酶工程考试重点

酶工程考试重点
酶工程考试重点

WHU生科院酶工程考试重点

蝉整理O(∩_∩)O~

生物催化剂:

1. 更高的催化效率:酶催化的反应速率是相应的无催化反应速率的108~1020倍,并且至少高出非酶催化反应速率几个数量级。

2. 更高的反应专一性:酶分子特定的空间结构决定了其特定的底物专一性。

3. 温和的反应条件:一般的化学催化往往需要高温、高压和极端的pH条件。

4. 具有调节能力:许多酶的催化活性可受到多种调节机制的灵活调节,如别构调节、酶的共价修饰调节、酶合成与降解的调节。

5. 酶的本质是蛋白质:易变性和降解。

酶:

酶是一种高效、高度专一、和生命活动密切相关的、蛋白质性质的生物催化剂。

1)所有的酶都是由生物体产生的(甚至病毒)

2)酶和生命活动密切相关

a. 酶参与了生物体内所有的生命活动和生命过程

①执行具体的生理功能

②清除有害物质,起保护作用

③协同激素等生理活性物质在体内发挥信号转换、传递和放大作用,调节生理过程和生

命活动。

④催化代谢反应,建立各种各样代谢途径和代谢体系。

b. 酶的组成和分布是生物进化与组织功能分化的基础

c. 酶能在多种水平上进行调节以适应生命活动的需要

酶的本质:

酶的化学本质是蛋白质.

绝大部分酶是蛋白质。或主要是蛋白质为核心的酶作为催化剂,但随科学发展不排斥有其他类型的催化剂存在。

活性中心:

酶分子上与催化活性直接相关的少数氨基酸残基组成的催化区域,称作酶的活性中心(active center).

包括结合部位(binding site)和催化部位(catalytic site)。

1. 活性中心在种系进化上的严格保守性

2. 酶活性中心构象的维持依赖于酶分子空间结构的完整性

3. 酶活性中心各基团的相对位置得以维持,就能保全酶的活力

比活力:

酶的比活力(specific activity):每毫克蛋白所含的酶单位数,用U/mg蛋白表示。

活力:

酶活力(enzyme activity)也称为酶活性,是指酶催化一定化学反应的能力。酶活力的大小可用在一定条件下,酶催化某一化学反应的速度来表示,酶催化反应速度愈大,酶活力愈高,反之活力愈低。

酶活力单位,一个标准单位:在特定的条件下(25℃,pH、底物浓度等其他条件均为最适条件),1分钟能转化1微摩尔底物所需的酶量。

酶的转换数:

1.分子活性定义:在最适条件下,每摩尔酶每分钟所转变的底物摩尔数(即每摩尔酶的酶单位数)。

2.对于寡聚酶:在最适条件下,每摩尔活性亚基或催化中心每分钟所转变的底物摩尔数。

3.用min-1表示。

4.k cat=V max/[Et]

Km:

酶反应动力学常数Km,相当于反应达到最大速度一半时的底物浓度,或者说,相当于要使反应系统有一半的酶分子参加反应所必须具有的底物浓度。

物理意义:

⑴特定的反应,特定的反应条件下,K m是个特征常数,可部分描述酶反应性质、反应条件对酶反应速度的影响。故可用来鉴别不同的酶。

⑵1/K m表示酶与底物的亲和力,K m越大,亲和力越小,反之越大。

⑶当v=V/2时,K s=[S]。表明K m相当于反应达到最大速度一半时的底物浓度,或者说,相当于要使反应系统有一半的酶分子参加反应所必须具有的底物浓度。

⑷通过K m可判断酶的最适底物,因为最适底物具有最大的V/K m。

⑸通过K m可了解酶的底物在体内可能具有的浓度水平。一般酶<>K m,那么v≈V,[S]将失去其生理意义。

⑹通过体外测定某些物质对K m的影响,可以推断出该物质可能有的生理效应,如作为抑制剂或活化剂等。

酶合成的基因调节控制理论:

操纵子学说(operon theory)

操纵子——基因表达的协同单位:

a.结构基因(编码蛋白质, structural gene, S);

b.控制部位:操纵基因(operator gene, O);启动子(promotor gene, P)

1.调节基因(regulator gene):

可产生一种组成型调节蛋白(regulatory protein) (一种变构蛋白),通过与效应物(effector) (包括诱导物和辅阻遏物)的特异结合而发生变构作用,从而改变它与操纵基因的结合力。

调节基因常位于调控区的上游。

2.启动基因(promotor gene)(启动子):

有两个位点:

(1)RNA聚合酶的结合位点

(2)cAMP-CAP的结合位点。

CAP:分解代谢产物基因活化蛋白(catabolite gene activator protein),又称环腺苷酸受体蛋白(cAMP receptor protein,CRP)。

只有cAMP-CRP复合物结合到启动子的位点上,RNA聚合酶才能结合到其在启动子的位点上,酶的合成才能开始。

3.操纵基因(Operater gene):

位于启动基因和结构基因之间的一段碱基顺序,能特异性地与调节基因产生的变构蛋白结合,操纵酶合成的时机与速度。

4.结构基因(Structural gene):

决定某一多肽的DNA模板,与酶有各自的对应关系,其中的遗传信息可转录为mRNA,再翻译为蛋白质。

酶合成调节的类型:

1.诱导 (induction)

组成酶:细胞固有的酶类。

诱导酶:是细胞为适应外来底物或其结构类似物而临时合成的一类酶。

2.阻遏 (repression)

分解代谢物阻遏(catabolite repression)

反馈阻遏(feedback repression)

酶生物合成的反馈阻碍作用:

由某代谢途径末端产物的过量累积引起的阻遏。

实验:

(1)大肠杆菌生长在无机盐和葡萄糖的培养基上时,检测到细胞内有色氨酸合成酶的存在;

(2)在上述培养基中加入色氨酸,检测发现细胞内色氨酸合成酶的活性降低,直至消失。(3)表明色氨酸的存在阻止了色氨酸合成酶的合成,体现了菌体生长的经济原则:不需要就不合成。

分解代谢物阻碍作用:

指细胞内同时有两种分解底物(碳源或氮源)存在时,利用快的那种分解底物会阻遏利用慢的底物的有关酶合成的现象。

分解代谢物的阻遏作用,并非由于快速利用的甲碳源本身直接作用的结果,而是通过甲碳源(或氮源等)在其分解过程中所产生的中间代谢物所引起的阻遏作用。

实验:细菌在含有葡萄糖和乳糖的培养基上生长,优先利用葡萄糖。待葡萄糖耗尽后才开始利用乳糖,产生了两个对数生长期中间隔开一个生长延滞期的“二次生长现象”

这一现象又称葡萄糖效应,产生的原因是由于葡萄糖降解物阻遏了分解乳糖酶系的合成。此调节基因的产物是环腺苷酸受体蛋白(CRP),亦称降解物基因活化蛋白(CAP)。

酶生物合成的模式:

根据酶的合成与细胞生长之间的关系,可将酶的生物合成分为3种模式,即:

1.生长偶联型:

a.同步合成型

酶的生物合成与细胞生长同步。

酶的合成可以诱导,但不受分解代谢物阻遏和反应产物阻遏。当去除诱导物、细胞进入

平衡期后,酶的合成立即停止,表明这类酶所对应的mRNA 很不稳定。

b.中期合成型

酶的合成在细胞生长一段时间后才开始,而在细胞生长进入平衡期以后,酶的合成也随

着停止。

酶的合成受产物的反馈阻遏或分解代谢物阻遏。 所对应的mRNA 是不稳定的。

2.部分生长偶联型:延续合成型

酶的合成在细胞的生长阶段开始,在细胞生长进入平衡期后,酶还可以延续合成较长一

段时间。

可受诱导,一般不受分解代谢物和产物阻遏。所对应的mRNA 相当稳定。

3.非生长偶联型:滞后合成型

只有当细胞生长进入平衡期以后,酶才开始合成并大量积累。许多水解酶的生物合成都

属于这一类型。

受分解代谢物的阻遏作用。所对应的mRNA 稳定性高。

米氏方程(酶促反应动力学的推导及其原理):

影响酶促反应速度的因素

温度、pH 、激活剂、抑制剂、底物浓度、酶浓度,等。

可逆抑制(底物浓度对抑制程度的影响):

不可逆抑制:抑制剂与酶分子中的必需基团以共价键结合,引起酶活性丧失,用透析等

物理方法不能除去抑制剂,因而不能使酶复活。

可逆抑制:抑制剂与酶分子必需基团以非共价键结合,引起酶活力降低或丧失,用透析

[]

[][][]()[][]()[][][][]()[][]()[][][][][][][][][]

[][][][][][]

[][]10-1

k k k 0110001100000101

00101

00E S ES E P S ES E ES S ES ES ES t

E ES S ES ES ES 0

S E ,E ES ,S ES S E S ES S E S S E k d k k k d k k k k k k k k k k V k νν----??→ +??→+←?? =?E =--------= ≥ -= ?=++ ??=++=?[][][]

10

m 1m m S S 1/S k k K k V V K K νν-+ =

?= = ++或

等物理方法能除去抑制剂而使酶活力恢复。

①竞争性抑制作用

②反竞争性抑制作用

③非竞争性抑制作用

④混合型抑制作用

分离纯化的原理及其方法:

原理:

