5.3.1 平行线的性质(PPT)

合集下载

平行线的性质ppt课件

平行线的性质ppt课件
(3) 移: 以关键点为起点作与移动方向平行且与移动距离相
等的线段,得到关键点的对应点;
(4) 连: 按原图顺次连结对应点 .
知4-讲
特别警示
确定一个图形平行移动后的位置需要三个条件:
(1)图形原来的位置;
(2)平行移动的方向;
(3)平行移动的距离.
这三个条件缺一不可.
知4-练
例4 如图 4.2-33,现要把方格纸(每个小正方形的边长均为
知1-讲
特别警示
1. 两条直线平行是前提,只有在这个前提下才
有同位角相等.
2. 按格式进行书写时,顺序不能颠倒,与判定
不能混淆.
知1-讲
3. 平行线的性质与平行线的判定的区别
(1) 平行线的判定是根据两角的数量关系得到两条直线的位
置关系,而平行线的性质是根据两条直线的位置关系得
到两角的数量关系;
又∵ EG 平分∠ BEF,∴∠ BEG=



BEF=70° .
∵ AB ∥ CD, ∴∠ 2= ∠ BEG=70° .
答案:A
知2-练
2-1. [中 考·烟 台]一杆 古 秤 在 称 物 时 的状 态 如 图
所 示,已 知∠ 1=102°,则 ∠ 2 的度数为
78°
______.
感悟新知
知识点 3 平行线的性质3
若是,可直接求出;若不是,还需要
通过中间角进行转化 .
知1-练
1-1. [中考·台州]用一张等宽的纸条折成如图所示的图
140° .
案,若∠ 1=20 ° ,则 ∠ 2的度数为_______
感悟新知
知识点 2 平行线的性质2
知2-讲
1. 性质 2 两条平行直线被第三条直线所截,内错角相等 .

平行线的性质 优秀课件ppt

平行线的性质    优秀课件ppt

素材:探索平行线的性质(播放状态下,点击画面操作)
探索平行线的性质.swf
当堂练习
1.如图,已知平行线AB、CD被直线AE所截
(1)从 ∠1=110o可以知道∠2 是多少度吗,为什么?
(2)从∠1=110o可以知道 ∠3是多少度吗,为什么?
(3)从 ∠1=110o可以知道∠4 是多少度吗,为什么?
又∵∠A=100°,∠C=110°(已知),
∴∠ 1 = 80 °, ∠ 2 = 70 °.
∴∠AEC=∠1+∠2= 80 °+ 70 ° = 150 °.
4.已知AB⊥BF,CD⊥BF,∠1= ∠2,试说明∠3=∠E.
65
度数
78
c
观察 ∠1~ ∠8中,哪些是同位角?它们的度数 之间有什么关系?说出你的猜想:
a
21
34
b
65
78
c
猜想 两条平行线被第三条直线所截,同位角_相_等_.
再任意画一条截线d,同样度量各个角的度 数,你的猜想还成立吗?
d
a
b
如果两直线不平行,上述结论还成立吗?
总结归纳
一般地,平行线具有如下性质:
当堂练习
1.填空:如图,
(1)∠1=∠2 时,AB∥CD. (2)∠3= ∠5或∠4时,AD∥BC.
A 1 B
D
5 2
3 C
4 F
E
2.直线a,b与直线c相交,给出下列条件:
①∠1= ∠2;
②∠3= ∠6;
③∠4+∠7=180o; ④∠3+ ∠5=180°, c
其中能判断a//b的是( B )
A. ①②③④ B .①③④
3.如图,直线 a ∥ b,直线b垂直于直线c,那么直线a

《相交线与平行线——平行线的性质》数学教学PPT课件(5篇)

《相交线与平行线——平行线的性质》数学教学PPT课件(5篇)

C
∴∠ 2 +∠3=180°(__等__量__代__换__).
平行线性质3: 两条平行线被第三条直线所截,内错角相等。 简单说成:两直线平行,同旁内角互补。
几何语言: ∵ AB//CD (已知) ∴∠2+∠3=180°(两直线平行,同旁内角互补)
1B 3
2
D
1
【例题讲解】性质3:两直线平行,同旁内角互补
【例2】如图, AB//CD,AD//BC.
求证:∠A=∠C.
证明:∵AB//CD(已知), ∴∠A+∠D=180°(两直线平行,同旁内角互补). ∵AD//BC(已知), ∴∠C+∠D=180°(两直线平行,同旁内角互补). ∴∠A=∠C(同角的补角相等).
1
【巩固练习】性质3:两直线平行,同旁内角互补
∵ AB∥CD (已知) 8
2
∴∠1=∠2(两直线平行,同位角相等)
53 A7
D
1B F
1
【例题讲解】性质1:两直线平行,同位角相等
【例1】小红把一把直尺与一块三角板如图放置,测得∠1=48°,则∠2的度
数为( )
B
A. 38° B. 42°
C. 48° D. 52°
1. 如图,直线a//b,直线c与直线a,b相交,
∵ b⊥c(已知)
∴∠1=90°(垂直的定义)
∴∠2=90°(等量代换)
∴a⊥c(垂直的定义)

