2019-2020学年九年级数学下册2.4.1二次函数的应用教案1新版北师大版 .doc

合集下载

九年级数学下册2.4.1二次函数的应用教案1北师大版

九年级数学下册2.4.1二次函数的应用教案1北师大版

课题:2.4.1二次函数的应用教学目标:1.经历探究矩形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学知识的应用价值.2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值.3. 积极参加数学活动,发展解决问题的能力,体会数学的应用价值,从而增强数学学习信心,体验成功的乐趣.教学重点与难点:重点:分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题.难点:利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学知识的应用价值.教学过程:一、创设情境,引出问题如图,在一个直角三角形的内部作一个长方形ABCD,其中AB和AD 分别在两直角边上.(1)设长方形的一边AB=x m,那么AD边的长度如何表示?(2)设长方形的面积为y m2,当x取何值时,y的值最大?最大值是多少?处理方式:以问题串的形式引导学生思考,让学生思考并回答以上问题,在集体交流时,对于学生给出的正确答案给予肯定,不足之处给予纠正.(1)要求AD边的长度,即求BC边的长度,而BC是△EBC中的一边,因此可以用三角形相似求出BC.由△EBC∽△EAF,得EB BCEA AF=即404030x BC-=.所以AD=BC=34(40-x).(2)要求面积y的最大值,即求函数y=AB·AD=x·34(40-x)的最大值,就转化为数学问题了.要求学生讨论写出步骤.(1)∵BC∥AD,∴△EBC∽△EAF.∴EB BC EA AF=.又AB=x,BE=40-x,∴404030x BC-=.∴BC =34(40-x). ∴AD =BC =34(40-x)=30-34x . (2)y =AB ·AD =x(30-34x)=-34x 2+30x =-34(x 2-40x +400-400) =-34(x 2-40x +400)+300 =-34(x -20)2+300. 当x =20时,y 最大=300.即当x 取20m 时,y 的值最大,最大值是300m 2.设计意图:通过师生分析交流,让学生经历用含x 的代数式表示矩形的另一边,变三个变量为两个变量,为建立二次函数模型做好铺垫,也让学生体会数形结合时表示线段的重要意义.此问是解决整个实际问题的关键之处,也是难点所在,让学生在充分交流的基础上,回忆起运用三角形相似解决问题. 二、尝试成功,探究创新活动内容:如果我们将这个问题再进行变式:如图,在一个直角三角形的内部作一个矩形ABCD ,其中点A 和点D 分别在两直角边上,BC 在斜边上.(1)设矩形的一边BC=xm ,那么AB 边的长度如何表示? (2)设矩形的面积为y m 2,当x 取何值,y 的最大值是多少?处理方式:以问题串的形式引导学生思考,让学生思考并回答以上问题,在集体交流时,对于学生给出的正确答案给予肯定,不足之处给予纠正设计意图:有了前面两题作基础,这个问题可以留给学生课下自己解决,作为练习.解决问题的基本思路一样,只是用到了对应高之比等于相似比,这是此题的难点,本题既加深了旧知的复习应用,又在比较中总结表示线段的多种方法,让学生体会到类比解题,又在同中找异.三、例题讲解,学以致用窗户是一幢建筑最重要的标志之一,我们每个人的家里都有窗户,我们小时候还经常爬在窗户前数星星,下面我们来看一个和窗户有关的问题:40m30mD NOABCM某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m .当x 等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?处理方式:x 为半圆的半径,也是矩形的较长边,因此x 与半圆面积和矩形面积都有关系.要求透过窗户的光线最多,也就是求矩形和半圆的面积之和最大,即2xy +2πx 2最大,而由于4y +4x +3x +πx=7x +4y +πx=15,所以y =1574x x π--.面积S =12πx 2+2xy =12πx 2+2x ·1574x x π--=12πx 2+(157)2x x x π--=-3.5x 2+7.5x ,这时已经转化为数学问题即二次函数了,只要化为顶点式或代入顶点坐标公式中即可.解:∵7x +4y +πx=15, ∴y =1574x xπ--.设窗户的面积是S(m 2),则 S =12πx 2+2xy =12πx 2+2x ·1574x x π-- =12πx 2+(157)2x x x π-- =-3.5x 2+7.5x =-3.5(x 2-157x) =-3.5(x -1514)2+1575392. ∴当x =1514≈1.07时, S 最大=1575392≈4.02. 