对称性与诺特定理(稿)

对称性与诺特定理(稿)
对称性与诺特定理(稿)

高中物理中及对称性模型

对称性模型 由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中,应用这种对称性它不仅能帮助我们认识和探索物质世界的某些规律,而且也能帮助我们去求解某些具体的物理问题,这种思维方法在物理学中为对称法,利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快捷简便地解决问题。 对称法作为一种具体的解题方法,虽然高考命题没有单独正面考查,但是在每年的高考命题中都有所渗透和体现。从侧面体现考生的直观思维能力和客观的猜想推理能力。所以作为一种重要的物理思想和方法,相信在今后的高考命题中必将有所体现。 在高中物理模型中,有很多运动模型有对称性,如(类)竖直上抛运动的对称性,简谐运动中的对称性,电路中的对称性,带电粒子在匀强磁场中匀速圆周运动中几何关系的对称性. 简谐运动的对称性是指振子经过关于平衡位置对称的两位置时,振子的位移、回复力、加速度、动能、势能、速度、动量等均是等大的(位移、回复力、加速度的方向相反,速度动量的方向不确定)。运动时间也具有对称性,即在平衡位置对称两段位移间运动的时间相等。(从某点到达最大位置和从最大位置再回到这一点所需要的时间相等、从某点向平衡位置运动的时间和它从平衡位置运动到这一点的对称点所用的时间相等). 现将对称模型分为空间对称模型和时间对称模型 1、空间对称模型 例1:如图1所示:在离地高度是h,离竖直光滑的墙是 s处,有一个弹性小 1 球以初速度 v正对着墙水平抛出,与墙发生弹性碰撞后落到地面上,求小球落地 点与墙的距离。 【解析】:小球与墙的碰撞是弹性碰撞,碰撞前后 的动量对于墙面的的法线是对称的。如墙的另一面同一高 度有一个弹性小球以相同的速度与墙碰撞,由于对称性, 它的轨迹与小球的实际轨迹是对称的。因此碰前的轨迹与碰

二重积分对称性定理的证明及应用

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 前言 (1) 1.预备知识 (1) 2.二重积分对称性定理在不同条件下的证明及其应用 (2) 2.1 积分区域D关于坐标轴对称 (2) 2.2 积分区域D关于坐标区域内任意直线对称 (5) 2.3 积分区域D关于坐标原点对称 (9) 2.4 积分区域D关于坐标区域内任意一点对称 (11) 2.5 积分区域D同时关于坐标轴和坐标原点对称 (12) 结束语 (12) 参考文献 (13) 二重积分对称性定理的证明及应用

摘 要:本文归纳利用对称性来计算二重积分的方法,给出了二重积分对称性定理的证明并举出了相应例题. 关键词:对称性;积分区城;被积函数 The Application of Symmetry in Double Integral Calculating Abstract :It is introduced in the thesis some ways of how to calculate double integral with the application of symmetry. It is also put forward in it how to simplify the calculating methods with symmetry. Keywords :Symmetry; Integral region; Integrated function 前言 利用对称性计算二重积分,不但可以使计算简化,有时还可以避免错误.在一般情况下,必须是积分区域D 具有对称性,而且被积函数对于区域D 也具有对称性,才能利用对称性来计算.在特殊情况下,虽然积分区域D 没有对称性,或者关于对称区域D 被积函数没有对称性,但经过技巧性的处理,化为能用对称性来简化计算的积分.这些都是很值得我们探讨的问题. 1 预备知识 对于二重积分(,)D f x y dxdy ??的计算,我们总是将其化为二次定积分来完成的,而在 定积分的计算中,若遇到对称区间,则有下面非常简洁的结论: 当()f x 在区间上为连续的奇函数时,()0a a f x dx -=?. 当()f x 在区间上为连续的偶函数时,0 ()2()a a a f x dx f x dx -=??. 这个结论,常可简化计算奇、偶函数在对称于原点的区间上的定积分. 在计算二重积分时,若积分区域具有某种对称性,是否也有相应的结论呢?回答是肯定的.下面,我们将此结论类似地推广到二重积分. 2 二重积分对称性定理在不同条件下的证明及其应用 定理1[]1 若二重积分(,)D f x y dxdy ??满足

群表示的理论基础和分子对称性

4.群表示的理论基础和分子对称性 教学目标与学习指导 1.本章第1节讨论分子对称性。要求掌握五种对称元素和对称操作的乘积的概念。 2.本章第2节介绍群的基本知识。要求对群的基本知识有一般的了解。3.本章第3节讨论分子点群。要求掌握分子点群的确定。 4.本章第4节讨论分子对称操作的矩阵表示。要求掌握五种对称操作的矩阵表示法。 5.本章第5节讨论群表示的基及群的表示。要求对群表示的一般性质有所了解。要求掌握不可约表示和可约表示的概念以及可约表示的约化,了解特征标表。 4-1分子对称性 4-2群的基本知识 4-3分子对称操作群 4-4分子对称操作的矩阵表示(选修) 4-5群表示的基及群的表示(选修)

RPbPbR的键合性质 Y u Chen,Michael Hartmann,Michael Diedenhofen,and Gernot Frenking* Angew.Chem.Int.Ed.2001,40,No.11,2052 群论是从实践中发展起来的一门比较抽象的数学。但把它的基本理论与物质结构的具体对称性相结合之后,群论就成为研究物质微粒运动规律的一种有力工具。在有关基本粒子、核结构、原子结构、分子结