1、根据溶解度的不同:盐析法、有机溶剂沉淀法、共沉淀法、选择性沉淀法。

2、根据分子大小的差别:胶过滤(层析)法、超过滤法、超离心法。

3、根据电学、解离性质:吸附(层析)法、离子交换层析法、电泳法、聚焦层析法。

4、基于酶和底物、辅酶因子以及抑制剂间具有专一的亲和作用特点:亲和层析。

5、利用稳定性差异:选择性热变性法,酸碱变性法,表面变性法。

方法:

1、沉淀分离(溶解度差异)

a.盐析沉淀法:

log S=β- KI(S-蛋白质溶解度;β-水中溶解度;K-盐析常熟;I-离子强度)

b.等电点沉淀法

c.有机溶剂沉淀法

温度:0℃下操作。

pH = pI。

离子和离子强度:中性盐通常能增大蛋白质的溶解度,并能减少变性影响。

多价阳离子效应:pH略高于pI,使之带负电荷,添加少量多价阳离子,与负电蛋白络合。

有机溶剂:丙酮分离效果最好,引起失效也较少。

d.复合沉淀法

e.选择性变性沉淀法,等。

2、离心分离、过滤与膜分离(分子大小的差异)

3.层析分离——极性相似的两分子间,其亲和力相近。

层析技术,亦称色谱技术,是一种物理的分离方法。它是利用混合物中各组分的物理化学性质的差别,使各组分以不同程度分布在两个相中,其中一个相为固定的(称为固定相),另一个相则流过此固定相(称为流动相)并使各组分以不同速度移动,从而达到分离。

4.电泳分离

5.萃取分离

酶的抽提:

在一定的条件下,用适当的溶剂或溶液处理含酶原料,使酶充分溶解到溶剂或溶液中的过程。

1、“普遍”抽提

2、选择性抽提

抽提液的具体组成和抽提条件的选择取决于酶的溶解性、稳定性以及如何最有利于切断酶和其他物质的联系。

pH:选择的pH不能超出酶的酸碱稳定范围,且最好远离目的酶的等电点。即:酸性蛋白------ 碱性溶液

碱性蛋白------ 酸性溶液

盐:低盐溶液有利于酶蛋白溶解,故抽提常用等渗溶液。

0.02—0.05 M磷酸缓冲液,0.15M NaCl

用焦磷酸钠溶液和柠檬酸钠缓冲液可螯合金属离子,切断与其他物质结合。

温度: 0 ~4 ℃之间,有的可以高一些(室温),如胃蛋白酶37℃。

其他:防止氧化--- 加CySH, DTT, 巯基乙醇;

防蛋白酶水解,加蛋白酶抑制剂(如苯甲磺酰氟(PMSF))等;

溶酶:常规操作,易提取。

膜酶:结合不太紧密的,在颗粒体结构受损时就能释放,抽提不难。如:α-酮戊二酸脱氢酶,延胡索酸酶等可用缓冲液抽提;细胞色素C可用0.145mol/L三氯醋酸抽提。

结合紧密的酶,常以脂蛋白络合物形式存在,可做成丙酮粉后抽提,还可用正丁醇处理。

正丁醇具有高度的亲水性和亲脂性,能破坏酶与脂蛋白间的连接使酶进入溶液。

抽提液的用量通常为原料量的1~5倍。

“扩展床吸附层析”:可将抽提液的分离和相继的纯化步骤结合在一起。即可直接从含有颗粒体的物料,如发酵液、细胞破碎液中截获所需的蛋白或酶,移去颗粒成分,从而免除了离心、过滤、浓缩等繁琐的下游步骤。在这一系统的操作过程中,吸附剂(STREAMINE)始终处于悬浮状态,物料流输入扩展床后,推动吸附颗粒向上,没有回流,靶蛋白被吸附,而细胞碎片、细小颗粒和其他杂质则无阻滞的流出;吸附完成后,被吸附的靶蛋白可再反向洗出。

亲和层析:

亲和层析是利用生物分子与配基之间所具有的专一而又可逆的亲和力,而使生物分子分离纯化的技术。

酶与底物,酶与竞争性抑制剂,酶与辅助因子,抗原与抗体,酶RNA与互补的RNA分子或片段,RNA与互补的DNA分子或片段等之间,都是具有专一而又可逆亲和力的生物分子对。故此,亲和层析在酶的分离纯化中有重要应用。

四要素:固体基质、特异性结合底物、耦合反应、溶离

分类:

共价亲和层析

疏水层析与反相层析

金属离子亲和层析

免疫亲和层析

染料亲和层析

凝集素亲和层析

离子交换层析:

离子交换层析是利用离子交换剂上的可解离基团(活性基团)对各种离子的亲和力不同而达到分离目的的一种层析分离方法。

离子交换剂是含有若干活性基团的不溶性高分子物质。通过在不溶性高分子物质(母体)上引入若干可解离基团(活性基团)而制成。

按活性基团的性质不同,离子交换剂可以分为阳离子交换剂和阴离子交换剂。由于酶分子具有两性性质,所以可用阳离子交换剂,也可用阴离子交换剂进行酶的分离纯化。

Donnan Effect:紧靠近介质表面的pH,要比外围缓冲液的pH相差一个pH单位,阳离子交换介质高一个单位,阴离子则低一个单位。

固定化酶:

是通过物理的或化学的手段,将酶束缚于水不溶的载体上,或将酶束缚在一定的空间内,限制酶分子的自由流动,但能使酶充分发挥催化作用;过去曾称其为水不溶酶或固相酶。

固定化酶的制备方法:

酶的固定化方法很多,但对任何酶都适用的方法是没有的。酶的固定化方法通常按照用于结合的化学反应的类型进行分类,大体可概括为四种类型:

1.吸附法

a.物理吸附法:

通过氢键、疏水键和π-电子亲和力等物理作用力将酶固定于不溶性载体的方法。

b.离子交换吸附法:

指在适宜的pH和离子强度条件下,利用酶的侧链解离基团和离子交换剂的相互作用而达到酶的固定化的方法。

c.多孔物质包络法:

利用棉布、尼龙布、金属丝网、海绵、塑料等固定化放线菌、真菌组成盘状生物反应器,进行连续生产有机酸、糖化酶、四环素。这些材料有足够大,但空隙又不十分大的空隙,能够使细胞进入空隙,通常为细胞直径的几倍大。

d.超过滤法:

利用超过滤膜将细胞固定化。底物和产物可以自由进出超过滤膜,而膜内的细胞却出不来。制备成膜反应器和生物传感器。要防止细胞生长导致浓度过高而使超过滤膜破裂。

2.共价偶联法

这是借助共价键将酶的活性非必需侧链基团和载体的功能基闭进行偶联以制备固定化酶的方法。

特点: 由于这样得到的固定化酶结合牢固、稳定性好、利于连续使用,因此它是目前应用和报导的最多的一类方法。不过,共价偶联反应一般比较激烈应加以注意。

方法:

通过一定的方法,在载体上引进一个活泼基团。然后活化该基团。最后此活泼基团再与酶分子上某一基团形成共价键。

“相对酶活力”是指固定化酶和蛋白量与之相等的原酶的活力比。

影响“相对酶活力”因素:固定化载体、方法、条件以及酶反应系统组成。当上述因素一定时,还受偶联量影响;当偶联量超过一定水平后,由于过多的酶集中于载体的局部,可能造成空间位阻效应,使部分的酶无法表现活性,故“相对酶活力”往往随偶联酶量的进一步增加而下降。在制备固定化酶时,重要的一点就是要平衡好二者的关系,这对其它类型的固定化方法也具有同样的意义。

3.交联法

利用双功能或多功能试剂在酶分子间或酶分子与载体间、或酶分子与惰性蛋白间进行交联反应以制备固定化酶的方法。

常用试剂:戊二醛、异氰酸酯、N,N’乙烯马来亚胺、双重氮联苯胺等。应用最广泛的是戊二醛,它两个醛基都可以与酶或蛋白质的游离氨基形成席夫碱(shiff)

(1).酶直接交联:

在酶液中加入适量多功能试剂,使其形成不溶性衍生物。固定化依赖酶与试剂的浓度、溶液pH和离子强度、温度和反应时间之间的平衡。

(2).酶辅助蛋白交联:

a.吸附交联法:先将酶吸附在硅胶、皂土、氧化铝、球状酚醛树脂或其他大孔型离子交换树脂上,再用戊二醛等双功能试剂交联。用此法所得固定化酶也可称为壳状固定化酶。

b.交联包埋法:把酶液和双功能试剂(戊二醛)凝结成颗粒很细的集合体,再用高分子或多糖一类物质进行包埋成颗粒。避免了颗粒太细的缺点,同时制得的固定化酶稳定性好。

4.包埋法

这是将聚合物的单体和酶溶液混和后,再借助聚合促进剂(包括交联剂)的作用进行聚合,使酶包埋于聚合物中以达到固定化酶方法。

由于酶本身一般不参与结合反应,因而比较安全。不过在化学聚合的过程中由于自由基的产生、放热以及酶和试剂间发生化学反应等,也往往可能导致酶失效,故在选择包埋方法和控制条件时仍须注意。

包埋法分为格(网格)型包埋、微囊型包埋和脂质体包埋。

* 定向固定化:

1、共价固定法

2、氨基酸置换法

3、抗体偶联法

4、生物素-亲和素亲合法

5、疏水定向固定法

* 细胞固定化:

1、直接固定化法

2、包埋法

3、吸附法

4、交联和共价偶联法

影响固定化酶动力学的因素,

a、酶本身的变化,主要是由于活性中心的氨基酸残基、高级结构和电荷状态等发生了变化。

b、载体的影响

①构象改变、立体屏障以及微扰;