即当x ≈1.07m 时,S 最大≈4.02m 2,此时,窗户通过的光线最多.设计意图:把数学问题变式到实际生活问题,让学生运用数学知识到日常生活中,体会用数学的过程,由矩形面积变式到复合型面积,拓展了思维,以不变应万变,通过本题的训练让学生进一步体会利用二次函数解决最大面积问题的方法、过程.四、巩固提升 展示自我 活动内容:1. 用6米长的木料做成“目”字形的框架,设框架的宽为x 米,框架的面积为S 平方米,当x = 米时,S 最大?S 最大 = 平方米.B AD C GE F H 2.如图,矩形ABCD 中,AB = 3,BC = 1,点E 、F 、G 、H 分别在AB 、BC 、CD 、DA 上,设EB = BF = GD = DH = x ,则四边形EFGH 的最大面积为 .3.如图,△ABC 中,BC = 4 cm ,AC = 23cm ,∠C = 60°.在BC 边上有一动点P ,过P 作PD ∥AB 交AC 于点D ,问:点P 在何处时,△APD 的面积最大?最大面积是多少?处理方式:学先让学生思考,完成练习后,再用课件展示图例,并统计学生答题情况.学生根据答案进行纠错.设计意图:通过这三道题目对学生的掌握情况进行反馈,发现学生在解决这类问题是存在的不足之处,如果学生感觉到困难,可以进行小组讨论或者教师加以引导点拨.五、总结概括,整理知识本节课我们学习了用二次函数知识解决最大面积问题,增强了应用意识,获得了利用数学方法解决实际问题的经验,并进一步感受了数学模型思想和数学的应用价值.1.请你总结一下解决这类问题的基本思路及要注意的问题. 2.本节课,你最深的感受是什么?3.在这节课学习过程中,你还有什么疑问没有解决?处理方式:由学生进行课堂小结,要给学生充足的时间进行思考,得出结论后,再进行集体交流和课件展示.设计意图:通过复习,让学生学会把知识系统化,加深对知识的理解和掌握,同时,培养学生有条理的进行思考,以形成完整知识结构,培养归纳概括能力和语言表达能力.评价自己的学习表现,有利于学生看到自己的优点和不足,以及今后改正的方向,同时也有助于学习习惯的培养.六、达标测试,反馈纠正A 组:1.如图,在矩形ABCD 中,AB=m (m 是大于0的常数),BC=8,E 为线段BC 上的动点(不与B ,C 重合).连接DE ,作EF ⊥DE ,EF 与线段BA 交于点F ,设CE=x ,BF=y . (1)求y 关于x 的函数关系式.(2)若m=8,求x 为何值时,y 的值最大,最大值是多少?(3)若 要使△DEF 为等腰三角形,m 的值应为多少?BA PDC12y m第2题B组:2如图,阴平中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x,面积为y.(1)求y与x的函数关系式,并求出自变量x的取值范围.(2)生物园的面积能否达到210平方米?说明理由.处理方式:学生在学案上做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:分层设练,使学生知识、技能螺旋式的上升,也是一种思维与能力的训练.七、布置作业,落实目标课本习题P47第2题板书设计:中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6 B.8 C.14 D.16【答案】C【解析】根据根与系数的关系得到x1+x2=2,x1•x2=-5,再变形x12+x22得到(x1+x2)2-2x1•x2,然后利用代入计算即可.【详解】∵一元二次方程x2-2x-5=0的两根是x1、x2,∴x1+x2=2,x1•x2=-5,∴x12+x22=(x1+x2)2-2x1•x2=22-2×(-5)=1.故选C.【点睛】考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=-ba,x1•x2=ca.2.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A.监测点A B.监测点B C.监测点C D.监测点D【答案】C【解析】试题解析:A、由监测点A监测P时,函数值y随t的增大先减少再增大.故选项A错误;B、由监测点B监测P时,函数值y随t的增大而增大,故选项B错误;C、由监测点C监测P时,函数值y随t的增大先减小再增大,然后再减小,选项C正确;D、由监测点D监测P时,函数值y随t的增大而减小,选项D错误.故选C.3.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)【答案】D【解析】设分配x名工人生产螺栓,则(27-x)人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x),故选D.4.