高考中的解析几何(解答题、难)

高考中的解析几何(解答题、难)
高考中的解析几何(解答题、难)

解析几何

解析几何型解答题,着重考查直线与圆锥曲线的位置关系,求解时除了运用设而不求,整体思维外,还要用到平面几何的基本知识和向量的基本方法,解题过程始终围绕如何简化运算展开;有些问题用常规方法解答,运算往往比较复杂,此时若能以形助数,运用平面几何以及向量的方法,则会大大简化解题过程. 函数与方程思想,在解析几何中也常用到.

一、求标准方程、求值

典例1:已知椭圆)0(1:22

22>>=+b a b

y a x C 的两个焦点与短轴的一个端点的连线构成等边三角形,直线0122=-++y x 与以椭圆C 的右焦点为圆心,椭圆的长半轴长为半径的圆相切.

(1)求椭圆C 的方程;

(2)设点D C B ,,是椭圆上不同于椭圆顶点的三点,点B 与点D 关于原点O 对称.设直线OC OB CB CD ,,,的斜率分别为4321,,,k k k k ,且4321k k k k =.

①求21k k 的值; ②求2

2OC OB +的值.

典例2:已知抛物线)0(2:2>=p px y E 上一点)4,(0x M 到焦点F 的距离04

5x MF =. (1) 求E 的方程;

(2) 过F 的直线l 与E 相交于B A ,两点,

AB 的垂直平分线l '与E 相交于D C ,两点,若0=?AD AC ,求直线l 的方程.

变式练习1: 已知椭圆)0(1:2222>>=+b a b y a x G 的两个焦点分别为21,F F ,其离心率为2

3,椭圆G 上一点M 满足021=?MF MF ,且21F MF ?的面积为1.

(1)求椭圆G 的方程;

(2)过椭圆G 长轴上的点)0,(t P 的直线l 与圆1:22=+y x O 相切于点Q (P 与Q 不重合),交椭圆G 于B A ,两点,若BP AQ =,求实数t 的值.

二、定点、定值问题

典例1:已知椭圆)0(1:2222>>=+b a b y a x C 的离心率为2

3,),0,0(),,0(),0,(O b B a A OAB ?的面积为1.

(1)求椭圆C 的方程;

(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:BM AN ?为定值.

典例2:已知抛物线)0(2:2>=p px y E 的焦点为F ,过F 且垂直于x 轴的直线与抛物线E 交于T S ,两点,以)0,3(P 为圆心的圆过点T S ,,且 90=∠SPT .

(1)求抛物线E 和圆P 的方程;

(2)设M 是圆P 上一点,过点M 且垂直于FM 的直线l 交E 于B A ,两点,证明:FB FA ⊥.

典例3:已知抛物线)0(2:2>=p px y C 过点)2,(m M ,其焦点为2,=MF F .

(1)求抛物线C 的方程;

(2)设E 为y 轴上异于原点的任意一点,过点E 作不经过原点的两条直线分别与抛物线C 和圆1)1(:22=+-y x F 相切,切点分别为B A ,,求证:直线AB 过定点.

变式练习1: 已知焦距为32的椭圆)0(1:22

22>>=+b a b

y a x C 的左焦点为1F 、上顶点为D ,直线1DF 与椭圆C 的另一个交点为H ,且H F DF 117=.

(1)求椭圆的方程;

(2)点A 是椭圆C 的右顶点,过点)0,1(B 且斜率为)0(≠k k 的直线l 与椭圆C 相交于F E ,两点,直线AF AE ,分别交直线3=x 于N M ,两点,线段MN 的中点为P .记直线PB 的斜率为k ',求证:k k '?为定值.

变式练习2: 已知椭圆)0(1:22221>>=+b a b y a x C 的离心率为2

3,)1,2(-P 是1C 上一点. (1)求椭圆1C 的方程;

(2)设Q B A ,,是P 分别关于两坐标轴及原点的对称点,平行于AB 的直线l 交1C 于异于Q P ,的两点D C ,.点C 关于原点的对称点为E .证明:直线PE PD ,与y 轴围成的三角形是等腰三角形.

三、最值问题

典例1:平面直角坐标系xOy 中,椭圆()012222>>=+b a b y a x C :的离心率是2

3,抛物线y x E 2:2=的焦点F 是C 的一个顶点。

(1)求椭圆C 的方程;

(2)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点B A ,,线段AB 的中点为D 。直线OD 与过P 且垂直于x 轴的直线交于点M 。 ①求证:点M 在定直线上;

②直线l 与y 轴交于点G ,记ΔPFG 的面积为1S ,ΔPDM 的面积为2S ,求2

1S S 的最大值及取得最大值时点P 的坐标。

典例2:已知双曲线()()1,20,0122

22P b a b y a x T 经过点:>>=-,且其中一焦点F 到一条渐近线的距离为1.

(1)求双曲线T 的方程;

(2)过点P 作两条相互垂直的直线PB PA ,分别交双曲线T 于B A ,两点,求点P 到直线AB 距离的最大值。

典例3:已知抛物线0122=--=y x P py x 处的切线方程为上点.