构以及晶体结构等问题的理论研究和计算中经常用到群论方法。由于自然学科彼此间的交叉、渗透,在近代化学领域内,研究化学键理论和分子动力学,应用各种波谱技术等方面,群论已成为重要的工具。4-1分子对称性 对称性是物体所具有的,实施对称操作之前后不可分辨的性质。通过研究分子的对称性,一方面可以把握分子结构的特点及说明分子的有关性质;另一方面,也可借助于分子对称性,使求解薛定谔方程的过程大为简化。原子轨道、分子轨道及分子的几何构型的对称性,是电子运动状态及分子结构特点的内在反映。 4-1-1对称操作与对称元素 4-1-2对称操作的乘积 4-1-1对称操作与对称元素 对称操作:每一次操作都能够产生一个与原来图形等价的图形。也就是,当一个操作作用于一个分子上,所产生的新分子几何图形和作用前的图形如不借助于标号是无法区分的。

积分对称性定理

关于积分对称性定理 1、 定积分: 设)(x f 在[],a a -上连续,则 ()()()()-0 0,d 2d ,a a a f x x f x x f x x f x x ?? =???? ?为的奇函数,为的偶函数. 2、 二重积分: 若函数),(y x f 在平面闭区域D 上连续,则 (1)如果积分区域D 关于x 轴对称,),(y x f 为y 的奇(或偶)函数,即 ),(),(y x f y x f -=-(或),(),(y x f y x f =-),则二重积分 ()()()()1 0,,,d d 2,d d ,,D D f x y y f x y x y f x y x y f x y y ?? =???????为的奇函数,为的偶函数. 其中:1D 为D 满足0≥y 上半平面区域。 (2) 如果积分区域D 关于y 轴对称,),(y x f 为x 的奇(或偶)函数,即()(),,f x y f x y -=-(或()(),,f x y f x y -=),则二重积分

()()()()2 0,,,d d 2,d d , ,D D f x y x f x y x y f x y x y f x y x ?? =????? ??为的奇函数,为的偶函数. 其中:2D 为D 满足0x ≥的右半平面区域。 (3)如果积分区域D 关于原点对称,),(y x f 为y x ,的奇(或偶)函数,即 ),(),(y x f y x f -=--(或),(),(y x f y x f =--)则二重积分 ()()()()2 0,,,,d d 2,d d ,,,D D f x y x y f x y x y f x y x y f x y x y ?? =???????为的奇函数,为的偶函数. 其中:1D 为D 在0≥y 上半平面的部分区域。 (4)如果积分区域D 关于直线x y =对称,则二重积分 ()()y x x y f y x y x f D D d d ,d d ,????=.(二重积分的轮换对称 性) (5)如果积分区域D 关于直线y x =-对称,则有 1 0,(,)(,)(,)2(,),(,)(,)D D f y x f x y f x y dxdy f x y dxdy f y x f x y --=-?? =?--=??????当时当时 利用上述性质定理化简二重积分计算时,应注意的是(1)(2)(3)中应同时具有积分域D 对称及被积函数()y x f ,具有奇偶性两个特

分子对称性习题及解答

第四章、分子对称性习题 一、填空题 4101、I 3和I 6不是独立的对称元素,因为I 3=,I 6=。 4102、对称元素C 2与σh 组合,得到___________________;C n 次轴与垂直它的C 2组合,得到______________。 4103、d 3(2d z ,d xy ,d 22y x -)sp(p z )杂化的几何构型属于_________点群。 4104、有一个 AB 3分子,实验测得其偶极矩为零且有一个三重轴,则此分子所属点群是_______________________。 4105、有两个分子,N 3B 3H 6和 C 4H 4F 2,它们都为非极性,且为反磁性,则N 3B 3H 6几何构型___________,点群___________。C 4H 4F 2几何构型_________,点群__________。 4106、NF 3分子属于_____________点群。该分子是极性分子, 其偶极矩向量位于__________上。 4107、下列分子所属的点群: SO 3 , SO 32- , CH 3+ , CH 3- , BF 3 。 4108、写出下列分子所属的点群: CHCl 3, B 2H 6, SF 6, NF 3, SO 32- 4109、CH 2═C ═O 分子属于________点群,其大π键是________。 4110、环形 S 8分子属 D 4d 点群,分子中包含轴次最高的对称轴为_______。 4111、分子具有旋光性,则可能属于___________等点群。 4112、判别分子有无旋光性的标准是__________。 4113、既具有偶极矩,又具有旋光性的分子必属于_________点群。 4114、偶极矩μ=0,而可能有旋光性的分子所属的点群为____________;偶极矩μ≠0,而一定没有旋光性的分子所属的点群为___________。 4115、乙烷分子的重迭式、全交叉式和任意角度时所属的点群分别为: , , 。 4116、吡啶 ( C 5H 5N ) 分子属于_____________点群;乙烯 (C 2H 4 ) 分子属于_______________点群。 4117、H 2C ═C ═C ═CH 2 分子属于____________点群; SF 6分子属于___________点群。 4118、两个C 2轴相交,夹角为2π/2n ,通过交点必有一个_______次轴,该轴与两个C 2轴_________。 4119、两个对称面相交,夹角为2π/2n ,则交线必为一个_______次轴。 4120、反轴I n 与映轴S n 互有联系,请填写: S 1=___________ ; S 2=___________ ; S 3=___________ S 4=___________ ; S 5=___________ ; S 6=___________ 4121、反轴I n 与映轴S n 互有联系,请填写: I 1=___________ ; I 2=___________ ; I 3=___________ I 4=___________ ; I 5=___________ ; I 6=___________ 4122、某分子具有一个二重轴、一个对称面和一个对称中心, 该分子属于______点群。 4123、一个具有三个四重象转轴、四个三重轴、六个对称面的图形属于____点群。 4124、一分子具有四个三重轴、三个四重轴、六个二重轴、九个对称面和一个对称中心, 该分子属于_________________点群。

