最新dht22 数字温湿度 传感器 am2302温湿度模块(带说明)资料讲解

最新dht22 数字温湿度 传感器 am2302温湿度模块(带说明)资料讲解
最新dht22 数字温湿度 传感器 am2302温湿度模块(带说明)资料讲解

AM2302温湿度传感器C程序(测试可以用)

2017-8-13

说明:

DHT22与DHT11程序基本相同,DHT11起始信号拉低18ms,DHT22起始信号拉低是800us,用户主机(MCU)发送一次起始信号(把数据总线SDA拉低至少800μs)后,AM2302从休眠模式转换到高速模式。待主机开始信号结束后,AM2302发送响应信号,从数据总线SDA串行送出40Bit 的数据,先发送字节的高位;发送的数据依次为湿度高位、湿度低位、温度高位、温度低位、校验位,发送数据结束触发一次信息采集,采集结束传感器自动转入休眠模式,直到下一次通信来临。

注意事项:

与DHT11相同,一次采集8个位数据,循环4次采集完成所有数据,40位采集完成后,校验数据,如果数据正确,将高8位左移8位与低8位相或,再保存到一个16位变量中,就可以得到一个整数值。默认采集的数据是实际值的10倍,例如当前实际温度是32.7度,采集到的数据是327,目的是为了编程时方便分离数据。(详细见后面说明书)

0000 0010 1000 1100 0000 0001 0101 1111 1110 1110

湿度数据温度数据校验和

湿度高8位+湿度低8位+温度高8位+温度低8位=的末8位=校验和如果需要处理零下值,16位的最高位为1表示负数,温度最大量程:-20~80度,分辨率:0.1度。

如果用数据码管显示且有中断,采集数据开始需要关中断,采集结束开中断,否则在采集数据过程中,中断会打断DHT22时序,造成采集数据不正确。

每次采集间隔大于1秒,否则采集数据不准确。

C程序:

为了方便程序阅读,其它器件的初始化及定义都删除掉了,以下代码纯DHT22代码,使用时直接调用RH函数即可。由于程序多次修改,可能有多余的变量,大家自己清理下。

RH函数调用后,以下四个变量会得相应的数据:

R_H 湿度高8位

R_L 湿度低8位(包含小数)

T_H 温度高8位

T_L 湿度低8位(包含小数)

如果采集的数据是:0000 0010 1000 1100 0000 0001 0101 1111

由上面四个变量是16位,采集数据是8位,分四次采完,8位放在16位里面应该是这样:

R_H= 00000000 00000010

R_L= 00000000 10001100

所以R_H左移8个位或上R_L才是我们要的数据。R_H =R_H & R_L

以上采集数据湿度为652,湿度为351,再除以10就是实际温湿度值。

#include

#include

typedef unsigned char U8; /* defined for unsigned 8-bits integer variable 无符号8位整型变量*/ typedef signed char S8; /* defined for signed 8-bits integer variable 有符号8位整型变量*/

typedef unsigned int U16; /* defined for unsigned 16-bits integer variable 无符号16位整型变量*/ typedef signed int S16; /* defined for signed 16-bits integer variable 有符号16位整型变量*/ typedef unsigned long U32; /* defined for unsigned 32-bits integer variable 无符号32位整型变量*/

typedef signed long S32; /* defined for signed 32-bits integer variable 有符号32位整型变量*/ typedef float F32; /* single precision floating point variable (32bits) 单精度浮点数(32位长度)*/

typedef double F64; /* double precision floating point variable (64bits) 双精度浮点数(64位长度)*/

//

#define uchar unsigned char

#define uint unsigned int

#define Data_0_time 4

//----------------------------------------------//

//----------------IO口定义区--------------------//

//----------------------------------------------//

sbit P2_0 = P3^2 ;

//----------------------------------------------//

//----------------定义区--------------------//

//----------------------------------------------//

U8 U8FLAG,k;

U8 U8count,U8temp;

U8 U8T_data_H,U8T_data_L,U8RH_data_H,U8RH_data_L,U8checkdata;

U8 U8T_data_H_temp,U8T_data_L_temp,U8RH_data_H_temp,U8RH_data_L_temp,U8checkdata_temp;

U8 U8comdata;

U8 outdata[5]; //定义发送的字节数

U8 indata[5];

U8 count, count_r=0;

U8 str[5]={"RS232"};

U16 U16temp1,U16temp2;

U16 R_H,R_L,T_H,T_L;

void Delay(U16 j)

{ U8 i;

for(;j>0;j--)

{

for(i=0;i<27;i++);

}

}

void Delay_10us(void)

{

U8 i;

i--;

i--;

i--;

i--;

i--;

i--;

}

void COM(void)

{

U8 i;

for(i=0;i<8;i++)

{

U8FLAG=2;

while((!P2_0)&&U8FLAG++);

Delay_10us();

Delay_10us();

Delay_10us();

U8temp=0;

if(P2_0)U8temp=1;

U8FLAG=2;

while((P2_0)&&U8FLAG++);

//超时则跳出for循环

if(U8FLAG==1)break;

//判断数据位是0还是1

// 如果高电平高过预定0高电平值则数据位为1 U8comdata<<=1;

U8comdata|=U8temp; //0

}//rof

}

//--------------------------------

//-----湿度读取子程序------------

//--------------------------------

//----以下变量均为全局变量--------

//----温度高8位== U8T_data_H------

//----温度低8位== U8T_data_L------

//----湿度高8位== U8RH_data_H-----

//----湿度低8位== U8RH_data_L-----

//----校验8位== U8checkdata-----

//----调用相关子程序如下----------

//---- Delay();, Delay_10us();,COM();

//--------------------------------

void RH(void)

{

//主机拉低18ms

P2_0=0;

Delay(18);

P2_0=1;

//总线由上拉电阻拉高主机延时20us

EA=0;

Delay_10us();

Delay_10us();

Delay_10us();

Delay_10us();

//主机设为输入判断从机响应信号

P2_0=1;

//判断从机是否有低电平响应信号如不响应则跳出,响应则向下运行

if(!P2_0) //T !