(1)求抛物线的方程;

(2)设()()2211,,y x B y x A 和为抛物线上的两个动点,其中42121=+≠y y y y 且,线段AB 的垂直平分线l 与ABC C y ?,求轴交于点面积的最大值。

变式练习1:已知抛物线4)2(:),0(:222=-+>=y x C m mx y E 圆,点F 是抛物线E

的焦点,点)0,0(),,(0000>>y x y x N 为抛物线E 上的动点,点)2

1,2(-M ,线段MF 恰被抛物线E 平分。

(1)求m 的值;

(2)若作切线向圆过点C N y ,40>,求两条切线与x 轴围成的三角形面积的最小值。

变式练习2:已知椭圆)20(14:222<<=+b b y x C 的离心率为2

3,与坐标轴不垂直且不过原点的直线1l 与椭圆C 相交于不同的两点B A ,,过AB 的中点M 作垂直于

1l 的直线2l ,设2l 于椭圆C 相交于不同的两点D C ,,且CD CN 2

1=. (1)求椭圆C 的方程;

(2)设原点d l O 的距离为到直线1,求

MN

d 的最大值。

变式练习3:如图,抛物线)1,0()0(2:2F p py x C 的焦点为>=,取垂直于y 轴的直线与抛物线从左至右依次交于不同的两点21,P P ,过21,P P 作圆心为Q 的圆,使抛物线上其余点均在圆外,且Q P Q P 21⊥.

(1)求抛物线Q C 和圆的方程;

(2)过点l F 作直线,与抛物线N B A M Q C ,,,依次交于和圆,求AB MN ?的最小值。

四、范围问题

典例1:设椭圆F a y a x 的右焦点为)3(13

2

22>=+,右顶点为A .已知FA

e OA OF 311=+,其中O 为原点,e 为椭圆的离心率。 (1)求椭圆的方程;

(2)设过点l A 的直线与椭圆交于点)(轴上不在x B B ,垂直于l 的直线与l 交于点M ,与HF BF H y ⊥,若轴交于点,且MAO MOA ∠≤∠,求直线l 的斜率的取值范围。

典例2:已知椭圆)0(12222>>=+b a b y a x C :的离心率为2

2,过点)(0,1M 的直线交椭圆B A C ,与两点,MB MA λ=,且当直线l 垂直于x 轴时,2=AB .

(1)求椭圆C 的方程;

(2)若??

????∈221,λ,求弦长AB 的取值范围。

变式练习1:已知椭圆)0(122

22>>=+b a b

y a x 的离心率为21,且经过点)(23,1P ,过它的两个焦点21,F F 分别作直线121l l l ,与交椭圆于212,,l l D C l B A ⊥两点,且交椭圆于两点,.

(1)求椭圆的标准方程;

(2)求四边形S ABCD 的面积的取值范围。

五、轨迹问题

典例1:设圆015222=-++x y x 的圆心为A ,直线轴不重合)且与(过点x B l 0,1,D C A l ,于交圆两点,过E AD AC B 于点的平行线交作.

(1)证明EB EA +为定值,并写出点E 的轨迹方程;

(2)设点E 的轨迹为曲线1C ,直线两点于交N M C l ,1,过l B 且与垂直的直线与圆两点,交于Q P A ,求四边形MPNQ 面积的取值范围。

典例2:已知点)(0,1F 是直线1:1-=x l 上的动点,过A 作直线212l l l ⊥,,线段

P l AF 交于的垂直平分线与2.

(1)求点的方程的轨迹C P ;

(2)若点上两个不同的点,是直线1,l N M 且PMN ?的内切圆方程为122=+y x ,直线PF 的斜率为k ,求

MN k 的取值范围。

变式练习1:已知动点P 到直线1:-=x l 的距离等于它到圆0

14:22=+-+x y x C 的切线长到切点的距离)(P .记动点P 的轨迹为曲线E .

(1)求曲线E 的方程;

(2)点Q 是直线l 上的动点,过圆心QC C 作的垂线交曲线B A E ,于两点,这D AB 的中点为,求AB QD

的取值范围。

变式练习2:已知圆心为B A x y x H ,0,1015222)(和定点的圆=-++是圆上任意一点,线段l AB 的中垂线和直线B M BH ,当点相交于点在圆上运动时,点C M 的轨迹记为曲线.

(1)求C 的方程;

(2)过点A 作两条相互垂直的直线分别与曲线C 相交于F E Q P ?,求和,,的取值范围。

六、探究定点问题

典例1:设)0(14:22

221>=+b b

y x E F F 分别是椭圆、的左、右焦点,若E P 是椭圆上的一动点,且121PF +. (1)求椭圆E 的方程;

(2)设直线1-=ky x 与椭圆x A B A E 关于两点,点交于,轴的对称点为)(不重合与B A A '',则直线x B A 与''轴是否交于一个定点?若是,请写出该定点的坐标,并证明你的结论;若不是,请说明理由。

典例2:已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为

,(,点22)0,2(1B F -在椭圆C 上,直线两点交于与椭圆F E C k kx y ,)0(≠=,直线N M y AF AE ,,轴交于点分别与.