对称性与守恒定律

第七章 对称性与守恒定律 * §7.1 守恒量的平均值和测量取值几率 ⒈ 力学量平均值随时间变化的方程 在本征态中,如果测量力学量F ,则每时刻都可测得确定值。而在任意状态(),x t ψ中测量,力学量F 一般不显含时间t ,则在每一时刻测量结果一般没有确定值。但(),x t ψ可以按F 的本征态系n φ做完全展开,所以测量F 本征值的几率是确定的,有确定的分布。这样,每一时刻在任意态(),x t ψ下,力学量F 有确定的平均值。在定态下,不显含时间t 的力学量算符F 的平均值不随时间变化。 (),x t ψ:t 时刻的任意状态(归一化的) F ()()?,,x t F x t ψψ=()()*?,,x t F x t dx ψψ=? 其中(),x t ψ和?F 都可能是时间的函数,则F 也可以是时间的函数。 量子力学中,讨论力学量随时间的变化是通过讨论力学量的平均值随时间的变化来反映 的。?F F ψψ= dF dt () ?? F F t t ψψψψ??=+? ? ???F F F t t t ψψψψψψ?????= ++ ?????? 利用含时薛定谔方程 1?H t i ψψ?= ? ?11????F H F F H i i t ψ ψψψψψ ?=++ ? ?11????F H F FH i i t ψψψψψψ?=-++? 利用?H 的厄密性??H H ψ?ψ?=

? 11????F HF FH i i t ψψψψψψ?=-++? ( ) ?1????F HF FH i t ψψψψ?=-+? 1??,F F H t i ???= +??? 即 1??,dF F F H dt i t ???=+? ?? 力学量平均值随时间变化的方程。 ⒉ 守恒量 ⑴ 定义:在任意状态下,力学量的平均值不随时间变化,即为与时间无关的常量。 数学: 0dF dt = (F 与t 无关的常量) ⑵ 力学量守恒的条件 0F t ?=?说明?F 不显含时间t (?0F t ?=?)(?F 不显含t , ?0F t ?=?而?dF dt 不一定为0) 不特别声明,一般?0F t ?=?,如?r , ?p ,?L F F F F dF dx dy dz dt x y z t ????= +++???? ??,0F H ??=?? 即?F 与?H 对易,也可以作为守恒量的定义 ⑶ 性质特点 ① 体系在任意状态下,平均值不随时间变化。这是守恒量物理上的定义。 ② 体系在任意状态下,测量力学量(不显含t )取值的几率分布不随时间变化。 证明:F 为守恒量,因为??,0F H ??=? ? ,所以?F 、?H 有共同完全本征函数系{}n φ,则有?n n n H E φφ=和?n n n F f φφ= 对任意态(),r t ψ (),r t ψ()()n n n c t r φ=∑ ()()(),n n c t r r t φψ=

对称性与守恒定律论文-最新范文

对称性与守恒定律论文 [摘要]本文对在量子体系下的对称变换代写及其性质作了简单的介绍,详细的分析了对称变换与守恒量以及不可测量量的关系,并且对时空对称性导致动量、角动量、能量守恒作了详细分析,并给出了现在物理学中一些重要的对称性和守恒律的简介。 [关键词]量子体系对称性守恒定律 一、引言 对称性是自然界最普遍、最重要的特性。近代科学表明,自然界的所有重要的规律均与某种对称性有关,甚至所有自然界中的相互作用,都具有某种特殊的对称性--所谓”规范对称性”。实际上,对称性的研究日趋深入,已越来越广泛的应用到物理学的各个分支:量子论、高能物理、相对论、原子分子物理、晶体物理、原子核物理,以及化学(分子轨道理论、配位场理论等)、生物(DNA的构型对称性等)和工程技术。 何谓对称性?按照英国《韦氏国际辞典》中的定义:”对称性乃是分界线或中央平面两侧各部分在大小、形状和相对位置的对应性”。这里讲的是人们观察客观事物形体上的最直观特征而形成的认识,也就是所谓的几何对称性。 关于对称性和守恒定律的研究一直是物理学中的一个重要领域,对称性与守恒定律的本质和它们之间的关系一直是人们研究的重要内容。在经典力学中,从牛顿方程出发,在一定条件下可以导出力学量