{

U8FLAG=2;

//判断从机是否发出80us 的低电平响应信号是否结束

while((!P2_0)&&U8FLAG++);

U8FLAG=2;

//判断从机是否发出80us 的高电平,如发出则进入数据接收状态

while((P2_0)&&U8FLAG++);

//数据接收状态

COM();

U8RH_data_H_temp=U8comdata;

COM();

U8RH_data_L_temp=U8comdata;

COM();

U8T_data_H_temp=U8comdata;

COM();

U8T_data_L_temp=U8comdata;

COM();

U8checkdata_temp=U8comdata;

P2_0=1;

//数据校验

U8temp=(U8T_data_H_temp+U8T_data_L_temp+U8RH_data_H_temp+U8RH_data_L_temp);

if(U8temp==U8checkdata_temp)

{

R_H=U8RH_data_H_temp;

R_L=U8RH_data_L_temp;

T_H=U8T_data_H_temp;

T_L=U8T_data_L_temp;

U8checkdata=U8checkdata_temp;

}

}

EA=1;

}

说明书:

数字温湿度传感器

AM2302

小体积AM2302

?相对湿度和温度测量

?全部校准,数字输出

?卓越的长期稳定性

?无需额外部件

?超长的信号传输距离

?超低能耗

?4 引脚安装

?完全互换

AM2302产品概述

AM2302数字温湿度传感器是一款含有已校准数字信号输出的温湿度复合传感器。它应用专用的数字模块采集技术和温湿度传感技术,确保产品具有极高的可靠性与卓越的长期稳定性。传感器包括一个电容式感湿元件和一个NTC测温元件,并与一个高性能8位单片机相连接。因此该产品具有品质卓越、超快响应、抗干扰能力强、性价比极高等优点。每个AM2302传感器都在极为精确的湿度校验室中进行校准。校准系数以程序的形式储存在OTP 内存中,传感器内部在检测信号的处理过程中要调用这些校准系数。单线制串行接口,使系统集成变得简易快捷。超小的体积、极低的功耗,信号传输距离可达20米以上,使其成为各类应用甚至最为苛刻的应用场合的最佳选则。产品为 4 针单排引脚封装。连接方便,特殊封装形式可根据用户需求而提供。

应用领域

?暖通空调?测试及检测设备

?汽车?数据记录器

?消费品?自动控制

?气象站?家电

?湿度调节器?医疗

1

2、

3、接口说明

建议连接线长度短于20米时用5K上拉电阻,大于20米时根据实际情况使用合适的上拉电阻

AM2302的接线图如下图所示。

3、电源引脚

AM2302的供电电压为3.3-6V。传感器上电后,要等待1s 以越过不稳定状态在此期间无需发送任何指令。电源引脚(VDD,GND)之间可增加一个100nF 的电容,用以去耦滤波。

4、单总线接口

DATA 用于微处理器与AM2302之间的通讯和同步,采用单总线数据格式,一次通讯时间5ms左右,具体格式在下面说明,当前数据传输为40bit,高位先出。

数据格式: 40bit数据=16bit湿度数据+16bit温度数据+8bit校验和

例子:接收40bit数据如下:

0000 0010 1000 1100 0000 0001 0101 1111 1110 1110

湿度数据温度数据校验和

湿度高8位+湿度低8位+温度高8位+温度低8位=的末8位=校验和

例如:0000 0010+1000 1100+0000 0001+0101 1111=1110 1110

湿度=65.2%RH 温度=35.1℃

当温度低于0℃时温度数据的最高位置1。

例如:-10.1℃表示为1000 0000 0110 0101

用户主机(MCU)发送一次开始信号后,AM2302从低功耗模式转换到高速模式,等待主机开始信号结束后,AM2302发送响应信号,送出40bit的数据,并触发一次信号采集。(注:主机从AM2302读取的温湿度数据总是前一次的测量值,如两次测量间隔时间很长,请连续读两次以获得实时的温湿度值)

图1

空闲时总线为高电平,通讯开始时主机(MCU)拉低总线1~10ms后释放总线,延时20-40us后主机开始检测从机(AM2302)的响应信号。

温湿度传感器介绍

DWTHI100-S02 无线多功能综合传感器 一、产品介绍 1.1产品概述 ●本产品可以实时、准确的测量环境温度、环境相对湿度和照度,它能使用户对现 场环境实现远程的数据采集和监测,大大减少人工工作量,突出便利性、准确性和实时性。 ●本产品具有体积小、使用寿命长、无线信号传输距离远、环境适应性好、测量 精度高、安装便捷、防水等特点,是一款高性价比的产品。 ●本产品可广泛应用于仓储管理、生产制造、气象观测、科学研究以及日常生活等 领域。 1.2 产品外观 1.3技术参数 1. 温度测量范围:-40℃~+125℃; 2. 温度测量精度:±0.3℃±2.5%(rdg-25℃); 3. 绝对湿度测量范围:1%RH~100%RH; 4. 绝对湿度测量精度: <10%RH:±1.8%RH±20%(rdg-20%RH); 10%RH~90%RH:±1.8%RH

>90%RH:±1.8%RH±20%(rdg-90%RH); 5. 工作环境温度:-20℃~+80℃; 6. 信号调制方式:GFSK; 7. 工作频率:2.45GHz; 8. 无线通讯距离:>300米(2.45GHz、开阔地); 9. 测量周期:30s(3.6V、典型值); 10.平均功耗:<7μA(3.6V); 11.电池寿命:≥6年; 12.外壳材料:增强型耐高温ASA树脂; 13.外形尺寸:45 mm×24 mm×18.5mm; 14.重量:25g(含天线); 15.防护等级:IP34; 16.安装方式:螺丝固定或无痕泡棉双面胶粘贴。 1.4应用场所 1、机房、厂房、仓库、无菌室; 2、温室大棚、智能大棚; 3、图书馆、档案馆、文物馆; 4、生物制药; 5、食品加工、储存场所; 6、医卫场所; 7、气象站; 8、智能楼宇; 9、其它需要监测温、湿、照度的场所。 1.5产品尺寸

DHT11温湿度传感器

基于单片机的DHT1温湿度 传感器设计 姓名:史延林指导老师:黄智伟学 院:电气工程学院 学号:20094470321 摘要: 温湿度是生活生产中的重要的参数。本设计为基于单片机的温湿度检测与控制 系统,采用模块化、层次化设计。用新型的智能温湿度传感器DHT1住要实现对温度、 湿度的检测,将温度湿度信号通过传感器进行信号的采集并转换成数字信号,再运用单片机STC89C5进行数据的分析和处理,为显示和报警电路提供信号,实现对温湿度的控制报警。报警系统根据设定报警的上下限值实现报警功能,显示部分采用LCD160液晶显示所测温湿度值。系统电路简单、集成度高、工作稳定、调试方便、检测精度高,具有一定的实用价值。

