三次方程的求解与复数的产生

三次方程的求解与复数的产生
三次方程的求解与复数的产生

三次方程的求解与复数的产生

复数出现及其强大的力量和无与伦比的美丽无疑是数学史上最具神奇色彩的事件之一。

绝大多数教科书都是按一种方便的历史虚构来引入复数。如为了使210x +=这样的二次方程有解才引入的复数。但无论是历史上还是今天,并不存在这种需要,例如可以将210x +=看成抛物线2y x =与直线1y =-的交点,而这显然并不必要一定是相交的。 而迫使人们考虑复数的是三次方程的求解,这倒确实和一元二次方程求解公式紧密相联的。

我们知道对于20ax bx c ++=当2

40b ac ?=-≥时有求根公式

2b x a

-±=,于是激发起人们对三次方程求根公式的寻找热情。1545年意大利数学家卡丹诺在其《大术》一书中,基于三次方程332x px q =+给出了如下的求根公式:

x =

需要指出的是一般的三次方程都可以化成这种形式。下面我们追随的是韦达的做法:

320,x bx cx d +++=令3b x t =-(你知道3

b 是什么吗) 则有32

()333b b b t b t t d ????-+-+-+ ? ????? 3332

22212327393b b bc t t b tb bt b t ct d =-+-+-++-+ 23223

322()32733273b b bc b b bc t t ct d t c t d =-++-+=+-+-+ 令2223,23273

b b b

c p c q

d -=--=-+即所要形式。 接下来韦达有做法(比卡丹诺晚40年)是把3

320x px q --=再做一次变换, 令p x t t =+有3

320p p t p t q t t ????+-+-= ? ????? 展开得232

3

33333203p p p t pt pt q t t +++---=

即3

3

320p t q t +-=,即3233()20t qt p -+=

所以3

t =q =±

所以t =

所以当t =

p

x t t =+==

当当t =

卡丹诺的作法如下:332x px q =+中令x s t =+代入得:

3223333()2s s t st t p s t q +++=++也就是333()3()2s st s t t p s t q +++=++

如果33,2st p s t q =+=,则x 为三次方程的根(消去s 或t )将p s t

=代入得:3

3

320p t q t +-=。以下同上法。 这个公式出现大约30年后,意大利数学家庞贝利看出它有一些奇怪的悖论式的地方:

当32p q >时,会出现今天我们所说的复数。他考虑了3

154x x =+。按照卡丹诺的公式有

x =另一方面通过观察该方程有解4x =,庞贝利忽发“奇想”,

22=+=-4x =。当然为了使此法可行,他必须假设两个复数A a ia =+与B b ib =+的加法需要服从一个似乎合情合理的法则:()()()A B a i a b i b a b i a b +=+++=+++,其次,如果真有一个n 使

2=+,他就必须去计算(3

2+,为此他可以象通常代数中把括号

乘开,于是2()()()(1)a ia b ib ab i ab ab ab ++=+++-利用21=- 所以()()1AB ab ab ab ab =-++-,这个法则证明了他的“奇想”胜利,他能够证明(3

22=+22i i =+=-。 尽管复数本身仍然神秘,然而庞贝利的工作证实了复数有完全实际的应用。关于人们

对复数的漫长接受过程这里不再祥述,但是从笛卡尔对其命名为虚数并给出i (imaginary 意为“虚幻的”;“想象中的”)的符号可想而知,人们是多么不接受它是数。

复数所有的美妙与神奇都来自于庞贝利“非常合理”的运算规定,加法的几何意义我们已知道,这里再说一下乘法法则:即伸缩与旋转,这里不用三角形式

先考虑z iz →,这意味着()()x iy y ix +→-+表明iz 就是把z 逆时针方向旋转一个直角,可以从1i i =?,1i i ?=-可以验证一下。

一般情况下,z Az →是什么?取43A i =+

(43)43()43()2A z i z z i z z z π

=+=+=+旋转,表明把z 旋转一个角度θ,再放大为原

来的5倍。

关于三次方程公式解的历史注解

尽管三次方程的求根公式是通过卡丹诺的《大术》被人所知的,但是人们知道至少在1500年左右,波洛尼亚的数学教授费罗就解出了3x mx n +=类型的三次方程(卡丹诺出生于1501年)但他没有发表他的解法,因为在16,17世纪时,人们常把所得的发现保密,而向对手提出挑战。要他们解出同样的问题。但是在1510年左右,他把他的方法秘传给了弟子菲奥尔。

直到布雷西亚的塔尔塔利亚出场之前,局面没什么变化。他的真正名字叫丰坦那,因为这人在孩提时被一个法国兵用马刀砍伤脸部而引起口吃,因此大家称他为塔尔塔利亚,意为“口吃者”。1535年,菲奥尔向塔尔塔利亚挑战,要他解30个三次方程。塔尔塔利亚说他早已解出了32x mx n +=类型的方程。这次解出了30个方程,其中包括3x mx n +=类型的。

在卡丹诺的恳切要求下(二者原为朋友),并发誓对此保守秘密的情况下,塔尔塔利亚才把他的方法写成一首晦涩的诗告诉了卡丹诺。卡丹诺不顾他的誓言,把他对这个方法的叙述发表在他的《大术》(也作《重要的艺术》)里,塔尔塔利亚抗议卡丹诺的背信弃义,但卡丹诺并未与之争论。