②分配效应和扩散限制效应;

1、构象改变、立体屏障以及微扰

构象改变主要指活性中心构象改变,导致活性降低,多出现于吸附法和共价偶联法。

立体屏障指载体孔径太小,或者由于固定化方式引起位置不当,使酶活性中心或/和调节中心造成空间障碍,底物和效应物无法与酶结合。

微扰是由于载体的亲水、疏水性质和介质的介电常数等直接影响酶的催化能力或酶对效应物作出反应能力的一种效应。

2、分配效应和扩散限制效应

分配效应是由于固定化载体的亲水和疏水性质使酶的底物、产物以及其它效应物在微观环境与宏观体系间发生了不等分配,改变了酶反应系统的组成平衡,从而影响酶反应速度的一种效应。

扩散限制效应是指底物、产物以及其它效应物的迁移和运转速度受到限制的一种效应。

3、专一性

作用于低分子底物的酶专一性没有明显变化;既可作用于低分子底物又可作用于大分子底物的酶专一性往往会变化。

4、最适温度

最适温度与酶稳定性有关。多数酶固定化后热稳定性上升,最适温度也上升。

5、酶稳定性

1)酶固定化后,酶活性构型更牢固,增加酶的稳定性;

2)酶固定化后,更加有利于阻止不利因素对酶的侵袭,如变性剂、抑制剂的抵抗力。

3)限制了酶分子之间的相互作用,和减少蛋白酶的破坏作用。

4)固定化后可延长酶的操纵和保存的有效期限。

5)对热稳定性,大多数升高,有些反而降低。

6、最适pH

1)载体带负电荷,最适pH向碱性方向移动。载体带正电荷,pH向酸性方向移动。

2)催化反应的产物为酸性时,固定化酶的pH值比游离酶的pH值高;反之则低。

7、米氏常数Km

Km值随载体性质变化。

①载体与底物带相同电荷,Km’>Km,固定化酶降低了酶的亲和力。

②载体与底物带相反电荷,Km’

酶的化学修饰及其方法:

酶的化学修饰即是在分子水平上对酶进行改造,通过人工将一些化学基团或是具有生物相容性的大分子与酶的侧链基团共价相连,从而改变酶的酶学性质的操作。

一、酶的表面修饰

(一)化学固定化

通过酶表面的酸性或碱性氨基酸残基将酶共价连接到惰性载体上,从而改变了酶所处的环境,酶的性质也相应发生了改变。

(二)酶的小分子修饰作用

利用特定的小分子修饰剂修饰酶表面的一些基团:-COO-、-NH3+、-SH、-OH等。(三)酶的大分子修饰

1.大分子的非共价修饰

聚乙二醇、右旋糖苷等,既能通过氢键固定在酶分子表面,也能通过氢键与外部相连,从而保护酶活力。

多元醇、多糖、多聚氨基酸、多胺等,通过调节酶的微环境保护酶的活力。

蛋白质。蛋白质分子间相互作用时,表面区域内排除了水分子,降低了介电常数,增加

了相互作用力,从而稳定性增加。

2.大分子共价修饰

用可溶性大分子,如聚乙二醇、右旋糖苷、肝素等,通过共价键连接于酶分子的表面,形成一层覆盖层。

(四)分子内交联

增加酶分子表面交联键的数目。

(五)分子间交联

用双功能或多功能试剂使不同的酶交联起来产生杂合酶。

(六)脂质体包埋

脂质体是天然脂类或类固醇组成的微球体。酶分子可包埋在其内部。它可通过细胞的膜融合和内吞作用进入细胞内。

(七)反相胶团微囊化

表面活性剂溶解在非极性有机溶剂中可自发的形成近于球形的反相胶团。

胶团内部水的极性、黏度、酸碱性和亲水性不同于外部的水。

二、酶分子的内部修饰(侧链修饰)

采用一定的方法(一般为化学法)使酶蛋白的侧链基团发生改变,从而改变酶分子的特性和功能的修饰方法。

(一)非催化活性基团的修饰

对非催化基团修饰可改变酶的动力学性质,改变酶对特殊底物的束缚能力。

亲核残基:Ser、Cys、Met、Thr、Lys、His

亲电残基:Tyr、Trp

可氧化残基:Tyr、Trp、Met

(二)催化基团的修饰

对催化活性基团可以通过选择性修饰侧链成分来实现氨基酸的取代。

定点突变:转变氨基酸侧链。

(三)酶蛋白主链修饰(肽链有限水解修饰)

利用酶分子主链的切断和连接,使酶分子的化学结构及其空间结构发生某些改变,从而改变酶的特性和功能的方法。

酶蛋白主链修饰主要是靠酶切/酶原激活法。

(四)肽链伸展后的修饰

先用变性剂对酶进行变性处理,再进行修饰,然后重新折叠成某种活性的构象

(五)氨基酸置换修饰

定点突变技术。

(六) 酶分子的物理修饰

不改变酶的组成单位及其基团,酶分子中的共价键不发生改变,只是在物理因素的作用下,副键发生某些变化和重排。

用于了解不同物理条件下,特别是在极端条件下(高温、高压、高盐、极端pH值等)由于酶分子空间构象的改变而引起酶的特性和功能的变化情况。

三、与辅因子相关的修饰

(一)对依赖辅因子的酶的修饰

1.如果辅因子与酶是非共价结合,则可将辅因子共价结合到酶分子上。

2.引入新的具有强反应的辅因子。

(二)金属酶的金属取代

把酶分子中的金属离子换成另一种金属离子,使酶的特性和功能发生改变的修饰方法称

为金属离子置换修饰。

可改变酶的专一性、稳定性、抑制作用等。

大分子共价修饰:

用可溶性大分子,如聚乙二醇、右旋糖苷、肝素等,通过共价键连接于酶分子的表面,形成一层覆盖层。

修饰剂的选择:大分子结合修饰采用的修饰剂是水溶性大分子。例如,聚乙二醇(PEG)、右旋糖酐、蔗糖聚合物(Ficoll)、葡聚糖、环状糊精、肝素、羧甲基纤维素、聚氨基酸等。要根据酶分子的结构和修饰剂的特性选择适宜的水溶性大分子。

修饰剂的活化:作为修饰剂中含有的基团往往不能直接与酶分子的基团进行反应而结合在一起。在使用之前一般需要经过活化,然后才可以与酶分子的某侧链基团进行反应。

修饰:将带有活化基团的大分子修饰剂与经过分离纯化的酶液,以一定的比例混合,在一定的温度、pH值等条件下反应一段时间,使修饰剂的活化基团与酶分子的某侧链基团以共价键结合,对酶分子进行修饰。

分离:需要通过凝胶层析等方法进行分离,将具有不同修饰度的酶分子分开,从中获得具有较好修饰效果的修饰酶。

氨基酸置换修饰:

氨基酸或核苷酸的置换修饰可以采用化学修饰方法,但难度大,成本高,专一性差,而且要对酶分子逐个进行修饰,操作复杂,难以工业化生产。

现在常用的氨基酸置换修饰的方法是定点突变技术。定点突变(site directed mutagenesis)是指在DNA序列中的某一特定位点上进行碱基的改变从而获得突变基因的操作技术。是蛋白质工程和酶分子组成单位置换修饰中常用的技术。

包括:

1、基因序列分析

2、蛋白质结构分析

3、酶活性中心分析

4、引物设计进行基因定点突变

5、酶基因克隆表达

6、变异特性分析

酶反应器的分类:

搅拌罐式反应器、填充床式反应器、流化床反应器、膜反应器,等。

核酶:

核酶(ribozyme)是具有催化功能的RNA分子,可降解特异的mRNA序列。

RNA催化剂的活性部位含多聚GMP,其作用是和底物形成非共价键而发挥作用。

1、分子内反应(incis)

自我剪切(self-cleavage)

自我剪接(ribozyme)

2、分子间反应(in trans)

自我剪接(ribozyme)

a.自我剪接

Ⅰ型IVS:催化自我剪接需GMP和Mg++

Ⅱ型IVS :催化自我剪接反应不需要GMP, 但是要Mg++,而在细胞核mRNA前体的剪接时需要核小分子核糖核蛋白参与反应。

b.自我剪切

自我剪切Ribozyme: 自我剪切的RNA结构有锤头结构和发夹结构,其中尖头指出自我剪切的部位。

自我剪切Ribozyme:包含剪切与连接两个步骤。

c.催化分子间反应

* 具有酶活性的DNA分子称为脱氧核酶。

1.效率高

2.高度专一性

3.活性依赖金属离子

4.其它辅助因子

模拟酶:

模拟酶(model enzyme )用合成高分子来模拟酶的结构、特性、作用原理以及酶在生物体内的化学反应过程。酶是一类有催化活性的蛋白质,它具有催化效率高、专一性强、反应条件温和等特点。酶容易受到多种物理、化学因素的影响而失活,所以不能用酶广泛取代工业催化剂。研究模拟酶主要是为了解决酶的以上缺点。模拟酶是20世纪60年代发展起来的一个新的研究领域,是仿生高分子的一个重要的内容。目前模拟酶的研究主要有以下几方面:模拟酶的金属辅基、模拟酶的活性功能基、模拟酶的高分子作用方式、模拟酶与底物的作用、模拟酶的性状等。

操纵子:

操纵子——基因表达的协同单位:

a.结构基因(编码蛋白质, structural gene, S);

b.控制部位:操纵基因(operator gene, O);启动子(promotor gene, P)

1.调节基因(regulator gene):

可产生一种组成型调节蛋白(regulatory protein) (一种变构蛋白),通过与效应物(effector) (包括诱导物和辅阻遏物)的特异结合而发生变构作用,从而改变它与操纵基因的结合力。

调节基因常位于调控区的上游。

2.启动基因(promotor gene)(启动子):

有两个位点:

(1)RNA聚合酶的结合位点

(2)cAMP-CAP的结合位点。

CAP:分解代谢产物基因活化蛋白(catabolite gene activator protein),又称环腺苷酸受体蛋白(cAMP receptor protein,CRP)。

只有cAMP-CRP复合物结合到启动子的位点上,RNA聚合酶才能结合到其在启动子的位点上,酶的合成才能开始。

3.操纵基因(Operater gene):

位于启动基因和结构基因之间的一段碱基顺序,能特异性地与调节基因产生的变构蛋白结合,操纵酶合成的时机与速度。

4.结构基因(Structural gene):

决定某一多肽的DNA模板,与酶有各自的对应关系,其中的遗传信息可转录为mRNA,

再翻译为蛋白质。

《酶工程》期末复习题整理#(精选.)