关键词:单片机;DHT1温湿度传感器;LCD1602显示 第一章:课程构思 1.1课题背景 温湿度的检测与控制是工业生产过程中比较典型的应用之一,随着传感器在生产和生活中的更加广泛的应用。在生产中,温湿度的高低对产品的质量影响很大。由于温湿度的检测控制不当,可能使我们导致无法估计的经济损失。为保证日常工作的顺利进行,首要问题是加强生产车间内温度与湿度的监测工作,但传统的方法过于粗糙,通过人工进行检测,对不符合温度和湿度要求的库房进行通风、去湿和降温等工作。这种人工测试方法费时费力、效率低,且测试的温度及湿度误差大,随机性大。目前,在低温条件下(通常指100C以下),温湿度的测量已经相对成熟。利用新型单总线式数字温度传感器实现对温度的测试与控制得到更快的开发。但人们对它的要求越来越高,要为现代人工作、科研、学习、生活提供更好的更方便的设施就需要从数字单片机技术入手,一切向着数字化,智能化控制方向发展。 对于国内外对温湿度检测的研究,从复杂模拟量检测到现在的数字智能化检测越发的成熟,随着科技的进步,现在的对于温湿度研究,检测系统向着智能化、小型化、低功耗的方向发展。在发展过程中,以单片机为核心的温湿度控制系统发展为体积小、操作简单、量程宽、性能稳定、测量精度高,等诸多优点在生产生活的各个方面实现着至关重要的作用。 温湿度传感器除电阻式、电容式湿敏元件之外,还有电解质离子型湿敏元件、重量型湿敏元件(利用感湿膜重量的变化来改变振荡频率)、光强型湿敏元件、声表面波湿敏元件等。湿敏元件的线性度及抗污染性差,在检测环境湿度时,湿敏元件要长期暴露在待测环境中,很容易被污染而影响其测量精度及长期稳定性。 1.2主要内容 本文设计的是基于单片机STC89C5的温湿度检测和控制系统,主要以广泛应用的DHT1作为温度和湿度的检测,该仪器具有测量精度较高、硬件电路简单、并能很好的进行显示,可测试不同环境温湿度的特点。另外和控制电路相连,可以进行加湿电路和除湿电路的控制,使温度和湿度参数在预先设定的范围内,不需要人的直接参与。 单片机是系统的控制核心,所以单片机的性能关系到整个系统的好坏。因此单片机的选择,对所设计系统的实现以及功能的扩展有着很大的影响。本设计中,最终选用的集成温度传

DHT11-温湿度传感器

3.3 DHT11传感器模块设计 3.3.1 DHT11传感器简介 DHT11数字温湿度传感器是一款含有已校准数字信号输出的温湿度复合传感器。它应用专用的数字模块采集技术和温湿度传感技术,确保产品具有极高的可靠性与卓越的长期稳定性。传感器包括一个电阻式感湿元件和一个NTC测温元件,并与一个高性能8位单片机相连接。因此该产品具有品质卓越、超快响应、抗干扰能力强、性价比极高等优点。每个DHT11传感器都在极为精确的湿度校验室中进行校准。校准系数以程序的形式储存在OTP存中,传感器部在检测信号的处理过程中要调用这些校准系数。单线制串行接口,使系统集成变得简易快捷。超小的体积、极低的功耗,信号传输距离可达20米以上,使其成为各类应用甚至最为苛刻的应用场合的最佳选则。产品为 4 针单排引脚封装。连接方便,特殊封装形式可根据用户需求而提供。 DHT11传感器实物图如下3-3所示: 图3-3 DHT11传感器实物图 (1)引脚介绍: Pin1:(VDD),电源引脚,供电电压为3~5.5V。

Pin2:(DATA),串行数据,单总线。 Pin3:(NC),空脚,请悬浮。 Pin4(VDD),接地端,电源负极。 (2)接口说明: 建议连接线长度短于20米时用5K上拉电阻,大于20米时根据实际情况使用合适的上拉电阻。 图3-4 DHT11典型应用电路 (3)数据帧的描述: DATA 用于微处理器与 DHT11之间的通讯和同步,采用单总线数据格式,一次通讯时间4ms左右,数据分小数部分和整数部分,具体格式在下面说明,当前小数部分用于以后扩展,现读出为零.操作流程如下: 一次完整的数据传输为40bit,高位先出。 数据格式:8bit湿度整数数据+8bit湿度小数数据 +8bi温度整数数据+8bit温度小数数据 数据传送正确时校验和数据等于“8bit湿度整数数据+8bit湿度小数数据+8bi 温度整数数据+8bit温度小数数据”所得结果的末8位。 (4)电气特性:VDD=5V,T = 25℃,除非特殊标注 表3-2 DHT11的电气特性 参数条件Min typ max 单位供电DC 3 5 5.5 V 供电电流测量0.5 2.5 mA 平均0.2 1 mA 待机100 150 uA 采样周期秒 1 次注:采样周期间隔不得低于1秒钟。