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【解析】根据图像可得:a<0,b<0,c=0,即abc=0,则①正确;当x=1时,y<0,即a+b+c<0,则②错误;根据对称轴可得:-=-,则b=3a,根据a<0,b<0可得:a>b;则③正确;根据函数与x轴有两个交点可得:-4ac>0,则④正确.故选C.【点睛】本题考查二次函数的性质.能通过图象分析a,b,c的正负,以及通过一些特殊点的位置得出a,b,c之间的关系是解题关键.5.下列调查中,最适合采用全面调查(普查)的是()A.对我市中学生每周课外阅读时间情况的调查B.对我市市民知晓“礼让行人”交通新规情况的调查C.对我市中学生观看电影《厉害了,我的国》情况的调查D.对我国首艘国产航母002型各零部件质量情况的调查【答案】D【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.由此,对各选项进行辨析即可.【详解】A 、对我市中学生每周课外阅读时间情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;B 、对我市市民知晓“礼让行人”交通新规情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;C 、对我市中学生观看电影《厉害了,我的国》情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;D 、对我国首艘国产航母002型各零部件质量情况的调查,意义重大,应采用普查,故此选项正确; 故选D . 【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( ) A .2 B .8C .﹣2D .﹣8【答案】A【解析】试题分析:设正比例函数解析式为:y=kx ,将点A (3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x ,将B (m ,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A . 考点:一次函数图象上点的坐标特征. 7.一、单选题如图: 在ABC ∆中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若5CM =,则22CE CF +等于( )A .75B .100C .120D .125【答案】B【解析】根据角平分线的定义推出△ECF 为直角三角形,然后根据勾股定理即可求得CE 2+CF 2=EF 2,进而可求出CE 2+CF 2的值.【详解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=12∠ACB,∠ACF=12∠ACD,即∠ECF=12(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=1.故选:B.【点睛】本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.8.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°【答案】B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,9.下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个【答案】D【解析】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形; 故选D .10.如图,AB 是⊙O 的直径,点E 为BC 的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为( )A .1B .32C .3D .23【答案】C【解析】连接AE ,OD ,OE .∵AB 是直径, ∴∠AEB=90°.又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°. ∵OA=OD .∴△AOD 是等边三角形.∴∠A=60°. 又∵点E 为BC 的中点,∠AED=90°,∴AB=AC . ∴△ABC 是等边三角形,∴△EDC 是等边三角形,且边长是△ABC 边长的一半23∴∠BOE=∠EOD=60°,∴BE 和弦BE 围成的部分的面积=DE 和弦DE 围成的部分的面积. ∴阴影部分的面积=EDC 1S =23=32∆⋅C . 二、填空题(本题包括8个小题)11.已知二次函数21y ax bx c =++与一次函数()20y kx m k =+≠的图象相交于点()2,4A -,()8,2.B 如图所示,则能使12y y >成立的x 的取值范围是______.