2
角b
c
已知 a//b
结论 ∠1=∠2
依据
两直线平行 同位角相等
两直线平行 a//b ∠3=∠2 内错角相等
a//b
∠2+∠4=180°两直线平行 同旁内角互补

七年级数学下册教学课件《平行线的判定与性质的综合运用》

七年级数学下册教学课件《平行线的判定与性质的综合运用》

(2)由(1)可知AB∥EF, ∴∠3=∠ADE(两直线平行,内错角相等). 又∠3=∠B(已知), ∴∠ADE=∠B(等量代换). ∴DE∥BC(同位角相等,两直线平行). ∴∠EDG=∠BGD=55°(两直线平行,内错角相等). ∵DE平分∠ADG(已知), ∴∠ADG=2∠EDG=110°(角平分线的定义). 又AB∥EF, ∴∠1=∠ADG=110°(两直线平行,同位角相等).
(2)∵DE∥BC,∴∠C = ∠AED = 40°(两直线平行,
同位角相等)
4.已知:如图,∠1+∠B=∠C.试说明BD∥CE.
解:如图,作射线AP,使AP∥BD, ∴∠PAB=∠B(两直线平行,内错角相等). P 又∠1+∠B=∠C(已知), ∴∠1+∠PAB=∠C(等量代换), 即∠PAC=∠C. ∴AP∥CE(内错角相等,两直线平行). 又AP∥BD, ∴BD∥CE(如果两条直线都与第三条直线平 行,那么这两条直线也互相平行).
解:∵∠1=∠2(已知),∠2=∠DHE(对顶角相等), ∴∠1=∠DHE(等量代换). ∴AB∥CD (同位角相等,两直线平行). ∴∠B+∠D =180°(两直线平行,同旁内角互补). ∵∠D=50°(已知), ∴∠B=180°-∠D=180°-50°=130°.
②如图,已知AB∥CD,DA平分∠CDE,∠A =∠AGB.
拓展提升
如图 , 点E在AB上 , 点F在CD上 , CE , BF分别交AD于 点G,H.已知∠A =∠AGE,∠D=∠DGC. (1)AB与CD平行吗? 请说明理由. ( 2 ) 若∠2+∠1=180° , 且∠BEC=2∠B+30° , 求∠C 的度数.
解:(1)AB∥CD.理由如下: ∵∠A=∠AGE,∠D=∠DGC,∠AGE=∠DGC(对 顶角相等),∴∠A=∠D (等量代换). ∴AB∥CD (内错角相等,两直线平行).

《平行线的性质》相交线与平行线PPT免费课件(第2课时)

《平行线的性质》相交线与平行线PPT免费课件(第2课时)

课堂检测 拓广探索题
如图,AB∥CD,猜想∠A、∠P 、∠PCD的数
量关系,并说明理由.
解法一:作∠PCE =∠APC,交AB于E.
A
∴ AP∥CE ∴ ∠AEC=∠A,∠P=∠PCE.
∴ ∠A+∠P=∠PCE+∠AEC,
C
∵AB∥CD ∴ ∠ECD=∠AEC,
∴∠A+∠P =∠PCE+∠ECD=∠PCD.
A
B
A
B
A E1
B
E
E1
E2
E2
E3
C
D
C
D
C
D
当有一个拐点时: ∠A+∠E+∠C= 360°
当有两个拐点时: ∠A+∠ E1 + ∠ E2 +∠C = 540° 当有三个拐点时: ∠A+∠ E1 + ∠ E2 +∠ E3 +∠C = 720°
探究新知 若有n个拐点,你能找到规律吗?
A
B
E1
E2 …
【思考】在填写依据时要注意什么问题?
巩固练习
如图,AB∥EF,∠ECD=∠E,则∠A=∠ECD.
理由如下:
B
A
∵∠ECD=∠E, ∴CD∥EF( 内错角相等,两直线平行 又AB∥EF,
D
C
)E
F
∴CD∥AB(平行于同一直线的两条直线互相__平__行_ ).
∴∠A=∠ECD( 两直线平行,同位角相等 __ ).
= ∠ E1 +∠ E2
探究新知
若左边有n个角,右边有m个角,你能找到规律吗?
A
F1 F2 Fn-1
B E1