BYS-30温湿度控制仪使用说明书

B Y S-30温湿度控制仪 使用说明书 -CAL-FENGHAI.-(YICAI)-Company One1

BYS-30型混凝土标准养护室自动控制仪 使 用 说 明 书 浙江华南仪器设备有限公司

浙江华南仪器设备有限公司专业生产销售混凝土标准养护室自动温湿控制仪,混凝土养护室控制仪欢迎您来电咨询混凝土标准养护室自动温湿控制仪,混凝土养护室控制仪的详细信息!浙江华南仪器设备有限公司提供的混凝土标准养护室自动温湿控制仪,混凝土养护室控制仪不仅具有国内外领先的技术水平,更有良好的售后服务和优质的解决方案。 混凝土标准养护室自动温湿控制仪,混凝土养护室控制仪技术电话: BYS-30型混凝土标准养护室自动控制仪是浙江华南仪器设备有限公司自行研发的新一代适用于各水泥厂、水泥制品厂、商品砼搅拌站及建工、交通工程、公路施工单位、科研机构和质检站对标准养护室的温湿度控制,具有操作方便、控制准确等优点。 本控制仪另一特点为三通道设置,常规单通道设置时,可控制20m3以下空间的温湿度,当用户选择二、三通道时只要增加一台或二台加湿加热水箱, 即可控制达 50m3和70 m3空间的温湿度。 一.产品符合GB/T 50081-2002《普通砼力学性能试验方法》和ISO2736、JTGE30-2005等标准的要求。 二.混凝土标准养护室自动控制仪技术指标上海雷韵技术电话:控温范围:10~40℃控温精度: (20℃)±2℃控湿范围:≥95%(相对湿度) 加热功率: kW / kW(常规配置/二通道配置/三通道配置) 制冷功率:≤2kW(用户需自己配备≤3匹单冷空调,不要遥控器,控制回路接入本控制仪) 加湿功率: 60W 电源电压:AC220V±22V 电源频率: 50 Hz±1Hz 三. 混凝土标准养护室自动控制仪结构与工作原理 1、该控制仪由控制箱、加湿器、不锈钢加热水箱和空调(自备)四大部分组成,其温、湿度的控制均由数显仪表自动交换,无须人工控制。 2、工作原理 (1)温控:当养护室内的温度高于控制仪的上限给定值时,控制系统即输出制冷信号,控制单冷空调,外接负载工作,反之,温度低于控制仪的下限给定值时,主机即加热,当达到控制要求时自动恢复到恒温状态,如此反复达到控制温度的目的。用户如果安装的是冷暖型空调,则不能去掉遥控装置,宜把空调调整在目标控制温度的下限,利用本控制仪把温度控制在更精确的状态下。 (2)湿控:当养护室内的湿度低于控制值时,控制系统输出加湿信号,控制主机加湿器工作,室内湿度达到要求后即自动停止工作。控制仪还设置有手动加湿功能,只要按下控制面板上的手动加湿按钮,即可进行人为加湿。 四. 混凝土标准养护室自动控制仪安装及使用方法 1、安装方法 (1)首先将控制箱固定在养护室外,固定位置以方便操作为宜。选择最近位置将温湿度探头放入养护室内并固定好,温湿度传感器分别按编号连接到控制仪。养护室应有良好的保温性和密封性,空间大小符合要求。 (2)然后将主机放于养护室中心位置,用塑料水管将增湿器进水口与自来水管连通,打开水龙头(常开小量)进水能自动控制,水位必须高于电热管,以免电热管脱水烧毁。加热、加湿插头分别插在控制箱的插座上。 (3)单冷空调器安装前需将控制系统拆除,然后将压缩机的电源插头直接连接在制冷插座上。注意:如果安装冷暖型空调,不要把空调接入控制仪,让空调独立运行即可。

TH-802P网络型温湿度传感器安装使用说明书

TH-802P网络型温湿度传感器安装使用说明书 一.概述 TH-802P温湿度传感器是一种检测和采集环境温湿度的网络型智能 传感器,该传感器采用大屏幕液晶实时显示当前环境的温湿度值。 TH-802P温湿度传感器可以通过安装相应的监控软件,配备相应的 RS485串口通信模块与计算机进行通讯,实现计算机对温湿度控制器的 远程监控。适用于数据机房、通讯基站、计算机机房、精密车间、仓库、 温棚等场所的温湿度检测。 图1 TH-802P 二.特点 ●属精密网络型温湿度传感器,可以设定通讯地址0-255和波特率1200-19200bps; ●经可溯源标准检验,精度高并具备程序校准精度功能,低功耗、高稳定性; ●提供LCD段码显示和RS485通讯,设备地址和通讯波特率可通过按键设定 ●阻燃绝缘纤维外壳,采用5.08mm间距升降式接线端子,安全可靠; ●方便的壁挂安装方式 三.技术指标 ●供电电源:9~24VDC±20% ●测温范围:-10 ~60℃; ●测湿范围:0 ~ 100%RH; ●精度:温度±0.5℃(全量程内);湿度±3%RH(25℃时); ●采集周期:不小于200ms; ●通讯距离:大于1000米 ●工作环境:-10℃~ 60℃,10 ~ 95%RH无冷凝 ●存储温度:-40℃~ 80℃ ●整机功耗:小于0.2W ●最大尺寸:86×86×30mm ●重量:100g。 四.典型应用 图2 应用图 五.按键说明 ●“确认”:按住“确认”按键持续约三秒,设备进入参数设置状态; 在参数设置状态下,单击该按键可选择设置参数类型为波特率设置或地址设置。 在参数设置状态下,长按“确认按键”3秒以上返回正常工作状态,同时保存设置参数。 ●“上调”:在参数设置状态下,单击此键参数循环递加; ●“下调”:在参数设置状态下,单击此键参数循环递减;六.波特率、地址设置 ●设备加电后自检,1秒后进入正常工作状态;● ● 所指; ● 波特率设置范围:1200、2400、4800、9600、19200 地址设置范围:A 0-255 ●波特率或地址完成后,长按“确定”键3秒以上,返回正常工作状态, 同时保存设置参数。 提示:通讯波特率缺省值为9600bps,地址为“1”。 七.电磁兼容 ●静电放电抗干扰检验:参照标准IEC61000-4-2 (GB/T17626.2); ●工频磁场抗扰度检验: 参照标准IEC61000-4-8 (GB/T17626.8); ●浪涌(冲击)抗扰度试验:参照标准IEC61000-4-5(GB/T17626.5) ●快速瞬变: 参照标准IEC61000-4-4 (GB/T17626.4); ●安全要求: 参照标准IEC61010-1 (GB/T4793.1)。 V+:接12VDC电源正极; GND:接12VDC电源负极; RS+:接RS485正极; RS-:接RS485负极。 图4 PCB接线端子九.安装尺寸 两挂墙孔中心间距:59mm 1.将TH-802P后盖打开; 2.将螺丝装钉在墙面上,两螺丝间距为58-60mm; 3.旋紧螺丝将TH-802P的后盖固定在墙上; 4.按接线端子示意图正确接入电源线、通讯线; 5.检查无误后将TH-802P合上后盖。 图3 波特率、地址设置状态 图5 TH-802P后盖图及安装尺寸