第一章 1.酶工程:是生物工程的重要组成部分,是随着酶学研究迅速发展,特别是酶的推广应用,使酶学和工程学相互渗透、结合、发展而成的一门新的技术科学,是酶学、微生物学的基本原理与化学工程有机结合而产生的边缘科学技术。 2.化学酶工程:指自然酶、化学修饰酶、固定化酶及化学人工酶的研究和应用 3.生物酶工程:是酶学和以基因重组技术为主的现代分子生物学技术结合的产物,亦称高级酶工程。 4.酶工程的组成部分? 答:酶工程主要指自然酶和工程酶(经化学修饰、基因工程、蛋白质工程改造的酶)在国民经济各个领域中的应用。内容包括:酶的产生;酶的分离纯化;酶的改造;生物反应器。5.酶的结构特点? 答:虽然少数有催化活性的RNA分子已经鉴定,但几乎所有的酶都是蛋白质,因而酶必然具有蛋白质四级结构形式。其中一级结构是指具有一定氨基酸顺序的多肽链的共价骨架;二级结构为在一级结构中相近的氨基酸残基间由氢键的相互作用而形成的带有螺旋、折叠、转角、卷曲等细微结构;三级结构系在二级结构基础上进一步进行分子盘区以形成包括主侧链的专一性三维排列;四级结构是指低聚蛋白中各折叠多肽链在空间的专一性三维排列。具有低聚蛋白结构的酶(寡聚酶)必须具有正确的四级结构才有活性。具有活性的酶都是球蛋白,即被广泛折叠、结构紧密的多肽链,其氨基酸亲水基团在外表,而疏水基团向内。 6.酶活性中心:是酶结合底物和将底物转化为产物的区域,通常是整个酶分子中相当小的一部分,它是由在线性多肽链中可能相隔很远的氨基酸残基形成的三维实体。 7.酶作用机制有哪几种学说? 答:锁和钥匙模型、诱导契合模型 8.酶催化活力的影响因素? 答:底物浓度、酶浓度、温度、pH等。 9.酶的分离纯化的初步分离纯化的步骤? 答:(一)材料的选择和细胞抽提液的制备 1.材料的选择:目的蛋白含量要高,而且容易获得 2.细胞破碎方法及细胞抽提液的制备。为了确保可溶性细胞成分全部抽提出来,应当使用类似于生理条件下的缓冲液。动物组织和器官要尽可能除去结缔组织和脂肪、切碎后放人捣碎机中。完全破碎酵母和细菌细胞。 3.膜蛋白的释放:膜蛋白存在于细胞膜或有关细胞器的膜上。按其所在位置大体可分为外周 蛋白和固有蛋白两种类型 4.胞外酶的分离:胞外酶是在微生物发酵时分泌到发酵液中的。发酵后可通过离心或过滤将菌体从发酵液中分离弃去,所得发酵清液通常要适当浓缩,然后再作进一步纯化。目前常用的浓缩方法是超滤法。 (二)蛋白质的浓缩和脱盐 浓缩方法主要有:沉淀法、吸附法、干胶吸附法、渗透浓缩法、超滤浓缩法

浙江大学工程热力学期末考试试题

一、简答题(每小题?5?分,共?30?分) 1、未饱和湿空气经历绝热加湿过程,其干球温度、湿球温度和露点温度如何变化 2、定压、定温、绝热和定容四种典型的热力过程,其多变指数的值分别是多少 3、画出燃气轮机装置定压加热理想循环的?p-v?图和?T-s?图,并写出其用循环增压比表示的热效率公式。(假设工质为理想气体,比热取定值) 4、反映往复活塞式内燃机混合加热循环特性的设计参数有哪几个写出其定义式。 5、住宅用空调机当夏天环境温度升高时,其制冷系数和耗功量如何变化 6、为什么在湿蒸汽区域进行的绝热节流过程总是呈现节流冷效应 二、计算题(共?70?分) 1?.(?18?分)?3kmol?温度?t?1?=?100 ℃的氮气流与?1kmol?温度?t?2?=?20 ℃的空气流在管道中绝热混合。已知混合前空气的摩尔分数为:?x?N 2 ?=?0.79?、?x?O2=?0.21?,若混合前后氮气、空气和混合物的压力都相 等,试求: (1)?混合后气体的温度; (2)?混合气体中?N 2?和?O?2?的摩尔分数; (3)?对应于?1kmol?的混合气产物,混合过程的熵增。

设摩尔热容为定值:?C?p,m,N2=?29.08kJ/?(?kmol·K?)、?C?p,m?,O2=29.34kJ/?(?kmol·K?)、?R?=?8.314kJ/?(?kmol·K?) 2?.(?17?分)空气初态为?p?1=?0.4MPa?、?T?1?=?450K?,初速忽略不计。经一喷管绝热可逆膨胀到?p?2=?0.1MPa?。若空气的?Rg?=?0.287 kJ/ (kg·K)?;?c?p=?1.005 kJ/ (kg·K)?;?γ?=?c?p?/?c?v?=?1.4?; ?=0.528?;试求: 临界压力比?ν cr (1)在设计时应选用什么形状的喷管为什么 (2)喷管出口截面上空气的流速?C?f2?、温度?T?2?和马赫数?Ma?2; (3)若通过喷管的空气质量流量为?q?m?=?1kg/s?,求:喷管出口截面积和临界截面积。 3?.(?15?分)活塞式压气机每秒钟从大气环境中吸入?p?1=?0.1MPa?、?t1=?17 ℃的空气?0.1m 3?,绝热压缩到?p?2=?0.4MPa?后送入储气罐。若该压气机的绝热效率?η?c,s?=0.9?,空气的?Rg?=?0.287k J/ (kg·K)?;?c?p?=?1.005 kJ/ (kg·K);?γ?=?c?p?/?c?v?=?1.4?;试求: (1)?压气机出口的空气温度; (2)?拖动压气机所需的功率; (3)?因摩擦引起的每秒钟的熵产。 4.(?20?分)一单级抽汽回热循环如图?1所示,水蒸气进入汽轮机的状态参数为5MPa、450℃,在10kPa下排入冷凝器。水蒸气在0.45MPa压力下抽出,送入混合式给水加热器加热给水。给水离开加热器的温度为抽

工程力学复习要点_简答题答案

2010-2011学年第2学期工程力学复习要点 简 答 题 参 考 答 案 1、说明下列式子的意义和区别。 ①21F F =;②21F F ρρ=;③力1F ρ等效于力2F ρ。 【答】: ①21F F =,表示两个量(代数量或者标量)数值大小相等,符号相同; ②21F F ρρ=,表示两个矢量大小相等、方向相同; ③力1F ρ等效于力2F ρ,力有三个要素,所以两个力等效,是指两个力的三要素相同。 2、作用与反作用定律和二力平衡公理都提到等值、反向、共线,试问二者有什么不同 【答】:二者的主要区别是: 二力平衡公理中等值、反向、共线的两个力,作用在同一刚体上,是一个作用对象,两个力构成了一个平衡力系,效果是使刚体保持平衡,对于变形体不一定成立。 作用与反作用定律中等值、反向、共线的两个力,作用在两个有相互作用的物体上,是两个作用对象,此两力不是平衡力系,对刚体、变形体、静止或者作变速运动的物体都适用。 3、力在坐标轴上的投影与力沿相应坐标轴方向的分力有什么区别和联系 【答】:力在坐标轴上的投影是代数量,可为正、负或零,没有作用点或作用线;力沿相应坐标轴的方向的分力是矢量、存在大小、方向和作用点。当坐标轴或力的作用线平移时,力的投影大小和正负不变,但沿对应坐标轴的分力作用点发生改变。 当x 轴与y 轴互相垂直时,力沿坐标轴方向的分力大小等于力在对应坐标轴上投影的绝对值;当x 轴与y 轴互相不垂直时,力沿坐标轴方向的分力大小不等于力在对应坐标轴上投影的绝对值。 4、什么叫二力构件分析二力构件受力时与构件的形状有无关系凡两端用铰链连接的杆都是二力杆吗 【答】:二力构件是指只受两个力作用而保持平衡的构件............... ,二力构件既可以是杆状,也可以是任意形状的物体。 分析二力构件受力时,与构件的几何形状没有关系(即并不考虑物体的几何形状),只考虑物体:(1)是否只受两个力的作用(一般情况下都是忽略重力的作用);(2)是否保持平衡状态。符合以上两个条件的任何物体,都是二力构件。在二力构件中,形状为杆的构件称为二力杆,可以是直杆,也可以是曲杆。 两端用铰链连接且中间不受其他外力作用的杆(重力不计),才是二力杆。 5、试叙述力的平移定理和它的逆定理。 【答】:力的平移定理:作用在刚体上的力,可以从原作用点等效地平行移动到刚体内的任一指定点,但必须同时在该力与所指定点所决定的平面内附加一力偶,附加力偶矩等于原力对指定点之矩。示意图如下图所示。 力的平移定理的逆定理... :作用在同一刚体同一平面内的一个力F ρ和一个力偶,可以合成为