2020-2021学年下学期人教版七年级数学下册5.3.1平行线的性质(1)课件

2020-2021学年下学期人教版七年级数学下册5.3.1平行线的性质(1)课件

.
4. 如图,已知AB∥CD,AE∥CF,∠A= 39°,
∠C是多少度?为什么?
1如图,AB∥CD,直线EF与AB,CD分别交于点M, N,过点N的直线GH与AB交于点P,则下列结论 错误的是( )
A.∠EMB=∠END B.∠BMN=∠MNC C.∠CNH=∠BPG D.∠DNG=∠AME
2.如图,AB∥CD∥EF,AC∥DF.若∠BAC=120°, 则∠CDF=( )
c
21 a
度数
34
角 ∠5 ∠6 ∠7 ∠8 度数
65b
1.∠1∠8中,哪些是同位角?它们的度数之7 8间有
什么关系?由此猜想两条平行线被第三条直线截
得的同位角有什么关系?
2.平行线的性质1是什么?几何语言是什么?
性质1 两条平行线被第三条直线 所 截,同位角相等. 简单说成: 性质1:两直线平行,同位角相等.
导入 平行线的判定
条件
结论
判定方法1 同位角相等,两直线平行.
判定方法2 内错角相等,两直线平行. 判定方法3 同旁内角互补,两直线平行.
引出新课
条件
两 直 线 平 行
结论

引出新课
条件
结论
两条平行线 被第三条直 线所截
同位角? 内错角? 同旁内角?
5.3.1 平行线的性质 (第1课时)
课件说明
A.∠EMB=∠END
B.∠BMN=∠MNC
C.∠CNH=∠BPG
D.∠DNG=∠AME
2.如图,AB∥CD∥EF,AC∥DF.若∠BAC=120°,则∠CDF=( )
A.60° B.120° C.150° D.180°
3.如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.

2023-2024人教版七年级数学下册课件:5.3.1 平行线的性质第1课时 两直线平行,同位角相等

2023-2024人教版七年级数学下册课件:5.3.1 平行线的性质第1课时 两直线平行,同位角相等
2.在解题过程中,首先要根据所给图形正确判断截线与被截线,才
能准确地得到角与角之间的关系,从而正确地作出解答.
轻松达标
1.如图5.3-2,//.∠1 = 58∘ ,则∠2的度数为( A ) .
图5.3-2
A.58∘
B.112∘
C.120∘
D.132∘
2.如图5.3-3所示,直角三角尺的直角顶点放在直线
图5.3-6
6.如图5.3-7,已知//,直线分别交,于,,平分∠,
若∠1 = 62∘ ,求∠2的度数.
解:∵ //,
∴ ∠1 + ∠ = 180∘ .
又∵ ∠1 = 62∘ ,
∴ ∠ = 118∘ .
∵ 平分∠,
∴ ∠ = 59∘ .
人教版七年级数学下册课件
第五章 相交线与平行线
5.3.1 平行线的性质
(3课时)
第1课时 两直线平行,同位角相等
自主学习
自主导学
同位角
平行线的性质1:两条平行线被第三条直线所截,________相等.
简单说成:两直线平行,同位角相等.
典例分享
例 如图5.3-1所示,在三角形中,∠ = 70∘ ,
图5.3-4
4.如图5.3-5,若∠1 = ∠3,则下列结论一定成立的是( C ) .
图5.3-5
A.∠1 = ∠4
B.∠3 = ∠4
C.∠1 + ∠2 = 180∘
D.∠2 + ∠4 = 180∘
5.如图5.3-6,直线,被直线所截,已知//,
50 ∘ .
∠1 = 130∘ ,则∠2 =____
∴ ∠2 =
180∘
− ∠ =
180∘

35∘

数学七年级人教版 5.3.1 平行线的性质 课件(共16张PPT)

数学七年级人教版 5.3.1 平行线的性质 课件(共16张PPT)

如图:已知a//b, 那么2与 3有什么关系呢?
c
a
2
3
b
1
平行线的性质3 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。
平行线的性质 (1)两条平行线被第三条直线所截,同位角相等; (2)两条平行线被第三条直线所截,内错角相等; (3)两条平行线被第三条直线所截,同旁内角互补。
平行线的性质
:

授 者
路 井


王 杰
中 学
问题1:判定两条直线平行,我们学过 的方法有哪几种?
方法1:同位角相等,两直线平行.
方法2:内错角相等,两直线平行. 方法3:同旁内角互补,两直线平行.
问题2:根据同位角相等可以判定两 直线平行,反过来如果两直线平行同 位角之间有什么关系呢?内错角,同 旁内角之间又有什么关系呢?
15、一年之计,莫如树谷;十年之计 ,莫如 树木; 终身之 计,莫 如树人 。2021年8月2021/8/112021/8/112021/8/118/11/2021
16、提出一个问题往往比解决一个更 重要。 因为解 决问题 也许仅 是一个 数学上 或实验 上的技 能而已 ,而提 出新的 问题, 却需要 有创造 性的想 像力, 而且标 志着科 学的真 正进步 。2021/8/112021/8/11August 11, 2021
得到
判定
得到
两直线平行
性质 已知
小结
平行线的性质
图形
同 位
a
角b
1 2 c
内 错
a3
角b
2
c
同 旁
a