传感器的发展历程

传感器的历史及现状 传感器是能够感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。传感器的种类很多,按照不同的功能,不同的适用领域可以划分多种类型。其中,温度传感器是最早开发、应用最广的一类传感器。从17世纪初,人们就开始利用温度计进行测量,而真正把温度变成电信号的传感器是1821年由德国物理学家赛贝发明的,这就是后来的热电偶传感器。在半导体得到充分发展以后,相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。与之相应,根据波与物质的相互作用规律,相继开发了声学温度传感器、红外传感器和微波传感器。 我国的传感器发展已经经历了50多个春秋,20世纪80年代,改革开放给传感器行业带来了生机与活力。90年代,在党和国家关于“大力加强传感器的开发和在国民经济中普遍应用”的决策指引下,传感器行业进入了新的发展时期。目前来看,传感器的应用已经遍及到工业生产、海洋探测、环境保护、医学诊断、生物工程等多方面的领域,几乎所有的现代化的项目都离不开传感器的应用。在我国的传感器市场中,国外的厂商占据了较大的份额,虽然国内厂商也有了较快的发展,但仍然无法跟上国际传感器技术的步伐。近年来,由于国家的大力支持,我国建立了传感器技术国家重点实验室、微米/纳米国家重点实验室、机器人国家重点试验室等研发基地,初步建立了敏感元件和传感器产业,目前我国已有1,688家从事传感器的生产和研发的企业,其中从事MEMS研发的有50多家。在经济全球化趋势下,随着我国的投资环境的改善已经对传感器技术的大力支持,各国传感器厂商纷纷涌进我国的传感器市场,使得国内的传感器领域的竞争日趋激烈。于此同时,强烈的技术竞争必然会导致技术的飞速发展,促进我国传感器技术的快速进步。 未来的传感器会向着小型化、多功能化、智能化、集成化、系统化的方向发展,由微传感器、微执行器及信号和数据处理器总装集成的系统越来越引起人们的关注。 多功能化 传感器开始只是对单一量的测量,在众多领域中单一的量不能准确客观地反映客观事物和环境。这就要求传感器对多种量进行测量。由若干种敏感元件组成的多功能传感器兼具新一代的探测功能,它可以同时测量多种数值,从而对被测量体变化的测量更加精准。这种多功能的传感器应用范围更广泛。 智能化 当前的智能化传感器通常是融入一个或多个敏感元件、精密模拟电路、数字电路、微处理器(MCU)、通讯接口、智能软件,并将着一系列的硬件集成在一个封装组件内,智能化传感器相对普通传感器的优势是不容质疑的。智能化传感器是一种带微处理器的传感器,是微型计算机和传感器相结合的成果,它兼有检测、判断和信息处理功能,与传统传感器相比有很多特点:具有判断和信息处理功能,能对测量值进行修正、误差补偿,因而提高测量精度;可实现多传感器多参数测量;有自诊断和自校准功能,提高可靠性;测量数据可存取,使用方便;有数据通信接口,能与微型计算机直接通信。把传感器、信号调节电路、单片机集成在一芯片上形成超大规模集成化的高级智能传感器。我国在这方面的研究与开发还很落后,主要是因为我国半导体集成电路工艺水平有限。由于集成电路和芯片技术的发展,传感器装有微处理器,除执行信息处理和信息存储,还能够进行逻辑思考和对特殊情况作出判断并进行处理。 小型化 由于计算机技术的发展,辅助设计(CAD)技术和集成电路技术迅速发展,微机电系统

温度传感器的结构和安装方法精编版

热电偶的结构 热电偶前端接合的形状有3种类型,如图2.5所示。可根据热电偶的类型、线径、使用温度,通过气焊、对焊、电阻焊、电弧焊、银焊等方法进行接合。 在工业应用中为了便于安装及延长热电偶的使用寿命,通常使用外加套管的方式。套管一般分为保护管型和铠装型。 1.带保护管的热电偶 是将热电偶的芯线以及绝缘管插入保护管使用的热电偶。保护管在防止芯线氧化、腐蚀的同时,还可以保持热电偶的机械强度。保护管有多种类型,常用的如下表所示。

氮化硅管 1400 1600 与碳化硅管大致相同,适用于熔融铝 Si3N4 2.铠装型热电偶 铠装热电偶的测量原理与带保护管的热电偶相同。它使用纤细的金属管(称为套管)作为上图中绝缘管(陶瓷)的替代品,并使用氧化镁(MgO)等粉末作为绝缘材料。由于其外径较细且容易弯曲,所以最适合用来测量物体背面与狭小空隙等处的温度。此外,与带保护管的热电偶相比,其反应速度更为灵敏。铠装热电偶的套管外径范围较广,可以拉长加工为8.0mmф到0.5mmф的各种尺寸。芯线拉伸得越细,常用温度上限越低。如K型热电偶,套管外径0.5mmф的常用温度上限是600℃,8.0mmф的是1050℃。 热电阻的结构 如下图所示,热电阻的元件形状有3种,目前陶瓷封装型占主导地位。陶瓷封装型用于带保护管的热电阻以及铠装热电阻。陶瓷与玻璃封装型的铂线裸线直径为几十微米左右,云母板型的约为0.05mm。引线则使用比元件线粗很多的铂合金线。

热电阻元件的种类 带保护管的热电阻图例 温度传感器的安装方法 1. 安装实例和测量误差 热电偶和热电阻在设备中的安装方法和测量误差如下图所示。安装时要注意机械强度,特别是高温中保护管的变形。另外,为了避免保护管的热损失对元件温度的影响,需要考虑流向和保护管的外形、插入长度、保温、隔热等问题。

温度传感器的历史发展与研究现状

温度传感器的历史发展与研究现状 摘要:本文通过查阅各类文献并进行分析总结,简述了温度传感器的意义和作用,介绍了温度传感器的发展历史,列举并分析了常用温度传感器的类型,对比了国外温度传感器设计和研究领域的现状与发展,着重阐述了国外先进的CMOS模拟集成温度传感器的主要原理。最后,文章对温度传感器的未来发展方向做出了说明。 关键词:温度传感器,IC温度传感器,CMOS集成温度传感器 一、背景介绍 1.1绪言 人们为了从外界获取信息,必须借助于感觉器官,而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中,它们的功能就远远不够了。为适应这种情况,就需要传感器。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。[1]传感器是以一定的精度和规律把被测量转换为与之有确定关系的、便于应用的某种物理量的测量装置。它是实现自动测量和自动控制的首要环节。[2]温度是反映物体冷热状态的物理参数,它与人类生活环境有着密切关系。早在2000多年前,人类就开始为检测温度进行了各种努力,并开始使用温度传感器检测温度。[3]在人类社会中,无论工业、农业、商业、科研、国防、医学及环保等部门都与温度有着密切的关系。 [4]在工业生产自动化流程中,温度测量点一般要占全部测量点的一半左右。[5]因此,人类离不开温度传感器。传感器技术因而成为许多应用技术的基础环节,成为当今世界发达国家普