【答案】x&lt;-2或x&gt;1【解析】试题分析:根据函数图象可得:当12y y 时,x <-2或x >1.考点:函数图象的性质 12.已知xy=3,那么y x x y x y______ . 【答案】±3 【解析】分析:先化简,再分同正或同负两种情况作答.详解:因为xy=3,所以x 、y 同号,于是原式=22xy xy x y x y x yxy xy x y当x>0,y>0时,原式xy xy 3当x<0,y<0时,原式=(xy xy -3故原式=±3点睛:本题考查的是二次根式的化简求值,能够正确的判断出化简过程中被开方数底数的符号是解答此题的关键.13.因式分解:3a 2-6a+3=________.【答案】3(a -1)2【解析】先提公因式,再套用完全平方公式.【详解】解:3a 2-6a+3=3(a 2-2a+1)=3(a-1)2.【点睛】考点:提公因式法与公式法的综合运用.14.已知x=2是一元二次方程x 2﹣2mx+4=0的一个解, 则m 的值为 .【答案】1.【解析】试题分析:直接把x=1代入已知方程就得到关于m 的方程,再解此方程即可.试题解析:∵x=1是一元二次方程x 1-1mx+4=0的一个解,∴4-4m+4=0,∴m=1.考点:一元二次方程的解.15.如图,圆O 的直径AB 垂直于弦CD ,垂足是E ,∠A=22.5°,OC=4,CD 的长为________.【答案】42 【解析】试题分析:因为OC=OA ,所以∠ACO=22.5A ∠=︒,所以∠AOC=45°,又直径AB 垂直于弦CD ,4OC =,所以CE=22,所以CD=2CE=42.考点:1.解直角三角形、2.垂径定理.16.当x = __________时,二次函数226y x x =-+ 有最小值___________.【答案】1 5【解析】二次函数配方,得:2(1)5y x =-+,所以,当x =1时,y 有最小值5,故答案为1,5.17.如图,CE 是▱ABCD 的边AB 的垂直平分线,垂足为点O ,CE 与DA 的延长线交于点E .连接AC ,BE ,DO ,DO 与AC 交于点F ,则下列结论:①四边形ACBE 是菱形;②∠ACD =∠BAE ;③AF :BE =2:1;④S 四边形AFOE :S △COD =2:1.其中正确的结论有_____.(填写所有正确结论的序号)【答案】①②④.【解析】根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可. 【详解】∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵EC垂直平分AB,∴OA=OB=12AB=12DC,CD⊥CE,∵OA∥DC,∴EA EO OAED EC CD===12,∴AE=AD,OE=OC,∵OA=OB,OE=OC,∴四边形ACBE是平行四边形,∵AB⊥EC,∴四边形ACBE是菱形,故①正确,∵∠DCE=90°,DA=AE,∴AC=AD=AE,∴∠ACD=∠ADC=∠BAE,故②正确,∵OA∥CD,∴AF OA1 CF CD2==,∴AF AF1AC BE3==,故③错误,设△AOF的面积为a,则△OFC的面积为2a,△CDF的面积为4a,△AOC的面积=△AOE的面积=1a,∴四边形AFOE的面积为4a,△ODC的面积为6a∴S四边形AFOE:S△COD=2:1.故④正确.故答案是:①②④.【点睛】此题考查平行四边形的性质、菱形的判定和性质、平行线分线段成比例定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.18.有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n 次的运算结果是____________(用含字母x 和n 的代数式表示). 【答案】2(21)1n n x x -+ 【解析】试题分析:根据题意得121x y x =+;2431x y x =+;3871x y x =+;根据以上规律可得:n y =2(21)1n n x x -+. 考点:规律题.三、解答题(本题包括8个小题)19.在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC (顶点是网格线交点的三角形)的顶点A 、C 的坐标分别是(-4,6)、(-1,4);请在图中的网格平面内建立平面直角坐标系;请画出△ABC关于x 轴对称的△A 1B 1C 1;请在y 轴上求作一点P ,使△PB 1C 的周长最小,并直接写出点P 的坐标.【答案】(1)(2)见解析;(3)P (0,2).【解析】分析:(1)根据A ,C 两点的坐标即可建立平面直角坐标系.(2)分别作各点关于x 轴的对称点,依次连接即可.(3)作点C 关于y 轴的对称点C′,连接B 1C′交y 轴于点P ,即为所求.