(1)求椭圆C 的方程;

(2)以MN 为直线的圆是否经过定点?若经过,求出定点的坐标,若不经过,请说明理由。

变式练习1:已知圆9)1(:1)1(:2222=+-=++y x N y x M ,圆.定圆M P 与圆外切并圆N 内切,圆心P 的轨迹为曲线C .

(1)求C 的方程;

(2)若直线两点交于与曲线S R C x k y ,)1(-=,问是否在x 轴上存在一点T ,使得当k 变动时总有OTR OTS ∠=∠?若存在,求出点T 的坐标;若不存在,请说明理由。

变式练习2:已知椭圆C 的中心在原点,焦点在x 轴上,离心率为2

2,它的一个焦点恰好与抛物线x y 42=的焦点重合.

(1)求椭圆C 的方程;

(2)设椭圆的上顶点为A ,经过C A 作椭圆

的两条动弦AC AB ,,若直线41,斜率之积为AC AB ,直线BC 是否一定经过一定点?若经过求出该定点坐标;若不经过,请说明理由。

2019高考大题之解析几何

高考大题之解析几何 1.如图,椭圆C :22221x y a b +=(a >b >0)的离心率e =3 5 ,左焦点为F ,A ,B ,C 为其三个顶 点,直线CF 与AB 交于点D ,若△ADC 的面积为15. (Ⅰ)求椭圆C 的方程; (Ⅱ)是否存在分别以AD ,AC 为弦的两个相外切的等圆? 若存在,求出这两个圆的圆心坐标;若不存在,请说明理由. 解:(Ⅰ)设左焦点F 的坐标为(-c ,0),其中c =22a b -, ∵e = 35c a =,∴a =5 3 c ,b =43c . ∴A (0,43c ),B (-5 3c ,0),C (0,-43c ), ∴AB :33154x y c c -+=,CF :314x y c c --=, 联立解得D 点的坐标为(-54c ,1 3c ). ∵△ADC 的面积为15,∴12|x D |·|AC |=15,即12·54c ·2·4 3 c =15, 解得c =3,∴a =5,b =4,∴椭圆C 的方程为22 12516 x y +=. (Ⅱ)由(Ⅰ)知,A 点的坐标为(0,4),D 点的坐标为(-15 4 ,1). 假设存在这样的两个圆M 与圆N ,其中AD 是圆M 的弦,AC 是圆N 的弦, 则点M 在线段AD 的垂直平分线上,点N 在线段AC 的垂直平分线y =0上. 当圆M 和圆N 是两个相外切的等圆时,一定有A ,M ,N 在一条直线上,且AM =AN . ∴M 、N 关于点A 对称,设M (x 1,y 1),则N (-x 1,8-y 1), 根据点N 在直线y =0上,∴y 1=8.∴M (x 1,8),N (-x 1,0), 而点M 在线段AD 的垂直平分线y -52=-54(x +158)上,可求得x 1=-251 40 . 故存在这样的两个圆,且这两个圆的圆心坐标分别为 M (-25140,8),N (25140 ,0). 2.如图,椭圆22 221(0)x y a b a b +=>>的左焦点为F ,过点F 的直线交椭圆于B A ,两点, AF 的最大值为M ,BF 的最小值为m ,满足2 34 M m a ?= 。 (Ⅰ)若线段AB 垂直于x 轴时,3 2 AB = ,求椭圆的方程; (Ⅱ) 设线段AB 的中点为G ,AB 的垂直平分线与x 轴和y 轴分别交于E D ,两

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

浙江高考解析几何大题

浙江高考历年真题之解析几何大题 1、(2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF ∠ 最大的点P 记为Q ,求点Q 的坐标(用m 表示). 解析:(Ⅰ)设椭圆方程为()22 2210x y a b a b +=>>,半焦距为c , 则2111,a MA a A F a c c =-=- ,()2 222 224 a a a c c a a b c ?-=-??? =??=+??? 由题意,得 2,3,1a b c ∴=== ,22 1.43 x y +=故椭圆方程为 (Ⅱ) 设()0,,||1P m y m >,当00y >时,120F PF ∠=; 当00y ≠时,22102 F PF PF M π <∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m = +,直线2PF 的斜率0 21 y k m =-, 002122222212002||tan 1121||1 y k k F PF k k m y m y m -∴∠= =≤= +-+-?- 2 01||m y -=时,12F PF ∠最大,(2,1,||1Q m m m ∴±->