遍重视并大力发展的高新技术之一,它与通信技术、计算机技术共同构成了现代信息产业的三大支柱。[6] 1.2温度传感器的发展历史和主要分类 人们研究温度测量的历史已经相当的久远了。公元1600年,伽利略研制出气体温度计。 [7]一百年后,酒精温度计[8]和水银温度计[9]问世。到了1821年,德国物理学家赛贝发明了热电偶传感器[10],人类真正的第一次把温度变成了电信号。此后,随着技术的发展,人们研制出了各种温度传感器。本世纪,在半导体技术的支持下,相继诞生了半导体热电偶传感器、PN结温度传感器和集成温度传感器。[11]与之相应,根据波与物质的相互作用规律,相继开发了声学温度传感器、红外传感器和微波传感器。[12] 温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。[13] 热电偶传感器有自己的优点和缺陷。热电偶温度传感器的灵敏度与材料的粗细无关,用非常细的材料也能够做成温度传感器。也由于制作热电偶的金属材料具有很好的延展性,这种细微的测温元件有极高的响应速度,可以测量快速变化的过程。然而热电偶传感器的灵敏度比较低,容易受到环境干扰信号的影响,也容易受到前置放大器温度漂移的影响,因此不适合测量微小的温度变化。[14] IC温度传感器即数字集成温度传感器,其外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。尤其是CMOS工艺实现的智能温度传感芯片具有低成本、低功耗、与标准数字工艺兼容以及芯片面积小等优点,已经取代了双极型工艺。IC温度传感器又包括模拟输出和数字输出两种类型,最主要的特点之一是将温度传感模块和信号的处理电路同时集成在一个芯片上。[15]

温湿度传感器毕业大学论文

学号:2009012708 2013届本科生毕业论文(设计)题目:空气温湿度测量仪设计 学院(系):机械与电子工程学院 专业年级:机械电子工程091 学生姓名:申士杰 指导教师:朱兆龙 合作指导教师: 完成日期: 2013年6月

空气温湿度测量仪设计 摘要 植物生长都需要适宜的环境条件,环境温湿度是最主要的环境因子之一。空气温湿度的测量对农业生产十分关键。通过比较多种温湿度测量方法,设计一种基于单片机的空气温湿度测试仪。本设计采用51单片机STC89C51为核心处理器,由空气温湿度传感器所测数据送入单片机,进行运算处理,最终在LCD016L上显示测量结果。系统基于模块化设计确定各模块单元,并选择相应的电子元器件,进而进行电路设计。系统硬件电路主要由单片机外围电路、传感器电路、电源电路、液晶显示电路等组成。在此基础上,设计系统软件;软件部分包括单片机外围模块、温湿度传感器模块、电源模块以及人机交互模块的程序设计。电路原理图在proteus软件进行仿真,仿真结果表明电路原理上可行。根据设计方案,空气温湿度测量仪可以具有读取方便,操作简单,测量精确的优点。 关键词:空气温湿度;液晶显示;STC89C51;SHT10

Design of Air temperature and humidity meter Abstract Temperature and humidity environment is the most important factor for that Plant growth requiring appropriate environmental conditions. The measurement of temperature and humidity is critical to agricultural production. Therefore, by comparing a variety of temperature and humidity measurement methods, design a microcontroller-based tester of temperature and humidity . This design uses 51 single core processor STC89C51 by air temperature and humidity sensors of the measured data into the microcontroller, operation processing, culminating in LCD016L display the measurement result . System is based on a design of modular to determine each module unit, and select the appropriate electronic components, and circuit design further. System hardware circuit by the MCU peripheral circuit, sensor circuit, power circuit, liquid crystal display circuit and other components .On this basis, design system software; software parts includes module of On this basis, design system software; software part includes control module, the module of temperature and humidity sensor, the module of power and the module of human-machine interaction programming ,the module of temperature and humidity sensor, the module of power and the module of human-machine interaction programming. Schematic circuit is simulation in the proteus, and simulation results show that schematic is viable. According to design, the measuring instrument of air temperature and humidity may have the advantages of easy operating, easy reading and having precise measurements. Keywords:temperature and humidity of air ; LCD; STC89C51;SHT10

DS18B20温度传感器使用方法以及代码

第7章DS18B20温度传感器 7.1 温度传感器概述 温度传感器是各种传感器中最常用的一种,早起使用的是模拟温度传感器,如热敏电阻,随着环境温度的变化,它的阻值也发生线性变化,用处理器采集电阻两端的电压,然后根据某个公式就可以计算出当前环境温度。随着科技的进步,现代的温度传感器已经走向数字化,外形小,接口简单,广泛应用在生产实践的各个领域,为我们的生活提供便利。随着现代仪器的发展,微型化、集成化、数字化、正成为传感器发展的一个重要方向。美国DALLS半导体公司推出的数字化温度传感器DS18B20采用单总线协议,即单片机接口仅需占用一个I/O端口,无需任何外部元件,直接将环境温度转化为数字信号,以数码方式串行输出,从而大大简化了传感器与微处理器的接口。7.2 DS18B20温度传感器介绍 DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。可以分别在93.75 ms和750 ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。因而使用

DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、传输距离、分辨率等方面较DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。 1.DS18B20温度传感器的特性 ①独特的单线接口方式:DS18B20与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。 ②在使用中不需要任何外围元件。 ③可用数据线供电,电压范围:+3.0~ +5.5 V。 ④测温范围:-55 ~+125 ℃。固有测温分辨率为0.5 ℃。 ⑤通过编程可实现9~12位的数字读数方式。 ⑥用户可自设定非易失性的报警上下限值。 ⑦支持多点组网功能,多个DS18B20可以并联在惟一的三线上,实现多点测温。 ⑧负压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。 2.引脚介绍 DS18B20有两种封装:三脚TO-92直插式(用的最多、最普遍的封装)和八脚SOIC贴片式。下图为实验板上直插式DS18B20的原理图。 3.工作原理 单片机需要怎样工作才能将DS18B20中的温度数据独取出来呢?下面将给出详细分析。

温湿度传感器原理

课程名称:_传感器原理与应用_项目名称:_温湿度传感器的使用_ 1注:1、实验准备部分包括实验环境准备和实验所需知识点准备。 2、若是单人单组实验,同组成员填无。