一元三次方程求根公式的解法

一元三次方程求根公式的解法 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知 (5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=-(p/3)^3 (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A 和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即 (8)y1+y2=-(b/a),y1*y2=c/a (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a (10)由于型为ay^2+by+c=0的一元二次方程求根公式为 y1=-(b+(b^2-4ac)^(1/2))/(2a) y2=-(b-(b^2-4ac)^(1/2))/(2a) 可化为 (11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2) y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2) 将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得 (12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2) B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2) (13)将A,B代入x=A^(1/3)+B^(1/3)得 (14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3) 一、(14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。由于计算太复杂及这个问题历史上已经解决,我不愿花过多的力气在上面,我做这项工作只是想考验自己的智力,所以只要关键的问题解决了另两个根我就没有花力气去求解。 二、我也曾用类似的方法去求解过一元四次方程的解,具体就是假设一元四次方程的根的形式为x=A^(1/4)+B^(1/4)+C^(1/4),有一次我好象解出过,不过后来多次求解好象说明这种方法求解一元四次方程解不出。不过我认为如果能进一步归纳出A、B、C的形式,应该能求出一元四次方程的求根公式的。由于计算实在太复杂及这个问题古人已经解决了,我后来一直没能完成这项工作。 三、通过求解一元三次方程的求根公式,我获得了一个经验,用演绎法(就是直接推

求实系数一元三次方程根的实用公式

求实系数一元三次方程根的实用公式 在数学书籍或数学手册中,对一元三次方程求根公式的叙述都是沿用“卡丹公式”,即:对于一元三次方程: 设, 则它的三个根的表达式如下: 其中, 我们先用该公式解一个一元三次方程:。 解: p=- 9,q=6,∴T=- 3,D=- 18, ?? ∴原方程的三个根为

这样求出的三个根的表达式有两个不妥之处: 其一、当时,方程有三个实根(下文给出证明),但这里的、 、表达式不明确。 其二、当时,以及(如此例中的)违背了现行中等数学的表示规范,也不能具体地求出其值。 因此,用“卡丹公式”解出的一元三次方程的根,往往是不实用、不直观、不严密的。 下面我们推导一个实用的改进型求根公式。 实系数一元三次方程可写为(1) 令,代入(1)得(2) 其中, 不失一般性,我们只要讨论实系数一元三次方程的求根公式即可。 不妨设p、q均不为零,令y=u+v(3) 代入(2)得,(4) 选择u、v,使得,即(5) 代入(4)得,(6)

将(5)式两边立方得,(7) 联立(6)、(7)两式,得关于的方程组: ,且 问题归结于上述方程组的求解。 即求关于t的一元二次方程的两根、, 设,,, 又记的一个立方根为,则另两个立方根为,, 其中,为1的两个立方虚根。 以下分三种情形讨论: 1)若,即D>0,则、均为实数, 可求得,, 取,, 在,组成的九个数中, 有且只有下面三组满足,

即、;、;、, 也就是满足, ∴方程(2)的根为,,,这是方程(2)有一个实根,两个共轭虚根,, 其表达式就是前面给出的“卡丹公式”的形式, 这里的根式及都是在实数意义下的。 2)若,即时, 可求得,取 同理,可求得 ∴方程(2)有三个实根,其中至少有两个相等的实根。3)若,即D<0时, ,∴p<0,, 则、均为虚数,求出、并用三角式表示, 就有,,

一元三次方程及解法简介

一元三次方程 一元三次方程的标准型为02 3=+++d cx bx ax )0,,,(≠∈a R d c b a 且。一元三次方程的公式解法有卡尔丹公式法与盛金公式法。两种公式法都可以解标准型的一元三次方程。由于卡尔丹公式解题存在复杂性,对比之下,盛金公式解题更为直观,效率更高。 在一个等式中,只含有一个未知数,且未知数的最高次数是3次的整式方程叫做一元三次方程。 【盛金公式】 一元三次方程02 3=+++d cx bx ax )0,,,(≠∈a R d c b a 且 重根判别式:bd c C ad bc B ac b A 3:9;322-=-=-=,总判别式:Δ=AC B 22 -。 当A=B=0时,盛金公式①: c d b c a b x x x 33321-=-=- ===,当Δ=AC B 22 ->0时,盛金公式②:a y y b x 33 123 111---= ; i a y y a y y b x 63623 12 3 113 223 1 13,2-±++-= ;其中2 )4(322 ,1AC B B a Ab y -±-+ =,12-=i .当Δ=AC B 22 -=0时,盛金公式③:K a b x +- =1;232K x x -==,其中)0(≠=A A B K .当Δ= AC B 22-<0时,盛金公式④:a Cos a b x 3321θ --= ,a Sin Cos A b x 3) 333(3 ,2θ θ±+-= ; 其中arcCosT =θ,)11,0(),232( <<->-=T A A aB Ab T . 【盛金判别法】 ①:当A=B=0时,方程有一个三重实根; ②:当Δ=AC B 22 ->0时,方程有一个实根和一对共轭虚根; ③:当Δ=AC B 22 -=0时,方程有三个实根,其中有一个两重根; ④:当Δ=AC B 22 -<0时,方程有三个不相等的实根。 【盛金定理】 当0,0==c b 时,盛金公式①无意义;当A=0时,盛金公式③无意义;当A ≤0时,盛金公式④无意义;当T <-1或T >1时,盛金公式④无意义。当0,0==c b 时,盛金公式①是否成立?盛金公式③与盛金公式④是否存在A ≤0的值?盛金公式④是否存在T <-1或T >1的值?盛金定理给出如下回答: 盛金定理1:当A=B=0时,若b=0,则必定有c=d=0(此时,方程有一个三重实根0,盛金公式①仍成立)。 盛金定理2:当A=B=0时,若b ≠0,则必定有c ≠0(此时,适用盛金公式①解题)。 盛金定理3:当A=B=0时,则必定有C=0(此时,适用盛金公式①解题)。