2、(2006年)如图,椭圆b y a x 2 22+=1(a >b >0)与过点A (2,0)、B(0,1)的直线有且只有一个公共点T ,且椭圆的 离心率e= 2 3 。 (Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,M 为线段AF 2的中点,求证:∠ATM=∠AF 1T 。 解析:(Ⅰ)过 A 、B 的直线方程为 12 x y += 因为由题意得??? ????+-==+1211 2222x y b y a x 有惟一解, 即0)4 1(22222 22 =-+-+ b a a x a x a b 有惟一解, 所以22 2 2 (44)0(0),a b a b ab ?=+-=≠故442 2 -+b a =0; 又因为e 3 c =即 22234 a b a -= , 所以2 2 4a b = ;从而得22 1 2,,2 a b == 故所求的椭圆方程为22212x y += (Ⅱ)由(Ⅰ)得6c = , 所以 1266((F F ,从而M (1+4 6 ,0) 由 ?? ???+-==+1 211222 2x y y x ,解得 121,x x == 因此1(1,)2T = 因为126tan 1-= ∠T AF ,又21 tan =∠TAM ,6 2tan =∠2TMF ,得 12 6 6 1 121 62 tan -= + -= ∠ATM ,因此,T AF ATM 1∠=∠ 3、(2007年)如图,直线y kx b =+与椭圆2 214 x y +=交于A B ,两点,记AOB △的面积为S .

高考中解析几何的常考题型分析总结

高考中解析几何的常考题型分析 一、高考定位 回顾2008,2012年的江苏高考题,解析几何是重要内容之一,所占分值在25 分左右,在高考中一般有2,3条填空题,一条解答题.填空题有针对性地考查椭圆、双曲线、抛物线的定义、标准方程和简单几何性质及其应用,主要针对圆锥曲线本身,综合性较小,试题的难度一般不大;解答题主要是以圆或椭圆为基本依托,考查椭圆方程的求解、考查直线与曲线的位置关系,除了本身知识的综合,还会与其它知识如向量、函数、不等式等知识构成综合题,多年高考压轴题是解析几何题. 二、应对策略 复习中,一要熟练掌握椭圆、双曲线、抛物线的基础知识、基本方法,在抓住通性通法的同时,要训练利用代数方法解决几何问题的运算技巧. 二要熟悉圆锥曲线的几何性质,重点掌握直线与圆锥曲线相关问题的基本求解方法与策略,提高运用函数与方程思想、向量与导数的方法来解决问题的能力. 三在第二轮复习中要熟练掌握圆锥曲线的通性通法和基本知识. 预测在2013年的高考题中: 1.填空题依然是直线和圆的方程问题以及考查圆锥曲线的几何性质为主,三种圆锥曲线都有可能涉及. 2.在解答题中可能会出现圆、直线、椭圆的综合问题,难度较高,还 有可能涉及简单的轨迹方程和解析几何中的开放题、探索题、证明题,重点关注定值问题. 三、常见题型

1.直线与圆的位置关系问题 直线与圆的位置关系是高考考查的热点,常常将直线与圆和函数、三角、向量、数列、圆锥曲线等相互交汇,求解参数、函数最值、圆的方程等,主要考查直线与圆的相交、相切、相离的判定与应用,以及弦长、面积的求法等,并常与圆的几何性质交汇,要求学生有较强的运算求解能力. 求解策略:首先,要注意理解直线和圆等基础知识及它们之间的深入联系;其次,要对问题的条件进行全方位的审视,特别是题中各个条件之间的相互关系及隐含条件的挖掘;再次,要掌握解决问题常常使用的思想方法,如数形结合、化归转化、待定系数、分类讨论等思想方法;最后,要对求解问题的过程清晰书写,准确到位. 点评:(1)直线和圆的位置关系常用几何法,即利用圆的半径r,圆心到直线的距离d及半弦长l2构成直角三角形关系来处理. (2)要注意分类讨论,即对直线l分为斜率存在和斜率不存在两种情况分别研究,以防漏解或推理不严谨. 2.圆锥曲线中的证明问题 圆锥曲线中的证明问题,主要有两类:一类是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;另一类是证明直线与圆锥曲线中的一些数量关系(相等或不等). 求解策略:主要根据直线、圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关的性质应用、代数式的恒等变形以及必要的数值计算等进行证明. 常用的一些证明方法: 点评:本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲

高考解析几何压轴题精选(含答案)

1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上, 则B 到该抛物线准线的距离为_____________。(3分) 2 .已知m >1,直线2:02m l x my --=,椭圆2 22:1x C y m +=,1,2F F 分别为椭圆C 的左、 右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为 ,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范 围.(6分) 3已知以原点O 为中心,) F 为右焦点的双曲线C 的离心率2 e = 。 (I ) 求双曲线C 的标准方程及其渐近线方程; (II ) 如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点 ()22,N x y (其中2x x ≠)的直 线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ?的面积。(8分)

4.如图,已知椭圆 22 22 1(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右 焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、 2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得 ·A B C D A B C D λ +=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分) 5.在平面直角坐标系xoy 中,如图,已知椭圆15 922=+y x

最新名校2020高考解析几何大题二(定值定点)(4.2日)