的守恒定律,粗看起来,守恒定律似乎是运动方程的结果.但从本质上来看,守恒定律比运动方程更为基本,因为它表述了自然界的一些普遍法则,支配着自然界的所有过程,制约着不同领域的运动方程.物理学关于对称性探索的一个重要进展是诺特定理的建立,定理指出,如果运动定律在某一变换下具有不变性,必相应地存在一条守恒定律.简言之,物理定律的一种对称性,对应地存在一条守恒定律.经典物理范围内的对称性和守恒定律相联系的诺特定理后来经过推广,在量子力学范围内也成立.在量子力学和粒子物理学中,又引入了一些新的内部自由度,认识了一些新的抽象空间的对称性以及与之相应的守恒定律,这就给解决复杂的微观问题带来好处,尤其现在根据量子体系对称性用群论的方法处理问题,更显优越。 在物理学中,尤其是在理论物理学中,我们所说的对称性指的是体系的拉格朗日量或者哈密顿量在某种变换下的不变性。这些变换一般可分为连续变换、分立变换和对于内禀参量的变换。每一种变换下的不变性,都对应一种守恒律,意味着存在某种不可观测量。例如,时间平移不变性,对应能量守恒,意味着时间的原点不可观测;空间平移评议不变性,对应动量守恒,意味着空间的绝对位置不可观测;空间旋转不变性,对应角动量守恒,意味着空间的绝对方向不可观测,等等。在物理学中对称性与守恒定律占着重要地位,特别是三个普遍的守恒定律--动量、能量、角动量守恒,其重要性是众所周知,并且在工程技术上也得到广泛的应用。因此,为了对守恒定律的物理实质有较深刻的理解,必须研究体系的时空对称性与守恒定律之间的关系。

定积分及微积分基本定理练习题及答案

1.4定积分与微积分基本定理练习题及答案 1.(2011·一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系是 ( ) A .a2,c =??02sinxdx =- cosx|02=1-cos2∈(1,2), ∴c

二重积分积分区域的对称性

情形一:积分区域D 关于坐标轴对称 定理4 设二元函数(,)f x y 在平面区域D 连续,且D 关于x 轴对称,则 1)当(,)(,)f x y f x y -=-(即(,)f x y 是关于y 的奇函数)时,有 (,)0D f x y dxdy =?? . 2)当(,)(,)f x y f x y -=(即(,)f x y 是关于y 的偶函数)时,有 1 (,)2(,)D D f x y dxdy f x y dxdy =?? ?? . 其中1D 是由x 轴分割D 所得到的一半区域。 例5 计算3()D I xy y dxdy = +??,其中D 为由2 2y x =与2x =围成的区域。 解:如图所示,积分区域D 关于x 轴对称,且 3(,)()(,)f x y xy y f x y -=-+=- 即(,)f x y 是关于y 的奇函数,由定理1有 3()0D f xy y dxdy +=?? . 类似地,有: 定理5 设二元函数(,)f x y 在平面区域D 连续,且D 关于y 轴对称,则 2 2(,),(,)(,). (,)0,(,)(,).D D f x y dxdy f x y f x y f x y dxdy f x y f x y ?-=?=??-=? ???? 当当 其中2D 是由y 轴分割D 所得到的一半区域。 例 6 计算2,D I x ydxdy = ??其中D 为由22;-220y x y x y =+=+=及所围。 解:如图所示,D 关于y 轴对称,并且 2(,)(,)f x y x y f x y -==,即被积分函数是关于x 轴 的偶函数,由对称性定理结论有:

对称性与守恒定律自学报告

自学报告 第七章对称性与守恒定律 一.对称性思想方法的重要意义 1.对称性是科学理论必须具备的基本特征。 2.对称性体现了物理学简单、和谐、统一的审美原则。 3.对称性原理和方法为解决具体的物理问题带来了很多方便。 二.举例并解释物理定律的空间旋转对称性、空间 平移对称性、空间反射对称、时间平移对称性。 1.物理定律的空间旋转对称性:指空间各个方向的物理性质相同, 没有哪一个方向比其他方向更优越。例如:地球上不同纬度所测得的单摆周期相同。 2.物理定律的空间平移对称性:空间各个位置的物理性质相同,没 有哪一点比其余各点跟优越。例如:一条无限延长的直线沿自身方向平移的对称性。 3.空间反射对称性:如果在镜像世界里物理现象不违反已知的物理 定律,我们就说支配该过程的物理定律是镜像对称的。例如:人的左手和右手镜像对称,无论旋转或平移,均不能实现而之间的变换。 4.物理定律的时间平移对称性:时间的均匀性,指无论过去、将来、 现在,物理定律不随时间流逝发生变化,物理实验可以在不同时间重复。例如:一个静止或匀速直线运动的物体对任何时间间隔t 的时间平移对称性。

三.举例阐述对称性原理 例如:抛物运动估计 过程条件:物体所受重力G,物体初速度V. 对称性:G与V决定一个铅直平面,体系运动的全部原因在此平面内,对给平面镜像反映对称。 结果:物体的轨道至少具有对上述铅直平面的镜像对称性,不可能像某个侧面倾斜。所以抛物运动一定在上述前铅直平面内运动。四.从物理上进行说明动量,角动量,能量守恒定律各与什么时空对称性相关。 1.动量守恒定律与空间平移对称性相关 2.角动量守恒定律与空间旋转对称性相关。 3.能量守很定律与时间平移对称性相关。 五.对称性破却的含义 原来具有较高对称性的系统,其对称程度自发下降,出现不对称因素叫做对称性自发破缺。