工程热力学期末考试试题

一、1.若已知工质的绝对压力P=,环境压力Pa=,则测得的压差为(B)A.真空pv= B.表压力pg=.真空pv= D.表压力p g= 2.简单可压缩热力系的准平衡过程中工质压力降低,则(A) A.技术功为正 B.技术功为负 C.体积功为正 D.体积功为负 3.理想气体可逆定温过程的特点是(B)=0 =>W s>s′>s″>s′s>s″ 16.可逆绝热稳定流动过程中,气流焓的变化与压力变化的关系为(B) ====pdv 17、饱和湿空气的相对湿度(B)A.>1B.=1C.<<<1 18.湿空气的焓h为(D)湿空气的焓湿空气的焓干空气与1kg水蒸汽焓之和干空气的焓与1kg干空气中所含水蒸汽的焓之和 二、多项选择题 1.单位物量的理想气体的热容与_____有关。(ACDE)A.温度B.压力C.气体种类D.物量单位E.过程性质 2.卡诺循环是__AD___的循环。 A.理想化 B.两个定压、两个绝热过程组成 C.效率最高 D.可逆 3.水蒸汽h-s图上的定压线(AD)A.在湿蒸汽区为直线B.在过热蒸汽区为直线C.在湿蒸汽区为曲线 D.在过热蒸汽区为曲线 E.在湿蒸汽区和过热蒸汽区是斜率不同的直线 4.理想气体经绝热节流后,前后稳定截面上的__BD___相等。 5.A.压力B.温度C.比体积D.焓E.熵

酶工程 试题及答案

共三套 《酶工程》试题一: 一、是非题(每题1分,共10分) 1、酶是具有生物催化特性的特殊蛋白质。() 2、酶的分类与命名的基础是酶的专一性。() 3、酶活力是指在一定条件下酶所催化的反应速度,反应速度越大,意味着酶活力越高。() 4、液体深层发酵是目前酶发酵生产的主要方式。() 5、培养基中的碳源,其唯一作用是能够向细胞提供碳素化合物的营养物质。() 6、膜分离过程中,膜的作用是选择性地让小于其孔径的物质颗粒成分或分子通过,而把大于其孔径的颗粒截留。() 7、在酶与底物、酶与竞争性抑制剂、酶与辅酶之间都是互配的分子对,在酶的亲和层析分离中,可把分子对中的任何一方作为固定相。() 8、角叉菜胶也是一种凝胶,在酶工程中常用于凝胶层析分离纯化酶。() 9、α-淀粉酶在一定条件下可使淀粉液化,但不称为糊精化酶。() 10、酶法产生饴糖使用α-淀粉酶和葡萄糖异构酶协同作用。() 二、填空题(每空1分,共28分) 1、日本称为“酵素”的东西,中文称为__________,英文则为__________,是库尼(Kuhne)于1878年首先使用的。其实它存在于生物体的__________与__________。 2、1926年,萨姆纳(Sumner)首先制得__________酶结晶,并指出__________是蛋白质。他因这一杰出贡献,获1947年度诺贝尔化学奖。

3、目前我国广泛使用的高产糖比酶优良菌株菌号为__________,高产液化酶优良菌株菌号为___________。在微生物分类上,前者属于__________菌,后者属于__________菌。 4、1960年,查柯柏(Jacob)和莫洛德(Monod)提出了操纵子学说,认为DNA分子中,与酶生物合成有关的基因有四种,即操纵基因、调节基因、__________基因和__________基因。 5、1961年,国际酶委会规定的酶活力单位为:在特定的条件下(25oC,PH及底物浓度为最适宜)__________,催化__________的底物转化为产物的__________为一个国际单位,即1IU。 6、酶分子修饰的主要目的是改进酶的性能,即提高酶的__________、减少__________,增加__________。 7、酶的生产方法有___________,___________和____________。 8、借助__________使__________发生交联作用,制成网状结构的固定化酶的方法称为交联法。 9、酶的分离纯化方法中,根据目的酶与杂质分子大小差别有__________法,__________法和__________法三种。 10、由于各种分子形成结晶条件的不同,也由于变性的蛋白质和酶不能形成结晶,因此酶结晶既是__________,也是__________。 三、名词术语的解释与区别(每组6分,共30分) 1、酶生物合成中的转录与翻译 2、诱导与阻遏 3、酶回收率与酶纯化比(纯度提高比) 4、酶的变性与酶的失活

工程力学期末考试重点

﹒物体平衡:物体相对于地面保持静止或作匀速直线运动的状态。 ﹒力是物体间相互的机械作用,这种作用使物体的机械运动状态发生变化,或使物体发生变形。 ﹒力的三要素:力的大小,方向,作用点。 ﹒平面汇交力系合成结果是一个合力,其大小和方向由多边形的封闭边来表示,其作用线通过各力的汇交点。即合力等于各分力的矢量和(或几何和)矢量式表示:Fr=F1+F2….+Fn=∑Fi ﹒平面汇交力系平衡的几何条件是:力多变形封闭。 ﹒力F对O点之距,简称力矩。用符号M0(F)=+-Fh O点到力F作用线的垂直距离h,称为力臂。规定:力使物体绕矩心作逆时针方向转动时,力矩取正号;作顺时针方向转动时,取负号。平面内力对点之矩,只取决于力矩的大小及旋转方向,因此平面内力对点之矩是一个代数量。 ﹒力学上把大小相等、方向相反、作用线互相平行的两个力叫做力偶。力偶中两力所在平面叫力偶作用面。两力作用线间的垂直距离叫力偶臂 ﹒为保证机器或结构正常运行,要求每个构件有足够的抵抗破坏的能力也就是要有足够的强度,同时要求构件有足够的抵抗变形的能力,即有足够的刚度。 ﹒要求他们工作时能保持原有的平衡状态,即要求其有足够的稳定性。 ﹒将构成构件的材料皆视为可变形固体 ﹒切应力大小随截面方位变化,当α=0时,正应力最大,σmax=σ0.即拉压杆的最大切应力发生在横截面上,其值为σ0。当α=45°,切应力最大,Tmax=σ0/2.其中σ0=F/A ﹒△l/l=1/E*Fn/A ε=σ/E ﹒作用在构件两侧面上的横向外力的合力大小相等,方向相反,作用线相距很近。在这样的外力作用下,其变形特点是:两力间的横截面发生相对错动,这种变形形式叫做剪切。 ﹒{M}n.m=9550*{P}kw/{n}r/min ﹒他们都可简化为一根直杆:在通过轴线的平面内,受到垂直于杆轴线的外力或外力偶作用。在这样的外力作用下,杆的轴线将弯曲成一条曲线,这种变形形式称为弯曲。 ﹒截面上的剪力在数值上等于此截面左侧或右侧梁上外力的代数和。 ﹒截面上的弯矩在数值上等于此截面左侧或右侧梁上外力对该截面形心的力矩的代数和。﹒计算剪力时:截面左侧梁上的外力向上取正值,向下取负:截面右侧,向下取正,向上取负。计算弯矩时,截面左侧梁上外力对截面形心的力矩顺时针转向取正,逆时针取负:截面右侧外力逆时针取正,顺时针取负。 ﹒横力弯曲或剪切弯曲Fs为0而弯矩M为常量这种弯曲为纯弯曲。 ﹒梁轴线上的一点在垂直于梁变形前轴线方向的线位移称为该点的挠度 ﹒梁任一横截面绕其中性轴转动的角度称为该截面的转角。