解析几何大题二 1.椭圆M 的中心在坐标原点O ,左、右焦点F 1,F 2在x 轴上,抛物线N 的顶点也在原点O ,焦点为F 2,椭圆M 与抛物线N 的一个交点为A (3,2). (Ⅰ)求椭圆M 与抛物线N 的方程; (Ⅱ)在抛物线M 位于椭圆内(不含边界)的一段曲线上,是否存在点B ,使得△AF 1B 的外接圆圆心在x 轴上?若存在,求出B 点坐标;若不存在,请说明理由. 2.已知椭圆22 22:1(0)x y C a b a b +=>>的右焦点F 到直线30x y -+=的距离为22,231,P ?? ? ? ?? 在椭圆C 上. (1)求椭圆C 的方程; (2)若过F 作两条互相垂直的直线12,l l ,,A B 是1l 与椭圆C 的两个交点,,C D 是2l 与椭圆C 的两个交点,,M N 分别是线段,AB CD 的中点试,判断直线MN 是否过定点?若过定点求出该定点的坐标;若不过定点,请说明理由. 3.已知抛物线C:y 2 =2px(p>0)的焦点F 和椭圆22 143 x y +=的右焦点重合,直线过点F 交抛物线于A 、 B 两点. (1)求抛物线C 的方程; (2)若直线交y 轴于点M,且,MA mAF MB nBF ==u u u r u u u r u u u r u u u r ,m 、n 是实数,对于直线,m+n 是否为定值? 若是,求出m+n 的值;否则,说明理由. 4.已知椭圆22 22:1(0)x y E a b a b +=>>的上顶点为B ,点(0,2)D b -,P 是E 上且不在y 轴上的点, 直线DP 与E 交于另一点Q .若E 的离心率为2 2,PBD ?的最大面积等于 322 . (1)求E 的方程; (2)若直线,BP BQ 分别与x 轴交于点,M N ,判断OM ON ?是否为定值.

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

高考解析几何压轴题精选(含答案)

专业资料 1. 设抛物线y2 2 px( p 0) 的焦点为F,点 A(0, 2) .若线段FA的中点B在抛物线上, 则 B 到该抛物线准线的距离为_____________ 。(3 分) 2 . 已知m>1,直线l : x my m20 ,椭圆 C : x 2 y21, F1,F2分别为椭圆C的左、 2m2 右焦点 . (Ⅰ)当直线l过右焦点 F2时,求直线l的方程;(Ⅱ)设直线 l 与椭圆 C 交于A, B两点,V AF1F2,V BF1F2的重心分别为G, H .若原点O在以线段GH为直径的圆内,求实数m 的取值范围. (6 分) 3 已知以原点 O为中心,F5,0 为右焦点的双曲线 C 的离心率e 5 。2 (I)求双曲线C的标准方程及其渐近线方程;(I I )如题(20)图,已知过点M x1, y1 的直线 l1 : x1 x 4 y1 y 4 与过点 N x2 , y2(其中 x2x )的直 线 l2 : x2 x 4 y2 y 4 的交点E在 双曲线 C 上,直线MN与两条渐近 线分别交与G、H两点,求OGH 的面积。(8 分)

4. 如图,已知椭圆x2y21(a> b>0) 的离心率为2 ,以该椭圆上的点和椭圆的左、右 a2b22 焦点 F1 , F2为顶点的三角形的周长为4( 2 1) .一等轴双曲线的顶点是该椭圆的焦点,设 P 为该双曲线上异于顶点的任一点,直线PF1和 PF2与椭圆的交点分别为A、B和C、D. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线PF1、 PF2的斜率分别为 k1、 k2,证明 k1·k2 1 ;(Ⅲ)是否存在常数,使得 A B C D A·B C恒D成立?若存在,求的值;若不存在,请说明理由. ( 7 分) 5. 在平面直角坐标系 x2y2 xoy 中,如图,已知椭圆1

解析几何全国卷高考真题

2015-2017解析几何全国卷高考真题 1、(2015年1卷5题)已知M (00,x y )是双曲线C :2 212 x y -=上的一点, 12,F F 是C 上的两个焦点,若120MF MF ?

故圆的方程为22325()24 x y -+= . 考点:椭圆的几何性质;圆的标准方程 3、(2015年1卷20题)在直角坐标系xoy 中,曲线C :y=2 4 x 与直线y kx a =+(a >0)交与M,N 两点, (Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程; (Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由. 【答案】0y a --=0y a ++=(Ⅱ)存在 【解析】 试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标. 试题解析:(Ⅰ)由题设可得)M a ,()N a -,或()M a -, )N a .

2020年高考数学(理)大题分解专题05--解析几何(含答案)

(2019年全国卷I )已知抛物线C :x y 32=的焦点为F ,斜率为 32 的直线l 与 C 的交点为A ,B ,与x 轴的交点为P . (1)若4||||=+BF AF ,求l 的方程; (2)若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【肢解2】若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【解析】设直线l 方程为 m x y += 23 ,()11,A x y ,()22,B x y , 由抛物线焦半径公式可知 12342AF BF x x +=++ =,所以125 2 x x +=, 大题肢解一 直线与抛物线

联立2323y x m y x ? =+???=?得0 4)12(12922=+-+m x m x , 由0144)1212(22>--=?m m 得1 2 m <, 所以12121259 2 m x x -+=-=,解得78 m =-, 所以直线l 的方程为372 8 y x =-,即12870x y --=. 【肢解2】若3AP PB =,求||AB . 【解析】设直线l 方程为23 x y t =+, 联立2233x y t y x ? =+???=? 得0322=--t y y ,由4120t ?=+>得31->t , 由韦达定理知221=+y y , 因为PB AP 3=,所以213y y -=,所以12-=y ,31=y ,所以1=t ,321-=y y . 则=-+?+=212214)(9 4 1||y y y y AB = -?-?+)3(429 4123 13 4. 设抛物线)0(22>=p px y 的焦点为F ,过点F 的而直线交抛物线于A (x 1,y 1), B (x 2,y 2),则|AB |=x 1+x 2+p.

