl 56
3
3Pl 56
1
M 2
X2=1 1/l
l 3EI
X1
l 6EI
X2
l
A
l 6EI
X1
l 3EI
X2
l
B
A
fA
X1
fB
令 i EI l 线刚度
X1
4i A
2iB
6i l
X1=1
X2
2i A
4iB
6i l
1
M AB
4i A
2i B
6i l
M BA
2i A
4i B
6i l
M 1
M 2
X2=1
VAB
M AB
M BA l
C
D
C
D
1
C
D
A
B
A
B
1
试确定图示结构的独立线位移数
4
0
3、位移法的基本未知数
n n nl
例:确定结构按位移法求解的基本未知数
n 4 n n nl 4 2 6
nl 2
思考:确定结构按位移法求解的基本未知数
n n nl 6 2 8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

位移法基本概念汇总
位移法(也称位移法向量解法)是一种力学分析方法,用来求解物体在外力作用下的位移。

它通过将物体的整体位移分解为线性组合的简单位移元素,从而简化力学问题的计算。

位移法的基本概念包括位移向量、简单位移、整体位移和位移相加、位移相减的规则等。

以下将对这些概念进行详细介绍。

1.位移向量:位移被视为一个矢量量值,具有方向和大小。

通常用r 或Δr表示位移向量。

位移向量指示了一个物体从初始位置移动到最终位置之间的变化,在三维空间中有三个分量,分别表示在x、y和z方向的位移。

2. 简单位移:简单位移是指物体在外力作用下沿其中一特定方向发生的位移。

简单位移用Δri 表示,其中 i 表示位移方向。

简单位移可以表示出位移向量的各个分量。

3.整体位移:整体位移是指物体在外力作用下的总位移,它是各个简单位移的线性组合。

整体位移用Δr表示,可以通过将所有简单位移相加得到。

4.位移相加规则:位移相加规则表示位移向量的加法规则。

位移向量是矢量量值,遵循向量相加的几何法则。

当位移向量是直线的时候,位移相加规则即为向量相加法则;当位移向量不是直线的时候,位移相加规则按照平行四边形法则来进行计算。

5.位移相减规则:位移相减规则表示位移向量的减法规则。

位移相减规则是位移相加规则的逆运算。

对于两个位移向量r1和r2,其差向量
Δr=r1-r2,表示从r2到r1的位移。

6.位移法解决问题的步骤:利用位移法解决物体位移的问题通常分为以下几个步骤:(1)分析物体的外力情况和几何形状,确定简单位移的方向,画出位移图。

(2)根据位移图,求出整体位移向量,相加所有简单位移的向量。

(3)根据位移向量的大小和方向,解释和理解物体的位移情况。

通过使用位移法,我们可以方便地求解物体在各种复杂力学系统中的位移。

位移法可以用于解决弹性体(如弹簧)、刚体、杆件等不同类型的力学问题。

同时,位移法也是研究物体运动和变形的重要数学工具,在力学学科中具有广泛的应用。

相关文档
最新文档