酶工程期末复习题演示教学

第一章绪论 问题:试述木瓜蛋白酶的生产方法? 答:木瓜蛋白酶可以采用提取分离法、基因工程菌发酵法、植物细胞培养法等多种方法进行生产。 (1)提取分离法:从木瓜的果皮中获得木瓜乳汁,通过各种分离纯化技术获得木瓜蛋白酶。 (2)发酵法:通过DNA重组技术将木瓜蛋白酶的基因克隆到大肠杆菌等微生物中,获得基因工程菌,在通过基因工程菌发酵获得木瓜蛋白酶。 (3)植物细胞培养法:通过愈伤组织诱导获得木瓜细胞,在通过植物细胞培养获得木瓜蛋白酶。 第二章微生物发酵产酶 1、解释酶的发酵生产、酶的诱导、酶的反馈阻遏(产物阻遏)、分解代谢物阻遏。诱导物的种类? 答:酶的发酵生产:利用微生物的生命活动获得所需的酶的技术过程; 酶的诱导:加进某些物质,使酶的生物合成开始或加速的现象,称为诱导作用; 产物阻遏(反馈阻遏):指酶催化反应的产物或代谢途径的末端产物使该酶的生物合成受到阻遏的现象。 分解代谢物阻遏(营养源阻遏):是指某些物质经过分解代谢产生的物质阻遏其他酶合成的现象。 诱导物的种类:诱导物一般是酶催化作用的底物或其底物类似物,有的也是反应产物。2、微生物产酶模式几种?特点?最理想的合成模式是什么? 答:(1)同步合成型特点: a.发酵开始,细胞生长,酶也开始合成,说明不受分解代谢物和终产物阻遏。 b.生长至平衡期后,酶浓度不再增长,说明mRNA很不稳定。 (2)延续合成型特点: a.该类酶一般不受分解代谢产物阻遏和终产物阻遏。 b.该酶对应的mRNA是相当稳定的。 (3)中期合成型特点: a.该类酶的合成受分解代谢物阻遏和终产物阻遏。 b.该酶对应的mRNA不稳定。 (4)滞后合成型特点: a.该类酶受分解代谢物阻遏和终产物阻遏作用的影响,阻遏解除后,酶才大量合成。 b.该酶对应的mRNA稳定性高。 选择:在酶的工业生产中,为了提高酶产率和缩短发酵周期,最理想的合成模式是延续合成型。 3、可以添加什么解除分解代谢物阻遏?表面活性剂的作用? 答:(1)一些酶的发酵生产时要控制容易降解物质的量或添加一定量的cAMP,均可减少或解除分解代谢物阻遏作用。 (2)表面活性剂的作用:增溶、乳化作用、润湿作用、助悬作用、起泡和消泡作用、消毒和杀菌剂。 4、根据微生物培养方式不同,酶的发酵生产有几种类型?哪种是目前酶发酵生产的主要方式?按酶生物合成的速度把细胞中的酶分几类?酶的生物合成在转录水平的调节主要有哪三种模式?微生物细胞生长过程一般分为几个阶段?

工程热力学期末复习题1答案知识分享

一、判断题: 1. 平衡状态一定稳定状态。 2. 热力学第一定律的实质是能量守恒定律; 3.公式d u = c v d t 适用理想气体的任何过程。 4.容器中气体的压力不变则压力表的读数也绝对不会改变。 5.在T —S 图上,任意二条可逆绝热过程线不能相交。 6.膨胀功与流动功都是过程的函数。 7.当把一定量的从相同的初始状态压缩到相同的终状态时,以可逆定温压缩过程最为省功。 8.可逆过程是指工质有可能沿原过程逆向进行,并能恢复到初始状态的过程。 9. 根据比热容的定义式 T q d d c ,可知理想气体的p c 为一过程量; 10. 自发过程为不可逆过程,非自发过程必为可逆过程; 11.在管道内作定熵流动时,各点的滞止参数都相同。 12.孤立系统的熵与能量都是守恒的。 13.闭口绝热系的熵不可能减少。 14.闭口系统进行了一个过程,如果熵增加了,则一定是从外界吸收了热量。 15.理想气体的比焓、比熵和比定压热容都仅仅取决与温度。 16.实际气体绝热节流后温度一定下降。 17.任何不可逆过程工质的熵总是增加的,而任何可逆过程工质的熵总是不变的。 18. 不可逆循环的热效率一定小于可逆循环的热效率; 19.混合气体中质量成分较大的组分,其摩尔成分也一定大。 20.热力学恒等式du=Tds-pdv 与过程可逆与否无关。 21.当热源和冷源温度一定,热机内工质能够做出的最大功就是在两热源间可逆热机对外输出的功。 22.从饱和液体状态汽化成饱和蒸汽状态,因为气化过程温度未变,所以焓的变化量Δh=c p ΔT=0。 23.定压过程的换热量q p =∫c p dT 仅适用于理想气体,不能用于实际气体。 24.在p -v 图上,通过同一状态点的定熵过程的斜率大于定温过程的斜率。

酶工程考试复习题及答案定稿版

酶工程考试复习题及答案精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

酶工程考试复习题及答案 一、名词解释题 1.酶活力: 是指酶催化一定化学反应的能力。酶活力的大小可用在一定条件下,酶催化 某一化学反应的速度来表示,酶催化反应速度愈大,酶活力愈高,反之活力愈低。2.酶的专一性:是指一种酶只能对一种底物或一类底物起催化作用,对其他底物无催化 作用的性质,一般又可分为绝对专一性和相对专一性。 3.酶的转换数:是指每个酶分子每分钟催化底物转化的分子数,即是每摩尔酶每分钟催化 底物转变为产物的摩尔数,是酶的一个指标。 4.酶的发酵生产:是指通过对某些特定微生物进行发酵培养后,利用微生物生长发酵过程 中特定的代谢反应生成生产所需要的酶,最后通过提取纯化过程得到酶制剂的过程称为酶的发酵生产。 5.酶的反馈阻遏: 6.细胞破碎:是指利用机械、物理、化学、酶解等方法,使目标细胞的细胞膜或细胞壁得 以破坏,细胞中的目标产物得以选择性或全部释放便于后续收集和分离的过程称为细胞破碎。 7.酶的提取: 是指在一定的条件下,用适当的溶剂处理含酶原料,使酶充分溶解到溶剂 中的过程,也称作酶的抽提,是酶分离纯化过程常用的手段之一。 8.沉淀分离:是通过改变某些条件,使溶液中某种溶质的溶解度降低,从溶液中沉淀析 出,而与其他溶质分离的方法,常用语酶的初步提取与分离。

9.层析分离: 亦称色谱分离,是一种利用混合物中各组分的物理化学性质的差别,使各 组分以不同程度分布在两个相中,其中一个相为固定的(称为固定相),另一个相则流过此固定相(称为流动相)并使各组分由于与固定相和流动相作用力的不同以不同速度移动,从而达到分离的物理分离方法。 10.凝胶层析: 又称为凝胶过滤,分子排阻层析,分子筛层析等。是指以各种多孔凝胶为 固定相,在流动相冲洗过程中混合物中所含各种组分的相对分子质量和分子大小不同,在固定相凝胶微孔中移动的距离不同,从而依次从层析柱中分离出来,达到物质分离的一种层析技术。 11.亲和层析: 是利用生物分子与配基之间所具有的专一而又可逆的亲和力,将混合物装 入层析柱中利用流动相的冲洗作用和目标分子与固定相配基亲和作用力不同而使生物分子分离纯化的技术。 12.离心分离: 借助于离心机旋转所产生的离心力,使不同大小、不同密度的物质分离的 技术过程。 13.电泳:带电粒子在电场中向着与其本身所带电荷相反的电极移动的过程称为电泳。利 用不同的物质其带电性质及其颗粒大小和形状不同,在一定的电场中它们的移动方向和移动速度也不同,故此可使它们分离,电泳技术是常用的分离技术之一。 14.萃取:是利用物质在两相中的溶解度不同而使其分离的技术。 15.双水相萃取:双水相是指某些高聚物之间或者高聚物与无机盐之间在水中以一定的浓度 混合而形各种不相溶的两水溶液相。由于溶质在这两相的分配系数的差异进行萃取的方法称为双水相萃取。