04-14浙江历年高考题解析几何大题

浙江高考历年真题之解析几何大题 2004年(22)(本题满分14分) 已知双曲线的中心在原点,右顶点为A (1,0).点P 、Q 在双曲线的右支上,点M (m ,0)到直线AP 的距离为1. (Ⅰ)若直线AP 的斜率为k ,且]3,3 3[∈k ,求实数m 的取值范围; (Ⅱ)当12+= m 时,ΔAPQ 的内心恰好是点M ,求此双曲线的方程. (2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若点P 在直线l 上运动,求∠F 1PF 2的最大值.

(2006年)如图,椭圆b y a x 2 22+=1(a >b >0)与过点A (2,0)B(0,1)的直线有且只有一个公共点T 且椭圆的离心率e= 23. (Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,求证:2121||||||2 AT AF AF = 。 (2007年)如图,直线y kx b =+与椭圆2 214 x y +=交于A B ,两点,记AOB △的面积为S . (I )求在0k =,01b <<的条件下,S 的最大值; (II )当2AB =,1S =时,求直线AB 的方程.

(2008年)已知曲线C 是到点P (83,21-)和到直线8 5-=y 距离相等的点的轨迹。 是过点Q (-1,0)的直线,M 是C 上(不在l 上)的动点;A 、B 在l 上,,MA l MB x ⊥⊥ 轴(如图)。 (Ⅰ)求曲线C 的方程; (Ⅱ)求出直线l 的方程,使得 QA QB 2为常数。 (2009年)已知抛物线C :x 2=2py (p >0)上一点A (m ,4)到焦点的距离为 174 . (I )求p 于m 的值; (Ⅱ)设抛物线C 上一点p 的横坐标为t (t >0),过p 的直线交C 于另一点Q ,交x 轴于M 点,过点Q 作PQ 的垂线交C 于另一点N.若MN 是C 的切线,求t 的最小值;

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称?若能,求出k 的取值范围;若不能,请说明理由. 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆221x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11PA 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗?证明你的结论.

3、已知抛物线2:C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?= ,求BDK ?的面积。. 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值.

高考数学压轴专题最新备战高考《平面解析几何》技巧及练习题

【最新】数学复习题《平面解析几何》专题解析 一、选择题 1.已知曲线()22 22:100x y C a b a b -=>,>的左、右焦点分别为12,,F F O 为坐标原点,P 是双曲线在第一象限上的点,MO OP =u u u u v u u u v ,直线2PF 交双曲线C 于另一点N ,若 122PF PF =,且2120MF N ∠=?则双曲线C 的离心率为( ) A . 23 B .7 C .3 D .2 【答案】B 【解析】 【分析】 由题意结合双曲线的定义可得124,2PF a PF a == ,在三角形12PF F 中,由余弦定理可得2224208c a a =+,据此计算双曲线的离心率即可. 【详解】 由题意,122PF PF =,由双曲线的定义可得,122PF PF a -= ,可得 124,2PF a PF a == , 由四边形12PF MF 为平行四边形,又2120MF N ∠=?,可得12120F PF ∠=?, 在三角形12PF F 中,由余弦定理可得2224164242cos120c a a a a =+-???? , 即有2224208c a a =+,即227c a =,可得7c a =,即7c e a = =. 【点睛】 双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a = ; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).

高中数学解析几何大题精选

解析几何大量精选 1.在直角坐标系xOy 中,点M 到点()1,0F ,) 2 ,0F 的距离之和是4,点M 的轨迹 是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程; ⑵当0AP AQ ?= 时,求k 与b 的关系,并证明直线l 过定点. 【解析】 ⑴2 214 x y +=. ⑵将y kx b =+代入曲线C 的方程, 整理得2 2 2 (14)8440k x kbx b +++-=, 因为直线l 与曲线C 交于不同的两点P 和Q , 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+>① 设()11,P x y ,()22,Q x y ,则122814kb x x k +=-+,2122 4414b x x k -=+② 且2222 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 所以()112,AP x y =+ ,()222,AQ x y =+ . 由0AP AQ ?= ,得1212(2)(2)0x x y y +++=. 将②、③代入上式,整理得22121650k kb b -+=. 所以(2)(65)0k b k b -?-=,即2b k =或6 5 b k =.经检验,都符合条件① 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点. 即直线l 经过点A ,与题意不符. 当65b k =时,直线l 的方程为6655y kx k k x ? ?=+=+ ?? ?. 显然,此时直线l 经过定点6,05?? - ??? 点,满足题意. 综上,k 与b 的关系是65b k =,且直线l 经过定点6,05?? - ??? 2.已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2,以原点为圆心,椭圆的短半轴为半径的 圆与直线0x y -相切. ⑴ 求椭圆C 的方程; ⑵ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; ⑶ 在⑵的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ? 的取值范围. 【解析】 ⑴22 143 x y +=. ⑵由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-.