一元三次方程快速解法有哪些

一元三次方程快速解法有、因式分解法、一种换元法、卡尔丹公式法等多种方法,本篇我们将详细介绍其内容。 因式分解法 因式分解法不是对所有的三次方程都适用,只对一些简单的三次方程适用.对于大多数的三次方程,只有先求出它的根,才能作因式分解。当然,对一些简单的三次方程能用因式分解求解的,当然用因式分解法求解很方便,直接把三次方程降次。 例如:解方程x^3-x=0 对左边作因式分解,得x(x+1)(x-1)=0,得方程的三个根:x1=0;x2=1;x3=-1。 一种换元法 对于一般形式的三次方程,先将方程化为x^3+px+q=0的特殊型。 令x=z-p/3z,代入并化简,得:z^3-p/27z+q=0。再令z^3=w,代入,得: w^2-p/27w+q=0.这实际上是关于w的二次方程。解出w,再顺次解出z,x。 卡尔丹公式法 特殊型一元三次方程X^3+pX+q=0 (p、q∈R)。 判别式Δ=(q/2)^2+(p/3)^3。 卡尔丹公式 X1=(Y1)^(1/3)+(Y2)^(1/3); X2= (Y1)^(1/3)ω+(Y2)^(1/3)ω^2; X3=(Y1)^(1/3)ω^2+(Y2)^(1/3)ω, 其中ω=(-1+i3^(1/2))/2; Y(1,2)=-(q/2)±((q/2)^2+(p/3)^3)^(1/2)。 标准型一元三次方程aX ^3+bX ^2+cX+d=0,(a,b,c,d∈R,且a≠0)。

令X=Y—b/(3a)代入上式。 可化为适合卡尔丹公式直接求解的特殊型一元三次方程Y^3+pY+q=0。 通用求根公式 当一元三次方程ax3+bx2+cx+d=0的系数是负数时,使用卡丹公式求解,会出现问题。可以用一下公式:

三次方程的一般解法

一元三次方程的求根公式称为“卡尔丹诺公式” 一元三次方程的一般形式是 x3+sx2+tx+u=0 如果作一个横坐标平移y=x+s/3,那么我们就可以把方程的二次项消 去。所以我们只要考虑形如 x3=px+q 的三次方程。 假设方程的解x可以写成x=a-b的形式,这里a和b是待定的参数。 代入方程,我们就有 a3-3a2b+3ab2-b3=p(a-b)+q 整理得到 a3-b3 =(a-b)(p+3ab)+q 由二次方程理论可知,一定可以适当选取a和b,使得在x=a-b的同时, 3ab+p=0。这样上式就成为 a3-b3=q 两边各乘以27a3,就得到 27a6-27a3b3=27qa3 由p=-3ab可知 27a6 + p = 27qa3 这是一个关于a3的二次方程,所以可以解得a。进而可解出b和根x. 除了求根公式和因式分解外还可以用图象法解,中值定理。很多高次方程是无法求得精确解的,对于这类方程,可以使用二分法,切线法,求得任意精度的近似解。参见同济四版的高等数学。 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。我归纳出来的形如x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=-(p/3)^3

解一元三次方程的方法

解一元三次方程的方法 解一元三次方程问题是世界数学史上较著名且较为复杂而又有趣味的问题,虚数概念的引进、复数理论的建立,就是起源于解三次方程问题。一元三次方程应用广泛,如电力工程、水利工程、建筑工程、机械工程、动力工程、数学教学及其他领域等。那么,以下是我分享给大家的关于解一元三次方程的方法,欢迎大家的参考学习! 解一元三次方程的方法 解法一是意大利学者卡尔丹发表的卡尔丹公式法。 解法二是中国学者范盛金发表的盛金公式法。 这两种方法都可以解答标准型的一元三次方程,但是卡尔丹公式解题方便。 相关内容: 一元三次方程的解法的历史 人类很早就掌握了一元二次方程的解法,但是对一元三次方程的研究,则是进展缓慢。古代中国、希腊和印度等地的数学家,都曾努力研究过一元三次方程,但是他们所发明的几种解法,都仅仅能够解决特殊形式的三次方程,对一般形式的三次方程就不适用了。 在十六世纪的欧洲,随着数学的发展,一元三次方程也有了固定的求解方法。在很多数学文献上,把三次方程的求根公式称为“卡尔丹诺公式”,这显然是为了纪念世界上第一位发表一元三次方程求根公式的意大利数学家卡尔丹诺。那么,一元三次方程的通式解,是不是卡尔丹诺首先发现的呢?历史事实并不是这样。

数学史上最早发现一元三次方程通式解的人,是十六世纪意大利的另一位数学家尼柯洛?冯塔纳(Niccolo Fontana)。 冯塔纳出身贫寒,少年丧父,家中也没有条件供他念书,但是他通过艰苦的努力,终于自学成才,成为十六世纪意大利最有成就的学者之一。由于冯塔纳患有“口吃”症,所以当时的人们昵称他为“塔尔塔里亚”(Tartaglia),也就是意大利语中“结巴”的意思。后来的很多数学书中,都直接用“塔尔塔里亚”来称呼冯塔纳。 经过多年的探索和研究,冯塔纳利用十分巧妙的方法,找到了一元三次方程一般形式的求根方法。这个成就,使他在几次公开的数学较量中大获全胜,从此名扬欧洲。但是冯塔纳不愿意将他的这个重要发现公之于世。 当时的另一位意大利数学家兼医生卡尔丹诺,对冯塔纳的发现非常感兴趣。他几次诚恳地登门请教,希望获得冯塔纳的求根公式。可是冯塔纳始终守口如瓶,滴水不漏。虽然卡尔丹诺屡次受挫,但他极为执着,软磨硬泡地向冯塔纳“挖秘诀”。后来,冯塔纳终于用一种隐晦得如同咒语般的语言,把三次方程的解法“透露”给了卡尔丹诺。冯塔纳认为卡尔丹诺很难破解他的“咒语”,可是卡尔丹诺的悟性太棒了,他通过解三次方程的对比实践,很快就彻底破译了冯塔纳的秘密。 卡尔丹诺把冯塔纳的三次方程求根公式,写进了自己的学术著作《大法》中,但并未提到冯塔纳的名字。随着《大法》在欧洲的出版发行,人们才了解到三次方程的一般求解方法。由于第一个发表三次方程求根公式的人确实是卡尔丹诺,因此后人就把这种求解方法称为“卡尔丹诺公式”。 卡尔丹诺剽窃他人的学术成果,并且据为已有,这一行为在人类数学史上留下了不甚光彩的一页。这个结果,对于付出