对称性破缺

对称性破缺 对称性破缺是一个跨物理学、生物学、社会学与系统论等学科的概念,狭义简单理解为对称元素的丧失;也可理解为原来具有较高对称性的系统,出现不对称因素,其对称程度自发降低的现象。对称破缺是事物差异性的方式,任何的对称都一定存在对称破缺。对称性是普遍存在于各个尺度下的系统中,有对称性的存在,就必然存在对称性的破缺。对称性破缺也是量子场论的重要概念,指理论的对称性为真空所破坏,对探索宇宙的本原有重要意义。它包含“自发对称性破缺”和“动力学对称性破缺”两种情形。 中文名 对称性破缺 外文名 Symmetry Breaking 目录 1. 1简介 2. 2系统 3. 3物理 4. ?超对称 5. ?弱作用规范 6. ? 11维空间 1. 4生物 2. ?手性破缺 3. ? Salam 假说 4. ?局限性 5. 5耗散分岔 6. 6反馈机制 1. 7举例 2. ?宇称不守恒 3. ?贝纳德对流 4. ?意大利怪钟 5. ?重子与反重子 6. ?生物界应用 1. ?真空不空 2. ?对称性破缺也叫CP破缺 3. 8社会 简介 李政道认为对称性原理均根植于“不可观测量”的理论假设上;不可观测就意味着对称性,任何不对称性的发现必定意味着存在某种可观测量。李政道说:“这些‘不可观测量’中,有一些只是由于我们目前测量能力的限制。当我们的实验技术得到改进时,我们的观测范围自然要扩大。因而,完全有可能到某种时候,我们能够探测到某个假设的‘不可观测量’,而这正是对称破坏的根源。 这和“对称性破缺则是由‘宏观’走向‘微观’而展现事物差异性的方式”哲学观点是一致的。 假如没有对称性破缺,这个世界将会失去活力,也将是单调、黯淡的,也不会有生物。自然界同样也存在着诸多对性破缺的例子。 比如:弱作用力下的宇称不守恒、粒子与反粒子的不对称、手性分子的对称性破缺等等。 系统 耗散理论在解释生命分子手性起源中取得了较大成功,这也是本书所拥护的观点;近些年也得到更多的实验支持。普利高津(Prigogine)认为,在远离平衡的条件下,一个开放的物理化学体系可以通过分支现象,从原先空间均匀的各向同性状态发展到集中都是稳定的但时空特性可能不同的有序状态,即由无序中产生有序。这两种空间有序状态唯一的差别可能仅仅在于其对称性,体系远离平

积分对称性定理

关于积分对称性定理 1、 定积分: 设 f ( x) 在 a,a 上连续,则 2、 二重积分: 若函数f(x,y)在平面闭区域D 上连续,则 (1) 如果积分区域D 关于x 轴对称,f(x,y)为y 的奇(或偶)函数, 即 f(x, y) f(x, y)(或 f(x, y) f (x, y)),则二重积分 0, f x,y 为y 的奇函数 f x, y dxdy 2 f x, y dxdy, f x,y 为y 的偶函数 D D 1 其中:D i 为D 满足y 0上半平面区域。 (2) 如果积分区域D 关于y 轴对称,f(x,y)为x 的奇(或偶)函数, 即 f x, y f x, y (或 f x, y f x, y ),则二重积分 0, f x, y 为x 的奇函数, f x,ydxdy 2 f x,ydxdy, f x, y 为)的偶函数. D D 2 其中:D 2为D 满足x 0的右半平面区域。 (3) 如果积分区域D 关于原点对称,f(x,y)为x,y 的奇(或偶)函 a -a x dx 0, a 2 f x dx, 0 x 为X 的奇函数, X 为X 的偶

数,即卩 f ( x, y) f (x,y)(或 f ( x, y) f(x,y))则二重积分 0, f x,y为x,y的奇函数 f x,ydx:y 2 f xydxy,f x,y 为Xy的偶函数 D D2 其中:D1为D在y 0上半平面的部分区域。 (4)如果积分区域D关于直线y x对称,则二重积分 f x, ydxdy f y,x dxdy .(二重积分的轮换对称性) D D (5)如果积分区域D关于直线y x对称,则有 0, 当f( y, x) f(x,y)时f(x,y)dxdy 2 f(x,y)dxdy 当仁y, x) f(x,y)时 D D 利用上述性质定理化简二重积分计算时,应注意的是(1)(2)(3) 中应同时具有积分域D对称及被积函数fx,y具有奇偶性两个特 性。 3、三重积分: (1)若f X, y,z为闭区域上的连续函数,空间有界闭区域关 于xoy坐标面对称,1为位于xoy坐标面上侧z 0的部分区域,贝卩 有

因果关系与对称性原理及其电磁学应用

题目因果关系与对称性原理及其电磁学应用学生姓名詹斌 专业名称物理学 指导教师王参军 学号200791014058 2009年12月30日

因果关系与对称性原理及其电磁学应用 摘要:利用电磁场的原始定义,讨论了电势和矢势等描述电磁场系统的物理量在空间反射、时间反演操作下的变换性质,利用对称性原理讨论了某些对称条件时电磁场的分布情况,指出只有严格意义上的物理定律才能应用对称性原理. 关键词:因果关系;对称性原理;电磁场;反演操作