20052018浙江高考理科数学历年真题之解析几何大题教师版

浙江高考历年真题之解析几何大题 (教师版) 1、(2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF ∠ 最大的点P 记为Q ,求点Q 的坐标(用m 表示). 解析:(Ⅰ)设椭圆方程为()22 2210x y a b a b +=>>,半焦距为c , 则2111,a MA a A F a c c =-=- ,()2 222 224 a a a c c a a b c ?-=-??? =??=+??? 由题意,得 2,3,1a b c ∴=== ,22 1.43 x y +=故椭圆方程为 (Ⅱ) 设()0,,||1P m y m >,当00y >时,120F PF ∠=; 当00y ≠时,22102 F PF PF M π <∠<∠<,∴只需求22tan F PF ∠的最大值即可 设直线1PF 的斜率011y k m = +,直线2PF 的斜率0 21 y k m =-, 002122222212002||tan 1121||1 y k k F PF k k m y m y m -∴∠= =≤= +-+-?- 2 01||m y -=时,12F PF ∠最大,(2,1,||1Q m m m ∴±-> 2、(2006年)如图,椭圆b y a x 2 22+=1(a >b >0)与过点A (2,0)、B(0,1)的直线有且只有一个公共点T , 且椭圆的离心率e= 2 3。 (Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,M 为线段AF 2的中点,求证:∠ATM=∠AF 1T 。

2019高考数学真题(文)分类汇编-平面解析几何含答案解析

平面解析几何专题 1.【2019年高考浙江卷】渐近线方程为x ±y =0的双曲线的离心率是 A B .1 C D .2 【答案】C 【解析】因为双曲线的渐近线方程为0x y ±=,所以a b =,则c ==,所以双曲线的离 心率c e a = =故选C. 【名师点睛】本题根据双曲线的渐近线方程可求得a b =,进一步可得离心率,属于容易题,注重了双曲线基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误. 2.【2019年高考全国Ⅰ卷文数】双曲线C :22 221(0,0)x y a b a b -=>>的一条渐近线的倾斜角为130°,则C 的离心率为 A .2sin40° B .2cos40° C . 1 sin50? D . 1 cos50? 【答案】D 【解析】由已知可得tan130,tan 50b b a a - =?∴=?, 1cos50c e a ∴======?, 故选D . 【名师点睛】对于双曲线:()222210,0x y a b a b -=>>,有c e a == 对于椭圆()222210x y a b a b +=>>,有c e a == 3.【2019年高考全国Ⅰ卷文数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为

A .2 212 x y += B .22 132x y += C .22 143 x y += D .22 154 x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=. 在1AF B △中,由余弦定理推论得22214991cos 2233 n n n F AB n n +-∠==??. 在12AF F △中,由余弦定理得2 2 14422243n n n n +-??? = ,解得2 n =. 2 2 2 24,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22 132 x y +=,故选B . 法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=. 在12AF F △和12BF F △中,由余弦定理得222122 2144222cos 4422cos 9n n AF F n n n BF F n ?+-???∠=?+-???∠=?, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得 223611n n += ,解得n = .22224,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22 132 x y +=,故选B . 【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地

上海高考解析几何试题

近四年上海高考解析几何试题 一.填空题: 1、双曲线116922=-y x 的焦距是 . 2、直角坐标平面xoy 中,定点)2,1(A 与动点),(y x P 满足4=?OA OP ,则点P 轨迹方程 ___。 3、若双曲线的渐近线方程为x y 3±=,它的一个焦点是()0,10,则双曲线的方程是__________。 4、将参数方程?? ?=+=θ θ sin 2cos 21y x (θ为参数)化为普通方程,所得方程是__________。 5、已知圆)0()5(:2 22>=++r r y x C 和直线053:=++y x l . 若圆C 与直线l 没有公共 点,则r 的取值范围是 . 6、已知直线l 过点)1,2(P ,且与x 轴、y 轴的正半轴分别交于B A 、两点,O 为坐标原点,则三角形OAB 面积的最小值为 . 7、已知圆2x -4x -4+2 y =0的圆心是点P ,则点P 到直线x -y -1=0的距离是 ; 8、已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 ; 10、曲线2 y =|x |+1与直线y =kx +b 没有公共点,则k 、b 分别应满足的条是 . 11、在平面直角坐标系xOy 中,若抛物线x y 42=上的点P 到该抛物线的焦点的距离为6, 则点P 的横坐标=x . 12、在平面直角坐标系xOy 中,若曲线24y x -=与直线m x =有且只有一个公共点,则 实数=m . 13、若直线1210l x my ++=: 与直线231l y x =-:平行,则=m . 14 、以双曲线1542 2=-y x 的中心为焦点,且以该双曲线的左焦点为顶点的抛物线方程是 . 16 、已知P 是双曲线22 219x y a - =右支上的一点,双曲线的一条渐近线方程为30x y -=. 设12F F 、分别为双曲线的左、右焦点. 若23PF =,则1PF = 17、已知(1,2),(3,4A B ,直线1l :20,:0x l y ==和3:l x +3y 10-=. 设i P 是 i l (1,2,3)i =上与A 、B 两点距离平方和最小的点,则△123PP P 的面积是 二.选择题:

全国各地高考文科数学试题平面解析几何及答案

2013年全国各地高考文科数学试题分类 平面解析几何及详解答案 一、选择题 1 .(2013年高考重庆卷(文))设P是圆22 -++=上的动点,Q是直线 x y (3)(1)4 x=-上的动点,则PQ的最小值为()3 A.6 B.4 C.3 D.2 【答案】B 2 .(2013年高考江西卷(文))如图.已知l1⊥l2,圆心在l1上、半径为1m的 圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cosx,则y与时间t(0≤x≤1,单位:s)的函数y=f(t)的图像大致为 【答案】B 3 .(2013年高考天津卷(文))已知过点P(2,2) 的直线与圆225 -相 += x y (1)

切, 且与直线10ax y -+=垂直, 则a = ( ) A .12 - B .1 C .2 D .12 【答案】C 4 .(2013年高考陕西卷(文))已知点M (a ,b )在圆221:O x y +=外, 则直线ax + by = 1与圆O 的位置关系是 ( ) A .相切 B .相交 C .相离 D .不确定 【答案】B 5 .(2013年高考广东卷(文))垂直于直线1y x =+且与圆221x y +=相切于第一 象限的直线方程是 ( ) A .20x y +-= B .10x y ++= C .10x y +-= D .20x y ++= 【答案】A 二、填空题 6 .(2013年高考湖北卷(文))已知圆 O : 225 x y +=,直线 l :cos sin 1x y θθ+=(π 02 θ<<).设圆O 上到直线l 的距离等于1的点的个数为k ,则 k =________. 【答案】4 7 .(2013年高考四川卷(文))在平面直角坐标系内,到点 (1,2)A ,(1,5)B ,(3,6)C ,(7,1)D -的距离之和最小的点的坐标是__________ 【答案】(2,4) 8 .(2013年高考江西卷(文))若圆C 经过坐标原点和点(4,0),且与直线 y=1相切,则圆C 的方程是_________. 【答案】22325 (2)()2 4 x y -++=

高中数学解析几何解题方法

高考专题:解析几何常规题型及方法 本章节处理方法建议: 纵观2006年全国各省市18套文、理高考试卷,普遍有一个规律:占解几分值接近一 半的填空、选择题难度不大,中等及偏上的学生能将对应分数收入囊中;而占解几分值一 半偏上的解答题得分很不理想,其原因主要体现在以下几个方面:(1)解析几何是代数与 几何的完美结合,解析几何的问题可以涉及函数、方程、不等式、三角、几何、数列、向 量等知识,形成了轨迹、最值、对称、范围、参系数等多种问题,因而成为高中数学综合 能力要求最高的内容之一(2)解析几何的计算量相对偏大(3)在大家的“拿可拿之分” 的理念下,大题的前三道成了兵家必争之地,而排放位置比较尴尬的第21题或22题(有 时20题)就成了很多人遗忘的角落,加之时间的限制,此题留白的现象比较普遍。 鉴于解几的特点,建议在复习中做好以下几个方面.1.由于高考中解几内容弹性很 大。有容易题,有中难题。因此在复习中基调为狠抓基础。不能因为高考中的解几解答题 较难,就拼命地去搞难题,套新题,这样往往得不偿失;端正心态:不指望将所有的题攻 下,将时间用在巩固基础、对付“跳一跳便可够得到”的常规题上,这样复习,高考时就 能保证首先将选择、填空题拿下,然后对于大题的第一个小问争取得分,第二小题能拿几 分算几分。 三、高考核心考点 1、准确理解基本概念(如直线的倾斜角、斜率、距离、截距等) 2、熟练掌握基本公式(如两点间距离公式、点到直线的距离公式、斜率公式、定比分点的坐标公式、到角公式、夹角公式等) 3、熟练掌握求直线方程的方法(如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况、截距是否为0等等) 4、在解决直线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算 5、了解线性规划的意义及简单应用 6、熟悉圆锥曲线中基本量的计算 7、掌握与圆锥曲线有关的轨迹方程的求解方法(如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等) 8、掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题 四、常规题型及解题的技巧方法 A:常规题型方面 (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。 典型例题 给定双曲线x y 2 2 2 1-=。过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。 分析:设P x y 111(,),P x y 222(,)代入方程得x y 12 12 2 1-=,x y 22 22 2 1- =。 两式相减得 ()()()()x x x x y y y y 1212121212 0+-- +-=。

相关文档
最新文档