一元三次方程的解法

一元三次方程的解法 邵美悦 2018年3月23日 修改:2018年4月25日 众所周知,一元二次方程的求根公式是中学代数课程必修知识,通常在初中阶段的数学教材中会进行介绍.一元三次方程和一元四次方程同样有求根公式,1而且其推导过程也是初等的.由于一元三次和四次方程的求解比起一元二次方程要困难得多,并且求根公式的具体形式也不是很实用,所以尽管在一些初等数学的书籍中有相关介绍,但大多数中学生对这些解法并不了解.本文将简要介绍一下一元三次方程的求解方法. 1配方法 一元二次方程 ax 2+bx +c =0,(a =0) 的解法一般会在在初中教材中进行介绍,通用的解法是配方法(配平方法),即利用 a (x + b 2a )2=b 2?4a c 4a 解出x =?b 2a ±√b 2?4ac 2a .当然,在初中教材中会要求a ,b ,c 都是实数,并且判别式b 2?4ac 必须非负.在高中教材引进复数之后,上述求根公式对复系数一元二次方程依然有效,开平方运算√b 2?4ac 也不再受到判别式符号的限制,只需要按照复数开方来理解.2 1值得注意的是,在代数学中可以证明,如果只用系数的有限次加,减,乘,除,以及开k 次方运算(其中k 是正整数),复系数一元五次(或更高次)方程没有求根公式.换句话说,不可能存在仅由系数的有限次加,减,乘,除,以及开k 次方运算构成的公式,使得每一个复系数一元五次方程都可以按该公式求解.这一结论通常称为Abel–Ruffini 定理.不少业余数学爱好者在没有修习过大学近世代数课程的情况下致力于推导高次方程的初等求根公式,这样的努力难免徒劳无功.2这里约定开方运算k √·只需要算出任意一个k 次方根即可. 1

高次方程求根公式的故事

高次方程求根公式的故事 1545年意大利学者卡丹将一元三次方程ax3 +bx2+cx+d=0的求根公式公开发表,后来人们就把它叫做“卡丹公式(也有人译作“卡尔丹公式”)。事实上,发现公式的人并不是卡丹本人,而是塔尔塔利亚。 塔尔塔利亚是意大利人,出生于1500年。他12岁那年,被入侵的法国兵砍伤了头部和舌头,从此说话结结巴巴,人们就给他一个绰号“塔尔塔利亚”(在意大利语中,这是口吃的意思),真名反倒少有人叫了。他自学成才,成了数学家,宣布自己找到了三次方程的的解法。有人听了不服气,来找他较量,每人各出30道题,由对方去解。结果,塔尔塔利亚30道三次方程的解全做了出来,对方却一道题也没做出来。塔尔塔利亚大获全胜。 后来,意大利医生兼数学家卡丹请求塔尔塔利亚把解方程的方法告诉他,但遭到了拒绝。尽管卡丹千方百计地想探听塔尔塔利亚的秘密,但是在很长时间中塔尔塔利亚都守口如瓶。可是后来,由于卡丹一再恳切要求,而且说要推荐他去当西班牙炮兵顾问,还发誓对此保守秘密,于是塔尔塔利亚在1539年把他的发现写成了一首语句晦涩的诗告诉了卡丹,但是并没有给出详细的证明。 六年后,卡丹不顾原来的信约,在他的著作中将经过改进的三次方程的解法公开发表。他在书中写道:“这一解法来自于一位最值得尊敬的朋友——布里西亚的塔尔塔利亚。塔尔塔利亚在我的恳求之下把这一方法告诉了我,但是他没有给出证明。我找到了几种证法。证法很难,我把它叙述如下。”从此,人们就把一元三次方程的求根公式称为“卡丹公式”,而塔尔塔利亚的名字反而被湮没了,正如他的真名在口吃以后被埋没了一样。 卡丹没有遵守誓言,因而受到塔尔塔利亚及许多文献资料的指责。但是卡丹在公布这一解法时并没有把发现这一方法的功劳归于自己,而是如实地说明了这是塔尔塔利亚的发现,所以算不上剽窃;而且证明过程是卡丹自己给出的,说明卡丹也做了工作。卡丹用自己的工作对塔尔塔利亚泄露给他的秘密加以补充,违背誓言,把秘密公之于世,加速了一元三次方程求根公式的普及和人类探索一元n次方程根式解法的进程。 一元三次方程应有三个根。塔尔塔利亚公式给出的只是一个实根。又过了大