《工程力学》复习要点

第1学期《工程力学》复习要点 一、填空题 I ?力是物体间相互的相互机械作用,这种作用能使物体的运动状态和形状发生改变。 2?力的基本计量单位是牛顿(N)或千牛顿(kN )。 3?力对物体的作用效果取决于力的大小、方向和作用点(作用线)三要素。 4?若力F对某刚体的作用效果与一个力系对该刚体的作用效果相同,则称F为该力系的合力,力系中的每个力都是F的分力。 5?平衡力系是合力(主矢和主矩)为零的力系,物体在平衡力系作用下,总是保持静止或作匀速直______________ —6?力是既有大小,又有方向的矢量,常用带有箭头的线段画岀。 7?刚体是理想化的力学模型,指受力后大小和形状始终保持不变的物体。 8若刚体受二力作用而平衡,此二力必然大小相等、〒向相反、作用线重合。 9?作用力和反作用力是两物体间的相互作用,它们必然大小相等、方向相反、作用线重合,分别作用在两个不同的物体上。 10.约束力的方向总是与该约束所能限制运动的方向相反。 II .受力物体上的外力一般可分为主动力和约束力两大类。 12. 柔性约束限制物体绳索伸长方向的运动,而背离被约束物体,恒为拉力。_ 13. 光滑接触面对物体的约束力,通过接触点,沿接触面公法线方向,指向被约束 ____ 的物体,恒为压力。 14. 活动铰链支座的约束力垂直于支座支承面,且通过铰链中心,其指向待定。 15 ?将单独表示物体简单轮廓并在其上画有全部外力的图形称为物体的受力图—在受力图上只画受力,不画施力;在画多个物体组成 的系统受力图时,只画外力,不画内力二 16 ?合力在某坐标轴上的投影,等于其各分力在同一轴上投影的代数和,这就是合力投影定理。若有一平面汇交力系已求得 送F x和E F y,则合力大小F R =—F1+F2+F3+ Fn=__刀Fi_。 17?画力多边形时,各分力矢量首尾相接,而合力矢量是从第一个分力矢量的起点指向最后一个分力矢量的终点。 18 ?如果平面汇交力系的合力为零,则物体在该力系作用下一定处于平衡状态。 19 ?平面汇交力系平衡时,力系中所有各力在两垂直坐标轴上投影的代数和分别等于零。 20 ?平面力系包括平面汇交力系、平面平行力系、平面任意力系和平面力偶系等类型。 21 ?力矩是力使物体绕定点转动效应的度量,它等于力的大小与力臂的乘积,其常用单位为N或kN m。 22 .力矩使物体绕定点转动的效果取决于力的大小和力臂长度两个方面。 23 .力矩等于零的条件是力的大小为零或者力臂为零(即力的作用线通过矩心)。 24 .力偶不能合成为一个力,力偶向任何坐标轴投影的结果均为零。 _ 25 .力偶对其作用内任一点的矩恒等于力偶矩与矩心位置无关。_ 26 .同平面内几个力偶可以合成为一个合力偶,合力偶矩等于各分力偶矩的代数和。_ 27 .力偶是由大小相等、方向相反、作用线不重合的两个平行力组成的特殊力系,它只对物体产生转动效果,不产生移动效果。 28 .力偶没有合力,也不能用一个力来平衡,力偶矩是转动效应的唯一度量; 29 .力偶对物体的作用效应取决于力偶矩的大小、力偶的转向和作用面三个要素。 30 .平面任意力系向作用面内任一点简化的结果是一个力和一个力偶。这个力称为原力系的主矢,—它作用在简化中心,且等于原力系中各力的矢量和;这个力偶称为原力系对简化中心的主矩,它等于原力系中各力对简化中心的力矩的代数和。 31.平面任意力系的平衡条件是:力系的主矢和力系对任何一点的主矩分别等于零: 应用平面任意力系的平衡方程,选择一个研究对 象最多可以求解三个未知量。 32 .空间汇交力系的平衡条件是____________ 、___________ 、__________ 。 34 .重心是物体重力的作用点点,它与物体的大小、形状和质量分布有关:形心是由物体的形状和大小所确定的几何中心,它与物体 的质量分布无关;质心是质点系的质量中心;对于均质物体,重心与形心重合,在重力场中,任何物体的重心与质心重合。____ 35 .作用于直杆上的外力(合力)作用线与杆件的轴线重合时,杆只产生沿轴线方向的伸长或缩短变形,这种变形形式称为轴向拉伸或压缩。 36 .轴力的大小等于截面一侧所有轴向外力的代数和:轴力得正值时,轴力的方向与截面外法线方向相同,杆件受拉伸。 37 .杆件受到一对大小相等、转向相反、作用面与轴线垂直的外力偶作用时,杆件任意两相邻横截面产生绕杆轴相对转动,这种变形称为扭转。 P 38 .若传动轴所传递的功率为P千瓦,转速为n转/分,则外力偶矩的计算公式为M =9549 。 n 39 .截面上的扭矩等于该截面一侧(左或右)轴上所有外力偶矩的代数和:扭矩的正负,按右手螺旋法则确定。 40 .强度是指构件抵抗破坏的能力,刚度是指构件抵抗弹性变形_的能力,稳定性是指受压杆件要保持原有直线平衡状态的能力。 41.杆件轴向拉压可以作岀平面假设:变形前为平面的横截面,变形后仍保持为平面,由此可知,横截面上的内力是均匀分布的。 42 .低碳钢拉伸可以分成:弹性阶段、屈服阶段、强化阶段、缩颈阶段。 43 .用三种不同材料制成尺寸相同的试件, 在相同的实验条件下进行拉伸试验,得到的应力一应变曲线如右图所示。比较三种材料的曲线,可知_______________________ 拉伸强度最高、 弹性模量最大、.塑性最好。

酶工程期末复习

酶工程期末复习 一、名词解释 1、酶工程:是酶的生产、改性与应用的技术过程。由酶学与化学工程技术、基因工程技术、微生物学技术相结合而产生的一门新的技术学科。 2、酶的化学修饰:通过化学基团的引入或除去,使蛋白质共价结构发生改变。 3、必需水:一般将维持酶分子完整空间构象所必需的最低水含量称为必需水。 4、抗体酶:具有催化活性的抗体,即抗体酶。 5、别构效应:调节物与酶分子的调节中心结合之后,引起酶分子构象发生变化,从而改变催化中心对底物的亲和力。这种影响被称为别构效应或变构效应。 6、别构酶:能发生别构效应的酶称为别构酶。 7、酶活力:又称酶活性,是指酶催化某一化学反应的能力。 8、比活力:也称为比活性,是指每毫克酶蛋白所具有的酶活力单位数,一般用IU/mg 蛋白质表示。 9、生物传感器:由生物识别单元和物理转换器相结合所构成的分析仪器。 10、蛋白质工程:是以创造性能更适用的蛋白质分子为目的,以结构生物学与生物信息学为基础,以基因重组技术为主要手段,对天然蛋白质分子的设计和改造。 11、酶反应器 12、固定化酶:固定在载体上并在一定空间范围内进行催化反应,可以反复、连续使用的酶。 13、水活度:是指在一定温度和压力下,反应体系中水的摩尔系数w χ与水活度系数w γ的乘积:w w w γχα=。 14、生物反应器:指有效利用生物反应机能的系统(场所)。 15、酶反应器:以酶或固定化酶作为催化剂进行酶促反应的装置称为酶反应器。 16、活化能:从初始反应物(初态)转化成活化状态(过渡态)所需的能量,称为活化能。 二、填空题 1、酶活力测定的方法有终止法和连续反应法。常用的方法有比色法、分光光度法、滴定法、量气法、同位素测定法、酶偶联分析。 2、酶固定化的方法有吸附法(物理吸附法、离子交换吸附法)、包埋法(网格包埋法、微囊型包埋法、脂质体包埋法)、共价结合(偶联)法、交联法。 3、酶活力是酶催化反应速率的指标,酶的比活力是酶制剂纯度的指标,酶的转换数是酶催化效率的指标。 4、细胞破碎的主要方法有机械法(珠磨法、高压匀浆法、超声波破碎法)、非机械法(物理法、化学法、酶法)。 5、有机溶剂的极性系数lgP 越小,表明其极性越强,对酶活性的影响越大。 6、lgP 越大,溶剂的疏水性越强;lgP 越小,溶剂的亲水性越强。 7、酶反应器的类型根据所使用的酶,分为溶液酶反应器、固定化酶反应器。

最新工程热力学期末复习题答案

最新工程热力学期末复习题答案 《工程热力学》练习题参考答案 第一单元 一、判断正误并说明理由: 1.给理想气体加热,其热力学能总是增加的。 错。理想气体的热力学能是温度的单值函数,如果理想气体是定温吸热,那么其热力学能不变。 1.测量容器中气体压力的压力表读数发生变化一定是气体热力状态发生了变 化。 错。压力表读数等于容器中气体的压力加上大气压力。所以压力表读数发生变化可以是气体的发生了变化,也可以是大气压力发生了变化。 2.在开口系统中,当进、出口截面状态参数不变时,而单位时间内流入与流出 的质量相等,单位时间内交换的热量与功量不变,则该系统处在平衡状态。 错。系统处在稳定状态,而平衡状态要求在没有外界影响的前提下,系统在长时间内不发生任何变化。 3.热力系统经过任意可逆过程后,终态B的比容为v B大于初态A的比容v A,外 界一定获得了技术功。 错。外界获得的技术功可以是正,、零或负。 4.在朗肯循环基础上实行再热,可以提高循环热效率。 错。在郎肯循环基础上实行再热的主要好处是可以提高乏汽的干度,如果中间压力选的过低,会使热效率降低。 6.水蒸汽的定温过程中,加入的热量等于膨胀功。 错。因为水蒸汽的热力学能不是温度的单值函数,所以水蒸汽的定温过程中,加入的热量并不是全部用与膨胀做功,还使水蒸汽的热力学能增加。 7.余隙容积是必需的但又是有害的,设计压气机的时候应尽可能降低余隙比。 对。余隙容积的存在降低了容积效率,避免了活塞和气门缸头的碰撞,保证了设备正常运转,设计压气机的时候应尽可能降低余容比。 8.内燃机定容加热理想循环热效率比混合加热理想循环热效率高。 错。在循环增压比相同吸热量相同的情况下,定容加热理想循环热效率比混合加热理想循环热效率高;但是在循环最高压力和最高温度相同时,定容加热理想循环热效率比混合加热理想循环热效率低。 9.不可逆过程工质的熵总是增加的,而可逆过程工质的熵总是不变的。 错。熵是状态参数,工质熵的变化量仅与初始和终了状态相关,而与过程可逆不可逆无关。 10.已知湿空气的压力和温度,就可以确定其状态。

【生物课件】《酶工程》试题一参考答案

【生物课件】《酶工程》试题一参考答案: 一、是非题(每题1分,共10分) 1、酶是具有生物催化特性的特殊蛋白质。( ?) 2、酶的分类与命名的基础是酶的专一性。(? ) 3、酶活力是指在一定条件下酶所催化的反应速度,反应速度越大,意味着酶活力越高。 (?) 4、液体深层发酵是目前酶发酵生产的主要方式。(?) 5、培养基中的碳源,其唯一作用是能够向细胞提供碳素化合物的营养物质。(?) 6、膜分离过程中,膜的作用是选择性地让小于其孔径的物质颗粒成分或分子通过,而把大 于其孔径的颗粒截留。(?) 7、在酶与底物、酶与竞争性抑制剂、酶与辅酶之间都是互配的分子对,在酶的亲和层析分 离中,可把分子对中的任何一方作为固定相。(?) 8、角叉菜胶也是一种凝胶,在酶工程中常用于凝胶层析分离纯化酶。(?) 9、α-淀粉酶在一定条件下可使淀粉液化,但不称为糊精化酶。(?) 10、酶法产生饴糖使用α-淀粉酶和葡萄糖异构酶协同作用。(?) 二、填空题(每空1分,共28分) 1、日本称为“酵素”的东西,中文称为酶,英文则为Enzyme,是库尼(Kuhne)于1878年首 先使用的。其实它存在于生物体的细胞内与细胞外。