42
角b
c
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

21
3
6
4 5
性质1: 两条平行线被第
三条直线所截,同位角相等.
78
即:两直线平行,同位角相等.
115°
a b
练习1
如图,平行线AB,CD被直线AE所截. (1)从∠1=110º.可以知道∠3是多少度吗?为什么?
答:∠3=110º.
理由如下:
∵AB∥CD,
A
∴∠1=∠3(两直线平行, 1
C 2 43 E
解:∵AB∥CD, ∴ ∠C=∠1. ∵ AE∥CF, ∴ ∠A=∠1. ∴ ∠C=∠A. ∵∠A= 39º, ∴∠C= 39º.
E F
A
G1
B
C
D
归纳
平行线的性质与判定
性质
两直线平行 判定
同位角相等 内错角相等 同旁内角互补
位置关系
数量关系
练习5
已知,如图,∠1=∠2,CE∥BF, 求证: AB∥CD.
如果两直线平行,那么同旁内那什角 么么数∠有4量什和关么∠系5关?有系?
c
证明:
符号言语: ∵a∥b
∵a∥b
∴∠1=∠5
∴∠5+∠4=180° ∵∠1+∠4=180°
∴∠5+∠4=180°
2 3
1 4
65
a b
性质3: 两条平行线被第三条 直线所截,同旁内角互补.
7
8
即:两直线平行,同旁内角互补.
练习3
5.3.1 平行线的性质
回顾旧知
平行线的判定 判定方法1: 同位角相等,两直线平行. 判定方法2: 内错角相等,两直线平行. 判定方法3: 同旁内角互补,两直线平行.
探究1
分别量一量 ∠1和∠5的度数?
如果两直线平行,那么同位它量角们关有之系间?什有么什关么数系?
c
115°
符号言语:
∵a∥b ∴ ∠1=∠5
同位角相等)
∵∠1=110º,
∴∠3=110º.
B
D
探究2
如果a∥b ,
如果两直线平行,那么内错角那什有 么么数∠什3量么和关关∠系5系?有?
c
证明:
符号言语: ∵a∥b
∵a∥b ∴ ∠3=∠5
∴∠1=∠5 ∵∠1=∠3 ∴∠3=∠5.
21
3
6
4 5
a b
性质2: 两条平行线被第 三条直线所截,内错角相等.
78
即:两直线平行,内错角相等.
练习2
如图,平行线AB,CD被直线AE所截. (2)从∠1=110º.可以知道∠2是多少度吗?为什么?
答:∠2=110º.
理由如下:
∵AB∥CD,
A
∴∠1=∠2(两直线平行, 1
C 2 43 E
内错角相等)
∵ ∠1=110º,
∴∠2 =110º.
B
D
探究3
如果a∥b ,
证明:
∵ CE∥BF, ∴∠1=∠B.
AE 1
B
∵∠1=∠2 ,
∴∠2=∠B.
C
∵∠2和∠B是内错角,
2
F
D
∴ AB∥CD(内错角相等,两直线平行).
体验收获
今天我们学习了哪些知识?
1.本节课,你学习了哪些平行线的性质? 2.结合实际,说一说什么时候需要使用 平行线的性质,什么时候需要使用平行线的 判定吗?
如图,平行线AB,CD被直线AE所截. (3)从∠1=110º.可以知道∠4是多少度吗?为什么?
答:∠4=70º.
理由如下:
∵AB∥CD,
A
∴ ∠1+∠4=180º(两直

C 2 43 E
线平行,同旁内角互补)
∵∠1=110º,
∴∠4=70º.
B
D
练习4 ∠C是如多图少,度已?知为AB什∥么C?D,AE∥CF,它∠的A你方=还3法9有°吗其,?
证明: ∵∠1=∠2 ,∠3=∠4, 又∵∠2=∠3. ∴∠1=∠2 =∠3=∠4. ∵∠1+∠2 +∠5=180º, ∠3+∠4 +∠6=180º, ∴∠5=∠6.
∴ PM∥NQ (内错角相等,两直线平行).
布置作业
教材23页习题5.3第4、6题.
达标测评
1. 已知∠3 =∠4,∠1=47°, 求∠2的度数?
解:∵ ∠3 =∠4(已知 )
d
∴a∥b(同位角相等,
两直线平行)
a
3
∴∠1=∠2(两直线平行,同
位角相等)
b4
∵∠1= 47°(已知 )
∴∠2= 47°(等量代换)
c
2 1
达标测评
2. 如图,AB∥CD,∠1=∠2,∠3=∠4. 求证:PM∥NQ.
相关文档
最新文档