The cause and effect and the principle of symmetry and it’s a pplication in the electromagnetic fields Abstract :By utilizing the original definition of the electromagnetic fields , the trans formation property of the electromagnetic field’ s state functions under the space operaxion or time operation is discus sed. The eletromag2netic field’s distribution from t he charge’ s distributio n is got after the principle of symmetry is utilized. Finally it is pointed out that only the really physics law can be discussed using the principle of symmetry. Key words :the cause and effect ;the principle of symmetry ;electromagnetic field ;under operation

(整理)对称性原理在物理学中的重要性.

6、对称性原理在物理学中的重要性 《自然杂志》19卷4期的‘探索物理学难题的科学意义'的97个悬而未决的难题:23.自然界是否存在七种对称性晶体?77.CP不守恒难题只能在中性K介子衰变中见到吗?78.引起CP对称性破坏的力是什么?87.是否存在中性,稳性,质量至少大于40GeV的超对称粒子?美籍华人著名的物理学家、诺贝尔奖金获得者李政道把“一些物理现象理论上对称,但实验结果不对称”、“暗物质问题、暗能量问题”、"类星体的发能远远超过核能,每个类星体的能量竟然是太阳能量的1015倍"、“夸克禁闭”称为是21世纪科技界所面临的四大难题。这些问题都于对称性原理存在着密切的联系。近代科学表明,自然界的所有重要的规律均与某种对称性有关,甚至所有自然界中的相互作用,都具有某种特殊的对称性——所谓“规范对称性”。实际上,对称性的研究日趋深入,已越来越广泛的应用到物理学的各个分支:量子论、高能物理、相对论、原子分子物理、晶体物理、原子核物理,以及化学(分子轨道理论、配位场理论等)、生物(DNA的构型对称性等)和工程技术。 对称美在于:在杂乱中形成规律,在无序中引入秩序。物理学的第三个特点是它的和谐性和统一性。自然界本身就是和谐统一的,自然美反映到物理学理论中,就显示出统一与和谐的物理学美的规范。物理学规律的统一、有序与神秘的和谐、自恰常常使一些物理

学家感到狂喜和惊奇。而物理学家们创造出来的系统的思想所表现的统一与和谐之美又使更多的人感到愉快。我们可在门捷列夫的元素周期表中感到这一体系结构的“诗意”。在牛顿对天地间运动规律的统一之中;在焦耳迈尔对热功的统一之中;在法拉第、麦克斯韦对电与磁的统一之中;在E=MC2所表示的质能统一之中;在广义相对论的引力、空间、物质的统一之中;我们都会感到一种和谐的满足。守恒与对称和统一、和谐的观念紧密相连。守恒和对称会给人一种圆满、完整、均匀的美感。从阿基米德的杠杆原理到开普勒第二定律表现的角动量守恒,以及动量守恒、能量守恒等,都符合守恒的审美标准。在数学中,方程与图形的对称处处可见,这也是数学美的重要标志。中心对称、轴对称、镜像对称等,都是诗人愉悦的形式。笛卡尔建立的解析几何学是在数学方程与几何图形之间建立的一种对称。爱因斯坦于1905年提出了具有革命性意义的狭义相对论,从其新思想的来源看,不仅是逻辑的,而且具有美学的性质,是一种对称美的追求。电磁场的基本方程――麦克斯韦方程组就具有一定程度的优美的数学对称性。它确定了电荷、电流、电场、磁场的普遍规律与联系,用完美而对称的数学形式奠定了经典电动力学的基础。对称性原理简单说就是从不同角度看某个事物都是一样的。在所有这样的对称中,最简单的是左右对称。例如:从镜子里看左右颠倒了的脸,它都是一样的。有些事物比人脸有着更大的对称性。立方体从六个相互垂直的不同方向看,或者颠倒它的左右来看,都是一样的。球从任何方向来看都是相同的。这样的对称性千百年来愉悦和激发着艺术家和科学家。但对

对称性与守恒定律

对称性与守恒律 物理规律是分层次的,有的只对某些具体事物适用,如胡克定律只适用于弹性体;有的在一定范畴内成立,如牛顿定律适用于一切低速运动的宏观物体;有的如能量、动量守恒等守恒律,则在所有领域的自然界起作用。后者属于自然界更深层次、最为基本的规律。而守恒律和对称性有紧密联系。了解对称性的概念、规律及其分析方法,对于深入地认识自然有重要意义。 一、什么是对称性 对称的概念日常生活中就有,如人体外部器官的左右对称,紫禁城建设布局的东西对称,不带任何标记的球的中心对称等。对称性的定义如下。 若某个体系(研究对象)经某种操作(或称变换)后,其前后状态等价(相同),则称该体系对此操作具有对称性,相应的操作称为对称操作。简言之,对称性就是某种变换下的不变性。 二、物理学中几种常见的(对称)变换 1.空间变换 1)平移:即对位矢作的变换,相应的对称性谓之平移对称性。 例如,一个不带任何标记的无限大平面,对沿平面的任意平移具有对称性,而当此平面上均匀布满方格时,则对沿平面的特定方位(如边长或对角线方位)平移某个长度的整数倍具有对称性。 2)转动:绕某定点或轴线的转动 前述球的中心对称,就是指球对绕球心的任意旋转对称,通常就称之为球对称。一圆柱体,对绕其中心轴旋转任一角度状态不变,即具有旋转轴对称…… 3)镜像反射(反演):俗称照镜子。指对镜面作物像变换。 紫禁城建筑的东西对称,就是以天安门中轴面(南北竖直面)为镜面的镜像对称。 ●物理矢量的镜面反射——极矢量和轴矢量 按镜面反射时,矢量物像的方向之间的关系,物理矢量分两类。一类,以位移 为例,其镜像为,如图1(a)所示。它们平行于镜面的分量方向相同,垂直于镜面的分量的方向相反,这类矢量叫极矢量。,,等都是极矢量。