一元三次方程的解法

一元三次方程的解法 数教091班王超逸 48号 一元三次方程的标准形式为aX^3+bX^2+cX+d=0,将方程两边同时除以最高项系数a,三次方程变为x^3+(b/a)x^2+(c/a)x+d/a=0,所以三次方程又可简写为 X^3+bX^2+cX+d=0. 一元三次方程的韦达定理 设方程为 ax^3+b^2x+cx+d=0 则有 x1*x2*x3=-d/a;x1*x2+x2*x3+x3*x1=c/a;x1+x2+x3=-b/a; 一元三次方程解法思想 一元三次方程解法思想是:通过配方和换元,使三次方程降次为二次方程求解. 一元三次方程解法的发现 三次方程解法的发现是在16世纪的意大利,那时,数学家常常把自己的发现秘而不宣,而是向同伴提出挑战,让他们解决同样的问题.想必这是一项很砥砺智力,又吸引人的竞赛,三次方程的解法就是这样发现的. 最初,有一个叫菲奥尔的人,从别人的秘传中学会了解一些三次方程,便去向另一个大家称为塔尔塔利亚的人挑战.塔尔塔利亚原名丰塔纳,小时因脸部受伤引起口吃,所以被人称为塔尔塔利亚(意为"口吃者")。他很聪明,又很勤奋,靠自学掌握了拉丁文,希腊文和数学.这次他成功解出了菲奥尔提出的所有三次方程,菲奥尔却不能解答他提出的问题.当时很有名的卡尔丹于是恳求他传授解三次方程的办法,并发誓保守秘密,塔尔塔利亚才把他的方法写成一句晦涩的诗交给卡尔丹.后来卡尔丹却背信弃义,把这个方法发表在1545年出版的书里.在书中他写道:"波伦亚的费罗差不多在三十年前就发现了这个方法,并把它传给了菲奥尔.菲奥尔在与塔尔塔利亚的竞赛中使后者有机会发现了它.塔尔塔利亚在我的恳求下把方法告诉了我,但保留了证明.我在获得帮助的情况下找出了它各种形式的证明.这是很难做到的."卡尔丹的背信弃义使塔尔塔利亚很愤怒,他马上写了一本书,争夺这种方法的优先权.他与卡尔丹的学生费拉里发生了公开冲突.最后,这场争论是以双方的肆意谩骂而告终的.三次方程解法发现的过程虽不愉快,但三次方程的解法被保留了下来,并被错误的命名为"卡尔丹公式"沿用至今.以下介绍的解法,就是上文中提到的解法. 一元三次方程的解法 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax+bx+cx+d=0的标准型一元三次方程形式化为x+px+q=0的特殊型。 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A 和B。方法如下:

一般三次方程谢国芳求根公式的推导方法1(利用复三角函数的方法)

一般三次方程的简明新求根公式和根的判别法则 —— 谢国芳 Email: roixie@https://www.360docs.net/doc/ba12397480.html, 【摘要】 本文利用复三角函数推导出了远比卡丹公式简明快捷的可直接用来求解 一般三次方程(包括复系数情形)320ax bx cx d +++=的新求根公式,进而又针对实系数的情形讨论了根的情况,得到了方便的根的判别法则。 【关键词】 三次方程 复三角函数 欧拉公式 求根公式 判别法 1 一般三次方程的简化 对于一个一般形式的三次方程320ax bx cx d +++= (0)a ≠, 两边同除以a ,即可化为首项系数为1的三次方程 320b c d x x x a a a + ++=, 然后作变量代换 3b x y a =- , (1) 可消去二次项,将它化为下面的形式: 30y py q ++=, (2) 其中 2233b ac p a -=-, 323922727abc b a d q a --=-. (3) 下面我们把形如式(2)的三次方程称为简约三次方程. 并约定其一次项系数0p ≠.[1] 2 简约三次方程的三角函数解法和求根公式 在方程(2)中作变量代换[2] y z =, (4) 利用三倍角公式 3cos34cos 3cos z z z =-,

方程(2)即化为 cos3z = , (5) 定义参数 χ= , (6) 称之为三次方程3 0y py q ++=的关键比(key ratio),于是式(5)即 cos3z χ=. (7) 当χ为实数且1χ≤时,令1 cos θχ-=,可得其一般解为 32z n θπ=±+, 即 23 3n z θ π =± + ()n ∈ 取0,1,1n =-,即可得到z 在一个周期内的六个值: 22, , 33333z θθπθπ =±±+±- 但cos z 只取下面这三个值: 22cos cos , cos(), cos() 33333z θθπθπ =+- 代入式(4),即得方程3 0y py q ++=的三个根: 1 2 332cos()332)33y y y θθπθπ ?=?? ?? =+?? ?=-??? (8) 其中1 cos θχ-= , χ= (, 1) c c 危. 当关键比χ为绝对值大于1的实数或虚数时,方程(7)在实数域内无解,但如果我们 把三角函数的定义域扩大到复数域,即考虑复变量的三角函数,则对于任意复数χ都可求得其解. 根据复三角余弦函数的定义(欧拉公式): cos 2 iz iz e e z -+=, (9) 方程(7)等价于

一元三次方程的解法

一元三次方程:只含有一个未知数,且未知数的最高次数为3的整式方程叫做一元三次方程,一元三次方程的一般形式是ax 3+bx 2+cx+d=0(a ,b ,c ,d∈R 且a ≠0),下面来讨论一下一元三次方程求解的问题。 已知一元三次方程ax 3+bx 2+cx+d=0,求方程的根。 解:令3b x y a =-,得2323 23 329270327ac b b abc a d y y a a --+++=① 令23223 329273,2327ac b b abc a d m n a a --+==,得3 320y my n ++=② 经过换元,将原方程化为一元三次方程的特殊形式(3 0x px q ++=),现在求方程② 的根, 令y=u+v ,两边立方得=+=+++=++333333 y (u v)u v 3uv (u v)u v 3uvy 333y 3uvy (u )③v 0∴--+= 由②③式可得,?=-?+=-?33333 u v m u v 2n ④ ⑤ 由④⑤式可知u 3和v 3为方程μ+μ-=232n m 0的两根, 3 32n 2n u ,v 22 -+--∴== y u v ∴=+= + 令a = = 则12223y a b y a b y a b ?=+??=α+α??=α+α??,2,αα为1 的立方根,221cos i sin i 3322ππα=+=-+ ,ππα=+=--2441cos i sin i 3322 则2323 23 329270327ac b b abc a d y y a a --+++=的根表示为