3、电源引脚 DHT11的供电电压为3-5.5V。传感器上电后,要等待1s 以越过不稳定状态在此期间无需发送任何指令。电源引脚(VDD,GND)之间可增加一个100nF 的电容,用以去耦滤波。 4、串行接口(单线双向) DATA 用于微处理器与DHT11之间的通讯和同步,采用单总线数据格式,一次通讯时间4ms左右,数据分小数部分和整数部分,具体格式在下面说明,当前小数部分用于以后扩展,现读出为零.操作流程如下: 一次完整的数据传输为40bit,高位先出。 数据格式:8bit湿度整数数据+8bit湿度小数数据 +8bi温度整数数据+8bit温度小数数据 +8bit校验和 数据传送正确时校验和数据等于“8bit湿度整数数据+8bit湿度小数数据+8bi温度整数数据+8bit温度小数数据”所得结果的末8位。 用户MCU发送一次开始信号后,DHT11从低功耗模式转换到高速模式,等待主机开始信号结束后,DHT11发送响应信号,送出40bit的数据,并触发一次信号采集,用户可选择读取部分数据.从模式下,DHT11接收到开始信号触发一次温湿度采集,如果没有接收到主机发送开始信号,DHT11不会主动进行温湿度采集.采集数据后转换到低速模式。 1.通讯过程如图1所示 图1 总线空闲状态为高电平,主机把总线拉低等待DHT11响应,主机把总线拉低必须大于18毫秒,保证DHT11能检测到起始信号。DHT11接收到主机的开始信号后,等待主机开始信号结束,然后发送80us低电平响应信号.主机发送开始信号结束后,延时等待20-40us后, 读取DHT11的响应信号,主机发送开始信号后,可以切换到输入模式,或者输出高电平均可, 总线由上拉电阻

浅谈温湿度传感器的未来发展重点

浅谈温湿度传感器的未来发展重点 温湿度传感器市场究竟有多大? 2017年全球市场规模增长至1955亿美元 2018年突破2000亿美元 随着新基建、智慧城市、5G等多种项目推进, 未来5年全球市场将保持8%左右的速度增长 市场规模将会超过3000亿美元!!! 圈内有句老话叫:站在对的风口,猪都可以起飞! 回顾我们的主角 温湿度传感器,一个主要用于监测环境温度、湿度的仪器。 目前,已经广泛应用与医药化工、电子通讯、气象、食品、仓储、农业以及文物保护等领域。

进入21世纪后,温度传感器正朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展。 未来的温湿度传感器市场尤其是在消费电子及物联网等领域拥有广阔的前景。 温湿度传感器作为电子技术和物理化学原理的复合技术,硬件因素只占其中50%,另一个重要因素则是标定。如果要保证测出来的值是准确的,则需要保证每次检测的标定值永远在一个固定范围内,这是非常难做到的。精度高,性能稳定一直是温湿度传感器的硬性指标。 那么未来温湿度传感器有哪些发展重点? 1、应用机器智能的故障探测和预报。任何系统在出现错误并导致严重后果之前,必须对其可能出现的问题作出探测或预报。目前非正常状态还没有准确定义的模型,非正常探测技术还很欠缺,急需将传感信息与知识结合起来以改进机器的智能。 2、正常状态下能高精度、高敏感性地感知目标的物理参数;而在非常态和误动作的探测方面却进展甚微。因而对故障的探测和预测具有迫切需求,应大力开发与应用。 3、目前传感技术能在单点上准确地传感物理或化学量,然而对多维状态的传感却困难。如环境测量,其特征参数广泛分布且具有时空方面的相关性,也是迫切需要解决的一类难题。因此,要加强多维状态传感的研究与开发。 4、目标成分分析的远程传感。化学成分分析大多在基于样本物质,有时目标材料的采样又很困难。如测量同温层中臭氧含量,远程传感不可缺少,光谱测定与雷达或激光探测技术的结合是一种可能的途径。没有样本成分的分析很容易受到传感系统和目标组分之间的各种噪音或介质的干扰,而传感系统的机器智能有望解决该问题。 5、用于资源有效循环的传感器智能。现代制造系统已经实现了从原材料到产品的自动化生产过程,当产品不再使用或被遗弃时,循环过程既非有效,也非自动化。如果

Arduino 温湿度传感器DHT11模块实验

Arduino温湿度传感器DHT11模块实验 网上有很多DHT11的测试,试了N个程序,总是不得要领,各种报错,最后终于找到一套可用的库。 首先是DHT11.h文件 1.#ifndef__DHT11_H__ 2.#define__DHT11_H__ 3.#include 4.//DHT11IO设置 5.#define DHT11_DQ2 6.#define DHT11_DQ_0digitalWrite(DHT11_DQ,LOW) 7.#define DHT11_DQ_1digitalWrite(DHT11_DQ,HIGH) 8. 9.//函数或者变量声明 10.extern void DHT11_Init(); 11.extern unsigned char DHT11_Read_Byte(); 12.extern void DHT11_Read(); 13. 14.extern unsigned char HUMI_Buffer_Int; 15.extern unsigned char TEM_Buffer_Int; 16. 17.#endif 其次是DHT11.cpp文件 1.#include"DHT11.h" 2.//定义变量 3.unsigned char HUMI_Buffer_Int=0; 4.unsigned char TEM_Buffer_Int=0; 5.//**************************************************** 6.//初始化DHT11 7.//**************************************************** 8.void DHT11_Init() 9.{ 10.pinMode(DHT11_DQ,OUTPUT); 11.DHT11_DQ_0;//拉低总线,发开始信号; 12.delay(30);//延时要大于18ms,以便DHT11能检测到开始信号; 13.DHT11_DQ_1; 14.delayMicroseconds(40);//等待DHT11响应; 15.pinMode(DHT11_DQ,INPUT); 16.while(digitalRead(DHT11_DQ)==HIGH); 17.delayMicroseconds(80);//DHT11发出响应,拉低总线80us;

DHT11温湿度传感器

基于单片机的DHT11温湿度 传感器设计 姓名:史延林 指导老师:黄智伟 学院:电气工程学院 学号:20094470321 摘要: 温湿度是生活生产中的重要的参数。本设计为基于单片机的温湿度检测与控制系统,采用模块化、层次化设计。用新型的智能温湿度传感器DHT11主要实现对温度、湿度的检测,将温度湿度信号通过传感器进行信号的采集并转换成数字信号,再运用单片机STC89C52进行数据的分析和处理,为显示和报警电路提供信号,实现对温