对称性破缺理论在社会学中的应用

对称性破缺理论在社会学中的应用 反馈机制与社会 对称性破缺是一个跨物理学、生物学、社会学与系统论等学科的概念,狭义简单理解为对称元素的丧失;也可理解为原来具有较高对称性的系统,出现不对称因素,其对称程度自发降低的现象。对称破缺是事物差异性的方式,任何的对称都一定存在对称破缺。 资料上说,生命分子的产生是源于反馈的自催化机制通过循环结构将微小的差距放大,也就是说个体之间的差异是通过小分子物质在外界环境的作用下循环积累导致的。社会也是一个充满张力的循环结构。自然界存在各式各样的不对称差异,能够放大这样差异的则是事物自身选择。 高等动物进化出来的互相扶持以及护幼行为等都是基于群体意识,这也是物种对自身的反馈,简单的说就是“自我选择力”。中国儒家传统思想所尊崇的信条就是以自我完善为基础,在《礼记·大学》中就有“心正而后身修,身修而后家齐,家齐而后国治,国治而后天下平。”这样的思想是符合生物哲学的,人的修身必须从自我反馈开始。这让我想起,美国电视《越狱》中有一句话“欲变世界,先变其身”。然而现今中国的教育,却没有教会人适应和反馈这最重要的东西。引用卡内基梅隆大学教授蓝迪的“最后一课”的演讲中的一句话“一个教育工作者能给的最好礼物,就是让人能自我反省”。 生活中学会总结,是人生自我反馈的开始。社会上每个人都是不同的,自然属性赋予了人差异性的一面,只有自身对自身的反馈来放大这种差异,人生才会精彩(这包括自我修养和自我超越)。自古封建君王们都鼓吹‘君权神授’;也是企图放大,人的的差异,将自我比作神。而现代社会人在置身于物欲世界的同时,忽略了自我对自我的反馈,盛行的却是类似斯宾塞弱肉强食的“社会达尔文主义”。 社会达尔文主义忽略了社会中事物发展自身反馈也是重要重要驱动,具有局限性,因此被后现代主义称为“现代性罪状”。在这样的扭曲的社会结构中,人们追求自我实现,不是通过自我修养和超越的反馈来完成;而以掌握物质财富和社会地位来衡量,力求成为社会“食物链”的顶端。同时,在张力的社会中人们文化的困境与内心的挣扎也是推动其发展的驱动因素。在霍妮的文化心理病理学指出自我的挣扎是人与自我关系的失调。人有天赋的潜能和引导实现潜能的建设性力量,体现为创造和奉献;这种力量的激发则需要人自身的“自催化”,其过程是通过学习、经历、以及自我认识来完成。 同时人的天赋中还具有一种破坏性力量,体现为贪婪、权利与欲望的膨胀等等。为确保社会结构稳定,需要社会机制的约束和自我反馈加以调节,这表现为法律与道德。一些人认为这种破坏的力量归结为人类的本能,其实这是片面的,人类的本性是两种力量的综合,而不是单纯某一方面。就以‘性’来说,弗洛伊德的人性论是性恶论,并持悲观论调;但我们知道‘性’又意味着生命的诞生,意味着创造,意味着美,具有积极的一面。 人能够调节这两种力量的就是自我的反馈,并体现为适应性。生物要适应环境得以生存,就首先要求自身的改变,这个变化过程就是自身反馈机制的体现。反社会人格以及神经症患者内心的挣扎以及自我异化等,在我看来是社会适应力低下的表现,可能是自身反馈出现了问题;按照这个思想,极度自卑或自傲都可能滋生反社会行为;我相信运用这个思想是可以找到减少社会暴力的方法。当然,社会是多元化整体,事物的发展既取决于自身反馈又取决于环境的选择。假如社会环境变化总采取突变式,或者说环境选择的跳跃变化总大于自我反馈的能力,那么这样的反馈机制就可能遭到破坏。所以在社会学中人自我的反馈机制往往具有强烈的环境依赖性。 假如构成社会的人,都具有极强的适应能力,都在不断的变通;那么这个社会是不稳定的,比如可能社会缺乏诚信、缺乏价值判断等等。所以社会本身是人社会适应性与社会稳定性的妥协。而在生态学中生物与环境本身就是一个整体,是协同进化的。一个物种的进化,