? =+?? +-? =++=+?? ?+-=++=-??12 3y a b 11a b a b y (-i )a (--i )b -22222211a b a b y (--i )a (-i )b -222222 ⑥ 由⑥可知, ① 当+>23n m 0时,方程有1个实根和2个共轭复根; ② 当+=23n m 0时,a ,b 是相等的两个实数,方程有3个实根,其中有1个二重实根; ③ 当+<23n m 0时,方程有3个不相等实根。 以上解法为在卡尔丹公式基础上进一步研究得出,常用的一元三次方程解法除卡尔丹公式法外,还有盛金公式法。 下面通过几个例题具体的使用卡尔丹公式进行解题。 例题1:解方程x 3-6x 2+10x-8=0 解:令3b x y a =- =y+2,得y 3-2y-4=0 23100 027 n m +=>Q a b ∴= = ?=+=?? ∴=α+α=-+??=α+α=--??12223y a b 2y a b 1i y a b 1i ∴原方程的解为?=+=? =+=+?? =+=-?112233x y 24 x y 21i x y 21i 例题2:解方程x 3-12x+16=0 解:23=6464=0n m +-Q 22 ∴=-=-a b ?=+=-?? ∴=α+α=??=α+α=??12223 y a b 4y a b 2y a b 2 ∴原方程的解为?==-? ==?? ==?112233x y 4 x y 2 x y 2 例题3:解方程x 3-6x-4=0

元次方程的求根公式及其推导

一元三次方程的求根公式及其推导 有三个实数根。有三个零点时,当有两个实数根。 有两个零点时,当有唯一实数根。有唯一零点时,当。,有两实根,为,则方程若有唯一实数根。 有唯一零点有一实根,则方程若有唯一实数根。 有唯一零点没有实根,则方程若实数根的个数。 点的个数即方程零即方程则设实数根的判定: 程即可。 因此,只需研究此类方的特殊形式即公式化为均可经过移轴 三次方程由于任一个一般的一元0)()(0)1281(81 1)()(0)()(0)1281(81 1)()(0)()(0)1281(81 1)()(3 3: 0)(0)3(0)()(0)(,0).2(0)()(0)(',0).1(0)(,00)(,)(.1,0,0)2792()3)(39()3(0)3272()3)(3()3(032323221''3333233232323=?<+=?=?=+=?=?>+=?--==- ===<=?===?=>=++=++=++==++=+-++-++=+-++-++=+++x F x F p q F F x F x F p q F F x F x F p q F F p x p x x F p x F x F x F p x F x F x F p q px x x F q px x x F q px x x F q px x D A ABC B B Ax AB AC B Ax D A BC A B A B x A B C A B x A D Cx Bx Ax βαβαβαβα

33 2332323233 232332313223 2132323 2333333333333333333333332332332323212811210861128112108610)1281(81 1)27(41281121086112811210861181281918128190)1281(81 1)27(4027 27,3)(300)(33)(3)(.1.200128100128100128112810)1281(81 10)0.(0.p q q p q q x p q p q p q q a B p q q a A B A p q q a p q q a p q p q p qa a B A q B A p B A q B A p AB q B A p AB q px x B A ABx x ABx B A B A AB B A B A x B A x B A B A B A x q px x p q q px x p q q px x p q p q p q p q p q p +--+++-=≤+=--?? ???+--==++-==??? ????+--=++-=>+=--=-+?????-=+-=?? ????????-=+-==+-=-=++=+--++=+++=+=+=+==++<+=?=++=+=?=++>+=?+=?>+≥式,为: 实数根的方程的求根公上方法只能导出有一个)。故由以,小于零时会出现虚数等于零时只能解出一个但却又无法直接解出(二或三个实数根,,虽然我们清楚方程有若判别式顺序,则有,如果不考虑。则有,若判别式的两根。为一元二次方程,易知,。,即可令, 对比。 即有, 故, 由于。 ,就是设法求出下面的工作为两个待定的代数式。,的形式。其中,程的求根公式应为了一元三次方根公式的归纳,我得到及特殊一元高次方程求一元一次,一元二次以得到。通过对出的,通常由归纳思维式由演绎推理是很难解一元三次方程的求根公实根式的推导: )(求根公式的推导: 有三个实数根。 时,方程有两个实数根。 时,方程有唯一实数根。 时,方程,则有以下结论:。令一定有时, ,则当时方程很容易求解同时为不同时为为研究方便,不妨设

中学代数研究---一元三次方程通解求法1

关于一元三次方程通解的解法 章君、何敏捷 (福建师范大学数学系福建福州350108) 【摘要】本文主要讲解了针对于一元三次方程通解的解法,由一元二次方程通解解法,我们产生联想,可不可以先将一般的一元三次方程化为缺二次项的特殊一元三次方程,然后进行求解,并由此进一步推出一元三次方程根的判别式方法; 【关键词】一元三次方程、通解、一元二次方程、判别式 我们在中学已经学过对于一般的一元二次方程20 ax bx c ++=(0 a≠)的通解的解法,并且我们知道,针对于这样的一般性的一元二次方程,我们可以用多种解法来求得其解,比如,我们可以用求根公式法、因式分解法、配方法等等各种不同的做法来求得其解;这不禁让我们联想到,针对于一般的一元三次方程320 +++=(0 ax bx cx d a≠)我们是否也可以通过像求解一元二次方程的那些做法来求得其解呢?显然,事实证明,对于一般性的一元三次方程是不能用因式分解法、配方法来求解的,除非是比较明显的易于观察的一些方程,我们一眼就能发现它存在某一个特根,然后用多项式相除的办法进行将它分解,然而对于一般性的一元三次方程是不能这样做的,也不能直接给它配方,这就要求我们用其它的方法来求得其解集;由一元二次方程的求根公式法中用到的韦达定理,我们联想到,是否可以先把一元三次方程化成一元二次方程,然后也用韦达定理来求解,事实证明这种猜想是行得通的,以下,我将介绍这种做法的具体演算过程。 设有一般一元三次方程320 +++=(0 ax bx cx d a≠),我们对它先进行化简,目标是将它的二次项系数化为0,这种想法的由来是因为我们通过实践发现无