2、 1926年,萨姆纳(Sumner)首先制得脲酶结晶,并指出酶的本质是蛋白质。他因这一 杰出贡献,获1947年度诺贝尔化学奖。 3、目前我国广泛使用的高产糖比酶优良菌株菌号为As3.4309,高产液化酶优良菌株菌号为 BF7.658。在微生物分类上,前者属于霉菌,后者属于细菌。 4、 1960年,查柯柏(Jacob)和莫洛德(Monod)提出了操纵子学说,认为DNA分子中, 与酶生物合成有关的基因有四种,即操纵基因、调节基因、启动基因和结构基因。 5、 1961年,国际酶委会规定的酶活力单位为:在特定的条件下(25 oC,PH及底物浓度为 最适宜)每1分钟内,催化1μmol的底物转化为产物的酶量为一个国际单位,即1IU。 6、酶分子修饰的主要目的是改进酶的性能,即提高酶的活力、减少抗原性,增加稳定性。 7、酶的生产方法有提取法,发酵法和化学合成法。 8、借助双功能试剂使酶分子之间发生交联作用,制成网状结构的固定化酶的方法称为交联 法。 9、酶的分离纯化方法中,根据目的酶与杂质分子大小差别有凝胶过滤法,超滤法和超离心 法三种。 10、由于各种分子形成结晶条件的不同,也由于变性的蛋白质和酶不能形成结晶,因此

工程力学复习要点

一、填空题 1.力是物体间相互的相互机械作用,这种作用能使物体的运动状态和形状发生改变。 2.力的基本计量单位是牛顿(N )或千牛顿()。 3.力对物体的作用效果取决于力的大小、方向和作用点(作用线)三要素。 4.若力F r 对某刚体的作用效果与一个力系对该刚体的作用效果相同,则称F r 为该力系的合力,力系中的每个力都是F r 的分力。 5.平衡力系是合力(主矢和主矩)为零的力系,物体在平衡力系作用下,总是保持静止或作匀速直线运动。 6.力是既有大小,又有方向的矢量,常用带有箭头的线段画出。 7.刚体是理想化的力学模型,指受力后大小和形状始终保持不变的物体。 8.若刚体受二力作用而平衡,此二力必然大小相等、方向相反、作用线重合。 9.作用力和反作用力是两物体间的相互作用,它们必然大小相等、方向相反、作用线重合,分别作用在两个不同的物体上。 10.约束力的方向总是与该约束所能限制运动的方向相反。 11.受力物体上的外力一般可分为主动力和约束力两大类。 12.柔性约束限制物体绳索伸长方向的运动,而背离被约束物体,恒为拉力。 13.光滑接触面对物体的约束力,通过接触点,沿接触面公法线方向,指向被约束 的物体,恒为压力。 14.活动铰链支座的约束力垂直于支座支承面,且通过铰链中心,其指向待定。 15.将单独表示物体简单轮廓并在其上画有全部外力的图形称为物体的受力图。在受力图上只画受力,不画施力;在画多个物体组成的系统受力图时,只画外力,不画内力。 16.合力在某坐标轴上的投影,等于其各分力在 同一轴 上投影的 代数 和,这就是合力投影定理。若有一平面汇交力系已求得x F ∑和y F ∑,则合力大小R F 。 17.画力多边形时,各分力矢量 首尾 相接,而合力矢量是从第一个分力矢量的 起点 指向最后一个分力矢量的 终点 。 18.如果平面汇交力系的合力为零,则物体在该力系作用下一定处于 平衡 状态。 19.平面汇交力系平衡时,力系中所有各力在两垂直坐标轴上投影的代数和分别等于零。 20.平面力系包括平面汇交力系、平面平行力系、平面任意力系和平面力偶系等类型。 21.力矩是力使物体绕定点转动效应的度量,它等于力的大小与力臂的乘积,其常用单位为N m ?或kN m ?。 22.力矩使物体绕定点转动的效果取决于力的大小和力臂长度两个方面。 23.力矩等于零的条件是力的大小为零或者力臂为零(即力的作用线通过矩心)。 24.力偶不能合成为一个力,力偶向任何坐标轴投影的结果均为零。 25.力偶对其作用内任一点的矩恒等于力偶矩与矩心位置无关。 26.同平面内几个力偶可以合成为一个合力偶,合力偶矩等于各分力偶矩的代数和。 27.力偶是由大小相等、方向相反、作用线不重合的两个平行力组成的特殊力系,它只对物体产生 转动 效果,不产生 移动 效果。 28.力偶没有 合力,也不能用一个力来平衡,力偶矩是转动效应的唯一度量; 29.力偶对物体的作用效应取决于力偶矩的大小、力偶的转向和作用面三个要素。 30.平面任意力系向作用面内任一点简化的结果是一个力和一个力偶。这个力称为原力系的主矢,它作用在简化中心,且等于原力系中各力的矢量和;这个力偶称为原力系对简化中心的主矩,它等于原力系中各力对简化中心的力矩的代数和。 31.平面任意力系的平衡条件是:力系的主矢和力系对任何一点的主矩分别等于零;应用平面任意力系的平衡方程,选择一个研究对象最多可以求解三个未知量。

酶工程期末考试重点

酶:是由活细胞产生的,在细胞内、外一定条件下都能起催化作用的具有高效率和高度专一性的一类特殊蛋白质或核酸,酶能在机体内十分温和的条件下高效率地起催化作用,使得生物体内的各种物质处于不断的新陈代谢中。 酶工程:酶的生产与应用的技术过程,是酶学基本原理与化学工程相结合而形成的一门新兴的技术科学.研究酶制剂大规模生产及应用所涉及的理论与技术方法. 酶的应用:通过酶的催化作用获得人们所需的物质或除去不良物质,或许所需信息的技术过程. 酶的提取:又称酶的抽提,指在一定的条件下用适当的溶剂或溶液处理含酶物料,使酶充分溶解到溶剂或溶液中的技术过程. 膜分离:又称膜过滤.采用各种高分子膜为过滤介质,将不同大小,不同形状的物质分离的技术过程. 凝胶层析:又称凝胶过滤,分子筛层析等.指以各种多孔凝胶为固定相,利用流动相中所含各种组分的相对分子质量的不同而达到物质分离的一种层析技术. 超临界萃取:又称超临界流体萃取,是利用预分离物质与杂志在超临界流体中的溶解度不同而达到的分离的一种萃取技术. 酶固定化:采用各种方法,将酶与水不溶性的载体结合,制备固定化酶的过程. 固定化酶:用物理,化学等方法将水溶性的酶固定到特定的载体上使之成为水不溶性的酶. 非水相催化:酶在非水介质中的催化作用称为酶的非水相催化. 水活度:用体系中水的蒸汽压和相同条件下纯水的蒸汽压之比表示.水活度与溶剂的极性大小关系不大,所以采用水活度作为参数来研究有机介质中水对酶催化作用的影响更为准确. 必需水:紧紧吸附在酶分子表面维持酶活化性所必需的最少水量. 反胶束体系:反胶束是在大量水不相混溶的有机溶剂中,含有少量的水溶液,加入表面活性剂后形成油包水的微小液滴. 胶束体系:胶束是在大量水溶液中含有少量与水相不相混溶的有机溶剂,加入便面活性剂后形成水包油的微小液滴. 酶分子修饰:通过各种方法使酶分子的结构发生某些改变,从而改变酶的某些特性和功能的技术过程称为酶分子修饰. 酶反应器:酶作为催化剂进行反应所需的装置称为酶反应器. 喷射式反应器:利用高压蒸汽的喷射作用实现酶与底物的混合是进行高温短时催化反应的一种反应器. 酶活力单位:是表示酶活力大小的尺度;1个酶活力单位是指在特定条件(25℃,其它为最适条件)下,在1分钟内能转化1微摩尔底物的酶量.

工程热力学期末考试试题

建筑环境与设备工程专业 一、选择题(每小题3分,共分) 1.若已知工质的绝对压力P=0.18MPa,环境压力Pa=0.1MPa,则测得的压差为( B ) A.真空pv=0.08Mpa B.表压力pg=0.08MPa C.真空pv=0.28Mpa D.表压力pg=0.28MPa 2.简单可压缩热力系的准平衡过程中工质压力降低,则( A ) A.技术功为正 B.技术功为负 C.体积功为正 D.体积功为负 3.理想气体可逆定温过程的特点是( B ) A.q=0 B. Wt=W C. Wt>W D. Wt

A.焓值增加 B.焓值减少 C.熵增加 D.熵减少 7.空气在渐缩喷管内可逆绝热稳定流动,其滞止压力为0.8MPa,喷管后的压力为0.2MPa,若喷管因出口磨损截去一段,则喷管出口空气的参数变化为( C ) A.流速不变,流量不变 B.流速降低,流量减小 C.流速不变,流量增大 D.流速降低,流量不变 8.把同样数量的气体由同一初态压缩到相同的终压,经( A )过程气体终温最高。 A.绝热压缩 B.定温压缩 C.多变压缩 D.多级压缩 9._________过程是可逆过程。( C ) A.可以从终态回复到初态的 B.没有摩擦的 C.没有摩擦的准平衡 D.没有温差的 10.绝对压力p, 真空pv,环境压力Pa 间的关系为( D ) A.p+pv+pa=0 B.p+pa-pv=0 C.p-pa-pv=0 D.pa-pv-p=0 11 Q.闭口系能量方程为( D ) A. +△U+W=0 B.Q+△U-W=0 C.Q-△U+W=0 D.Q-△U-W=0 12.气体常量Rr( A )

相关文档
最新文档