湿度的控制报警。报警系统根据设定报警的上下限值实现报警功能,显示部分采用LCD1602液晶显示所测温湿度值。系统电路简单、集成度高、工作稳定、调试方便、检测精度高,具有一定的实用价值。 关键词:单片机;DHT11温湿度传感器; LCD1602显示 第一章:课程构思 1.1课题背景 温湿度的检测与控制是工业生产过程中比较典型的应用之一,随着传感器在生产和生活中的更加广泛的应用。在生产中,温湿度的高低对产品的质量影响很大。由于温湿度的检测控制不当,可能使我们导致无法估计的经济损失。为保证日常工作的顺利进行,首要问题是加强生产车间内温度与湿度的监测工作,但传统的方法过于粗糙,通过人工进行检测,对不符合温度和湿度要求的库房进行通风、去湿和降温等工作。这种人工测试方法费时费力、效率低,且测试的温度及湿度误差大,随机性大。目前,在低温条件下(通常指100℃以下),温湿度的测量已经相对成熟。利用新型单总线式数字温度传感器实现对温度的测试与控制得到更快的开发。但人们对它的要求越来越高,要为现代人工作、科研、学习、生活提供更好的更方便的设施就需要从数字单片机技术入手,一切向着数字化,智能化控制方向发展。 对于国内外对温湿度检测的研究,从复杂模拟量检测到现在的数字智能化检测越发的成熟,随着科技的进步,现在的对于温湿度研究,检测系统向着智能化、小型化、低功耗的方向发展。在发展过程中,以单片机为核心的温湿度控制系统发展为体积小、操作简单、量程宽、性能稳定、测量精度高,等诸多优点在生产生活的各个方面实现着至关重要的作用。 温湿度传感器除电阻式、电容式湿敏元件之外,还有电解质离子型湿敏元件、重量型湿敏元件(利用感湿膜重量的变化来改变振荡频率)、光强型湿敏元件、声表面波湿敏元件等。湿敏元件的线性度及抗污染性差,在检测环境湿度时,湿敏元件要长期暴露在待测环境中,很容易被污染而影响其测量精度及长期稳定性。1.2主要内容

温度传感器的结构和安装方法

热电偶的结构 热电偶前端接合的形状有 3种类型,如图2.5所示。可根据热电偶的类型、线径、使用温度,通过气焊、 对焊、电阻焊、电弧焊、银焊等方法进行接合。 气澤 对輝 电隍埠.电弧挥 在工业应用中为了便于安装及延长热电偶的使用寿命,通常使用外加套管的方式。套管一般分为保护管型 和铠装型。 1. 带保护管的热电偶 是将热电偶的芯线以及绝缘管插入保护管使用的热电偶。保护管在防止芯线氧化、腐蚀的同时,还可以保 持热电偶的机械强度。保护管有多种类型,常用的如下表所示。 材质 常用 温度'C 最高使用温 度C 概要 SUS304 850 950 适用于高温、酸性、碱性环境, 不适用于氧化性、还原性气体环境 金 属 保 护 SUS316 850 950 比SUS304在高温中的耐蚀性好 SUS301S 1000 1100 Ni 、Cr 的含量高,耐热性强 SandviRP4 1050 1200 27Cr 钢,适用于高温环境, 不适用于氧化性、还原性气体 管 Kanthal A-1 1100 1350 Cr24%、A15.5%的耐热钢、在高温中机械强度高 镍铬合金 1100 1250 Ni80%、Cr20%、适用于氧化环境,不适用于硫化、还原 性气体环境 非 石英管QT 1000 1050 抗热冲击性强,但机械强度低 金 陶瓷管PT2 1400 1450 氧化铝质,气密性优 属 高铝管PT1 1500 1550 同上,抗热冲击性弱 保 刚玉管PT0 1600 1750 高纯度铝管,抗热冲击性最弱 护 管 碳化硅管 1250 1350 抗热冲击性强,但气密性差 SiC 1550 1600 在双保护管的外管上使用 氮化硅管

温度传感器的发展现状、原理及应用

温度传感器的发展现状、原理及应用 摘要: 近年来,中国工业现代化进程和电子信息产业的持续快速发展,推动了传感器市场的快速崛起。温度传感器是一类重要的传感器,占传感器总需求量的40%以上。温度传感器是一种半导体器件,利用NTC电阻随温度变化的特点,将非电物理量转化为电量,从而实现精确的温度测量和自动控制。温度传感器广泛应用于温度测量和控制、温度补偿、流量和风速测量、液位指示、温度测量、紫外和红外测量、微波功率测量等领域,广泛应用于彩电领域。电脑彩色显示,开关电源,热水器,冰箱,厨房设备,空调,汽车等领域。近年来,汽车电子和消费电子行业的快速增长推动了中国对温度传感器需求的快速增长。 关键词:温度传感器;发展现状;应用

目录 一、温度传感器的发展现状 (3) 二、温度传感器的原理 (3) (一)热电偶温度传感器原理 (4) (二)金属热电阻温度传感器原理 (4) (三)集成温度传感器原理 (4) 三、温度传感器的应用 (4) (一)在汽车中的应用 (5) (二)在家用电器中的应用 (5) (三)生物医学中的应用 (6) (四)工业中的应用 (6) (五)太空中的应用 (6) 四、结论 (6) 参考文献 (8)

一、温度传感器的发展现状 温度传感器是通过物体随温度变化而改变某种特性来间接测量的[1]。不少材料、元件的特性都随温度的变化而变化,所以能作温度传感器的材料相当多。温度传感器随温度而引起物理参数变化的有:膨胀、电阻、电容、而电动势、磁性能、频率、光学特性及热噪声等等。随着生产的发展,新型温度传感器还会不断涌现。 由于工农业生产中温度测量的范围极宽,从零下几百度到零上几千度,而各种材料做成的温度传感器只能在一定的温度范围内使用。温度是一个和人们生活环境有着密切关系的物理量,也是一种在生产、科研、生活中需要测量和控制的重要物理量,是国际单位制七个基本量之一。其测量控制一般产用各式各样形态的温度传感器。 表1.1当前市面上温度传感器分类统计表[2] 分类特征传感器名称 测量范围 超高温用1500℃以上光学高温计、辐射传感器 中高温用1000℃ -1500℃ 光学高温计、辐射传感器、热电偶 中温用500℃-1000℃光学高温计、辐射传感器、热电 低温用-250℃-0℃晶体管、热敏电阻、压力式玻璃温度计极低温用-270℃ --250℃ BaSrTi03陶瓷 现如今,在集成数字智能温度传感器领域,国内相关的设计和研究尚处于交 际处的阶段。目前市场上流行的同类温度传感器诸如DS18B20,AD7416,AD7417,AD7418,AD590等F,大国都是出自国外一些比较大的公司。就目前来说,国内的很多公司往往温度传感器产品比较少,并且已申请到的相关专利也非常少,处理厦门大学等高校申请专利外,还有香港应用科技研究院、苏州纳芯微电子、背景中电华大电子设计、上海贝岭等少数研究机构或企业的专利,虽然其专利名称比较大,但是技术涉及点并不全面。因此,在集成数字温度传感器方面,我国尚有较大的发展空间。

相关文档
最新文档