二次项的一元三次方程比较容易求解,因此,我们想到先除去二次项,然后再求解;具体做法是: 令x y k =+其中k 是一个待定的常数,将其代入原一般一元三次方程320ax bx cx d +++=(0a ≠)中,得到: 32()()()0a y k b y k c y k d ++++++= 展开并整理得到: 32232(3)(32)()0ay ka b y k a bk c y ak bk ck d +++++++++= ---------○ 1 取3b k a =- ,即 3b x y a =- -------○2 , 将其代入原一般方程并整理得: 23322()()03273b b bc ay c y d a a a +-+-+= , 两边同时除以a 得到: 3 0y py q ++= --------○3 其中 21()3b p c a a =- , 3212()273b bc q d a a a =-+ 事实上,以上过程也证明了对于任意一个一元三次方程,我们都可以将它 化为上述○ 3的这种形式,这样我们就可以直接求不含二次项的一元三次方程的解了;接下来,我们只要将方程○ 3的解求出来,就可以自然的求得最原始的一般的一元三次方程的通解了; 我们再次将○3式作变换,令y u v =+(其中u 和v 是未知数),并将其代入 方程○ 3得到:3()()0u v p u v q ++++=,化简后得到: 33(3)()0u v q uv p u v +++++= --------○ 4 因为我们用两个未知数u 和v 代替了y ,因此为了减少○ 4中未知数的个数,我们不妨再要求(3)uv p +=0 -----○5,这样我们就可以得出3 p uv =-------○6,将其代入方程○4我们可以得到:330u v q ++=,从而我们就得到以下方程组: 333p uv u v q ?=-?? ?+=-?,即 3333327p u v u v q ?=-???+=-? 这样我们就可以利用韦达定理知道: 3u 和3v 可以看成是一元二次方程3 2027 p z qz +-=的两个根;

一元三次方程的求根公式及其推导

一元三次方程的求根公式及其推导 有三个实数根。有三个零点时,当有两个实数根。 有两个零点时,当有唯一实数根。 有唯一零点时,当。,有两实根,为,则方程若有唯一实数根。 有唯一零点有一实根,则方程若有唯一实数根。 有唯一零点没有实根,则方程若实数根的个数。 点的个数即方程零即方程则设实数根的判定: 程即可。因此,只需研究此类方的特殊形式即公式化为均可经过移轴三次方程由于任一个一般的一元0 )()(0)1281(81 1 )()(0 )()(0)1281(81 1)()(0 )()(0)1281(81 1 )()(3 3: 0)(0)3(0)()(0)(,0).2(0)()(0)(',0).1(0)(,00)(,)(.1,0,0)2792()3)(39()3(0)3272()3)(3()3(0323 23221''33332332 32323=?<+=?=?=+=?=?>+=?--==- = ==<=?===?=>=++=++=++==++=+-++-++=+-++-++=+++x F x F p q F F x F x F p q F F x F x F p q F F p x p x x F p x F x F x F p x F x F x F p q px x x F q px x x F q px x x F q px x D A ABC B B Ax AB AC B Ax D A BC A B A B x A B C A B x A D Cx Bx Ax βαβαβαβα

33 23323232 33 232332313 223213232 32 33333 33333 3333333333333233233232321281121086 1 128112108610)1281(81 1)27(412811210861 12811210861181281918128190)1281(81 1)27(4027 27,3)(300)(33)(3)(.1.200128100128100128112810)1281(81 1 0)0.(0.p q q p q q x p q p q p q q a B p q q a A B A p q q a p q q a p q p q p qa a B A q B A p B A q B A p AB q B A p AB q px x B A ABx x ABx B A B A AB B A B A x B A x B A B A B A x q px x p q q px x p q q px x p q p q p q p q p q p +--+++-=≤+=--?? ?? ?+--==++-==??? ????+--=++-=>+=--=-+?????-=+-=?? ????????-=+-==+-=-=++=+--++=+++=+=+=+==++<+=?=++=+=?=++>+=?+=?>+≥式,为: 实数根的方程的求根公上方法只能导出有一个)。故由以 ,小于零时会出现虚数等于零时只能解出一个但却又无法直接解出(二或三个实数根, ,虽然我们清楚方程有若判别式顺序,则有,如果不考虑。则有, 若判别式的两根。 为一元二次方程,易知,。,即可令, 对比。即有,故, 由于。,就是设法求出下面的工作为两个待定的代数式。,的形式。其中,程的求根公式应为了一元三次方根公式的归纳,我得到及特殊一元高次方程求一元一次,一元二次以得到。通过对出的,通常由归纳思维式由演绎推理是很难解一元三次方程的求根公实根式的推导: )(求根公式的推导:有三个实数根。时,方程有两个实数根。时,方程有唯一实数根。时,方程,则有以下结论: 。令一定有时, ,则当时方程很容易求解同时为不同时为为研究方便,不妨设