对称性原理在物理学中的表现形式

对称性原理在物理学中的表现形式 在近代科学的开端,哥白尼对日心说的数学结构做了美学说明和论证,他从中看到令人惊异的“对称性”与“和谐联系”——这可以说是科学美学的宣言书.开普勒醉心于宇宙的和谐,他在第谷的庞杂数据中清理出具有美感的行星运动三定律,并由衷地感到难以置信的狂喜和美的愉悦.伽利略对落体定律的揭示,在纷繁的事实多样性中求得统一的定律.牛顿的严整而简单的力学体系把天地间的万物运动统摄在一起,他推崇和倡导节约原理,并认为上帝最感兴趣的事情是欣赏宇宙的美与和谐.这一切,谱写了近代科学的美的协奏曲.以相对论和量子力学为代表的现代科学,更是把科学审美发挥到了极致.撇开这些理论的抽象的理性美和雅致的结构美不谈,令人叫绝的是,数学实在和物理实在之间的(神秘的)一致是由群的关系保证的,科学理论中审美要素的存在是由群的真正本性决定的——对称性或不变性(协变性,invariance)之美跃然纸上! (1)经典物理学中的对称性原理 在原始的意义上,对称是指组成某一事物或对象的两个部分的对等性.物理是研究客观世界的最基本规律的一美科学,而它们在很多方面存在着对等性,例如:正电荷和负电荷、电荷的负极与正极、光速的可逆性、空间与时间、正功与负功、质子与中子、电子与正电子等均具有对称性.万有引力公式F=GMm/r2与静电力公式F=KQ1Q2/r2,弹性势能公式E=0.5kx2与动能公式E=0.5mv2,凸透镜成象公式1/u+1/v=1/f与并联电阻公式1/R1+1/R2=1/R、弹簧串联公式1/k1+1/k2=1/k,欧姆定律公式I=U/R与压强公式P=F/S、密度公式ρ=m/V 、电场强度E=F/Q、电压U=W/Q与电容C=Q/U,安培力F=BIL与电功W=Uit,重量G=ρgV与热量Q=cm Δt等均具有相似性根据这些相似性.开普勒用行星轨道的椭圆对称性代替了古希腊人所坚持的圆形对称性, 开普勒第一定律:每个行星都沿椭圆轨道运行,太阳就在这些椭圆的一个焦点上. 物理学中有一些规律属于基本定律,它们具有支配全局的性质,掌握它们显然是极端重要的.例如力学中的牛顿定律是质点、质点组机械运动(非相对论)的基本定律,电磁学的麦克斯韦方程组是电磁场分布、变化的基本定律,物理学中还有另外一种基本定律的表述形式,这就是最小作用原理(变分原理),它可表述为系统的各种相邻的经历中,真实经历使作用量取极值.可以看出最小作用原理的表述形式与牛顿定律、麦克斯韦方程组的表述形式极不相同.牛顿定律告诉我们,质点此时此刻的加速度由它此时此刻所受的力和它的质量的比值决定;麦克斯韦方程组告诉我们,此时此刻的电场分布由此时此刻的电荷分布以及此时此刻的磁场的变化决定,此时此刻的磁场分布由此时此刻的电流分布以及此时此刻的电场

对称性在各种积分中的定理

对称性在积分计算中的应用 定理2.1.1[3] 设函数),(y x f 在xoy 平面上的有界区域D 上连续,且D 关于 x 轴对称.如果函数),(y x f 是关于y 的奇函数, 即),(),(y x f y x f -=-,D y x ∈),(, 则(,)0D f x y d σ=??;如果),(y x f 是关于y 的偶函数,即),(),(y x f y x f =-, D y x ∈),(,则1 (,)2(,)D D f x y d f x y d σσ=????. 其中1D 是D 在x 轴上方的平面区域. 同理可写出积分区域关于y 轴对称的情形. 则由定理2.1.1知32sin 0D y xd σ=??. 由定理2.1.1可得如下推论. 推论2 设函数),(y x f 在xoy 平面上的有界区域D 上连续,若积分区域D 既关于x 轴对称,又关于y 轴对称,则 ⑴ 若函数),(y x f 关于变量y x ,均为偶函数,则1 (,)4(,)D D f x y d f x y d σσ=????. 其中1D 是区域D 在第一象限的部分,{}1(,)|0,0D x y D x y =∈≥≥. ⑵ 若函数),(y x f 关于变量x 或变量y 为奇函数,则(,)0D f x y d σ=??. 当积分区域关于原点对称时,我们可以得到如下的定理. 定理 2.1.2[]4 设函数),(y x f 在xoy 平面上的有界区域D 上连续,且D 关于 原点对称.如果),(),(y x f y x f -=--,(,)x y D ∈,则(,)0D f x y d σ=??;如果),(),(y x f y x f =--,(,)x y D ∈,则1 2(,)2(,)2(,)D D D f x y d f x y d f x y d σσσ==??????,其中{}1(,)|0D x y D x =∈≥,{}2(,)|0D x y D y =∈≥. 为了叙述的方便,我们给出区域关于y x ,的轮换对称性的定义. 定义 2.1.1 设D 为一有界可度量平面区域(或光滑平面曲线段),如果对于任意(,)x y D ∈,存在(,)y x D ∈,则称区域D (或光滑平面曲线段)关于y x ,具

相关文档
最新文档