一元三次方程的解法

一元三次方程的解法 一元三次方程:只含有一个未知数,且未知数的最高次数为3的整式方程叫做一元三次方程,一元三次方程的一般形式是ax 3+bx 2+cx+d=0(a ,b ,c ,d∈R 且a ≠0),下面来讨论一下一元三次方程求解的问题。 已知一元三次方程ax 3+bx 2+cx+d=0,求方程的根。 解:令3b x y a =-,得2323 23 329270327ac b b abc a d y y a a --+++=① 令23223 329273,2327ac b b abc a d m n a a --+==,得3 320y my n ++=② 经过换元,将原方程化为一元三次方程的特殊形式(3 0x px q ++=),现在求方程② 的根, 令y=u+v ,两边立方得=+=+++=++3333 33y (u v)u v 3uv (u v)u v 3uvy 333y 3uvy (u )③v 0∴--+= 由②③式可得,?=-?+=-?33333 u v m u v 2n ④ ⑤ 由④⑤式可知u 3和v 3为方程μ+μ-=232n m 0的两根, 3 3u ,v ∴== y u v ∴=+= + 令a = = 则12223 y a b y a b y a b ?=+??=α+α??=α+α??, 2,αα为1 的立方根,221cos i sin i 3322ππα=+=-+ ,ππα=+=--2441cos i sin i 3322 则2323 23 329270327ac b b abc a d y y a a --+++=的根表示为

? =+?? +-? =+ +=+?? ?+-=++=-??123y a b 11a b a b y (-i )a (--i )b -22222211 a b a b y (--i )a (-i )b -222 222 ⑥ 由⑥可知, ① 当+>23n m 0时,方程有1个实根和2个共轭复根; ② 当+=23n m 0时,a ,b 是相等的两个实数,方程有3个实根,其中有1个二重实根; ③ 当+<23n m 0时,方程有3个不相等实根。 以上解法为在卡尔丹公式基础上进一步研究得出,常用的一元三次方程解法除卡尔丹公式法外,还有盛金公式法。 下面通过几个例题具体的使用卡尔丹公式进行解题。 例题1:解方程x 3-6x 2+10x-8=0 解:令3b x y a =- =y+2,得y 3-2y-4=0 23100 027 n m +=> a b ∴= = ?=+=?? ∴=α+α=-+??=α+α=--??12223y a b 2y a b 1i y a b 1i ∴原方程的解为?=+=? =+=+?? =+=-?112233x y 24 x y 21i x y 21i 例题2:解方程x 3-12x+16=0 解:23=6464=0n m +- 22 ∴=-=-a b ?=+=-?? ∴=α+α=??=α+α=??12223 y a b 4 y a b 2y a b 2 ∴原方程的解为?==-? ==?? ==?112233x y 4x y 2 x y 2 例题3:解方程x 3-6x-4=0

利用Excel电子表格解一元三次方程

利用Excel电子表格如何解一元三次方程? 比如有一个一元三次方程X3-2.35X2-10262=0,可以通过迭代法,即可以设定步长和迭代值小于一定的数值来求方程的解。请问在Excel电子表格使用的是什么函数,在单元格中设置怎么样的公式? 这类问题可以使用Excel内置的“单变量求解”模块来完成,操作步骤如下: 1、打开一个空白工作表; 2、A1单元格留空,在A2单元格里输入如下公式—— =A1^3-2.35*A1^2-10262 3、点击菜单“工具”-》“单变量求解”; 4、在弹出的设置对话框里输入: “目标单元格”:A2 “目标值”:0 “可变单元格”:A1 点确定后就大功告成了~~ 5、如果还没有得到你想要的解,在上次计算的基础上再重复步骤4应该就可以了。 一元方程线性拟合 1,选中需拟合的数据,点“插入”“图表”“XY散点图”“下一步” X、Y轴的数据区域,“完成”。 2,在出现的散点图中选择一个散点,右击“添加趋势线”。 3,若是一元一次线性方程,选“线性(L)”。 4,若是一元多次方程,选“多项式(P)”并在“阶数”栏选择相应的阶数。 5,“选项”“显示公式”“显示R平方值”处勾选,确定。 excel计算方法: 在科普园地,有人出了一道一元三次方程3x^3-82x^2-11x+70 =0,说是允许用计算器或计算机,我想了想,很快就用excel的计算功能求出了5位小数。 1、打开excel(含一个已打开的新excel文件),在B1格(即第1行第B列对应的格子)输入“=3*A1^3-82*A1^2-11*A1+70”(只输入引号内的部分,不含引号),把鼠标的光标移到这个格子右下角的黑点上,按着左键往下拉它200多行备用(也可以先拉几十格,后面要用了再拉)。 2、粗略估计,x不可能小于-100,不可能大于100,所以值的范围肯定在这个范围;在A1格输入-100,A2格输入-90,用鼠标选中A1、A2格,再往下拉A2格右下角的黑点到A21格,这样就得到了-100~100的整10的x值,B列得到对应的3*x^3-82*x^2-11*x+70的值。 3、从函数y=3x^3-82x^2-11x+70,基本上可以肯定函数值是连续的,从计算的函数值(B1~B21格的数值)可以看出,函数在(-10,0)、(0,10)、(20,30)三个定义域中各有一个值为0。 4、用第2步的操作方法在A24~A44中分别填入-10~10,在A46~A56中分别填入20~30。 5、从新的函数值可以看出,三个值在(-1,0)、(0,1)、(27,28)内,所以,在A列填入-1~1、27~28的带一位小数的所有数…… 经过几次,就可以求得三个x值分别在(-0.97496,-0.97495)、(0.87231,0.87232)、(27.43597,27.43598)定义域中。 (研究了一下,excel最多可以表示15位有效数字)

相关文档
最新文档