详解:(1)(2)如图所示:(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,则点P即为所求.设直线B1C′的解析式为y=kx+b(k≠0),∵B1(﹣2,-2),C′(1,4),∴224k bk b-+=-⎧⎨+=⎩,解得:22kb=⎧⎨=⎩,∴直线AB2的解析式为:y=2x+2,∴当x=0时,y=2,∴P(0,2).点睛:本题主要考查轴对称图形的绘制和轴对称的应用.20.如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.求证:△ADE≌△BFE;若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.【答案】(1)见解析;(1)见解析.【解析】(1)由全等三角形的判定定理AAS证得结论.(1)由(1)中全等三角形的对应边相等推知点E是边DF的中点,∠1=∠1;根据角平分线的性质、等量代换以及等角对等边证得DC=FC,则由等腰三角形的“三合一”的性质推知CE⊥DF.【详解】解:(1)证明:如图,∵四边形ABCD是平行四边形,∴AD∥BC.又∵点F在CB的延长线上,∴AD∥CF.∴∠1=∠1.∵点E是AB边的中点,∴AE=BE,∵在△ADE与△BFE中,12DEA FEB AE BE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△BFE(AAS).(1)CE⊥DF.理由如下:如图,连接CE,由(1)知,△ADE≌△BFE,∴DE=FE,即点E是DF的中点,∠1=∠1.∵DF平分∠ADC,∴∠1=∠2.∴∠2=∠1.∴CD=CF.∴CE⊥DF.21.给定关于x的二次函数y=kx2﹣4kx+3(k≠0),当该二次函数与x轴只有一个公共点时,求k的值;当该二次函数与x轴有2个公共点时,设这两个公共点为A、B,已知AB=2,求k的值;由于k的变化,该二次函数的图象性质也随之变化,但也有不会变化的性质,某数学学习小组在探究时得出以下结论:①与y轴的交点不变;②对称轴不变;③一定经过两个定点;请判断以上结论是否正确,并说明理由.【答案】(1)32(2)1(3)①②③【解析】(1)由抛物线与x轴只有一个交点,可知△=0;(2)由抛物线与x轴有两个交点且AB=2,可知A、B坐标,代入解析式,可得k值;(3)通过解析式求出对称轴,与y轴交点,并根据系数的关系得出判断.【详解】(1)∵二次函数y=kx2﹣4kx+3与x轴只有一个公共点,∴关于x的方程kx2﹣4kx+3=0有两个相等的实数根,∴△=(﹣4k)2﹣4×3k=16k2﹣12k=0,解得:k1=0,k2=32,k≠0,∴k=32;(2)∵AB=2,抛物线对称轴为x=2,∴A、B点坐标为(1,0),(3,0),将(1,0)代入解析式,可得k=1,(3)①∵当x=0时,y=3,∴二次函数图象与y轴的交点为(0,3),①正确;②∵抛物线的对称轴为x=2,∴抛物线的对称轴不变,②正确;③二次函数y=kx2﹣4kx+3=k(x2﹣4x)+3,将其看成y关于k的一次函数,令k的系数为0,即x2﹣4x=0,解得:x1=0,x2=4,∴抛物线一定经过两个定点(0,3)和(4,3),③正确.综上可知:正确的结论有①②③.【点睛】本题考查了二次函数的性质,与x、y轴的交点问题,对称轴问题,以及系数与图象的关系问题,是一道很好的综合问题.22.如图,两座建筑物的水平距离BC为60m.从C点测得A点的仰角α为53° ,从A点测得D点的俯角β为37° ,求两座建筑物的高度(参考数据:34334 37,3737, 53453?35) 55453 sin cos tan sin cos tan ≈≈≈≈≈≈,,,【答案】建筑物AB 的高度为80m .建筑物CD 的高度为35m .【解析】分析:过点D 作DE ⊥AB 于于E ,则DE=BC=60m .在Rt △ABC 中,求出AB .在Rt △ADE 中求出AE 即可解决问题.详解:过点D 作DE ⊥AB 于于E ,则DE=BC=60m ,在Rt △ABC 中,tan53°=60AB AB BC ∴,=43,∴AB=80(m ). 在Rt △ADE 中,tan37°=34AE DE ∴,=60AE ,∴AE=45(m ), ∴BE=CD=AB ﹣AE=35(m ).答:两座建筑物的高度分别为80m 和35m .点睛:本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.如图,一次函数y =kx+b 与反比例函数y =6x(x >0)的图象交于A (m ,6), B (3,n )两点.求一次函数关系式;根据图象直接写出kx+b ﹣6x >0的x 的取值范围;求△AOB 的面积.【答案】(1)y =-2x +1 ;(2)1<x <2 ;(2)△AOB 的面积为1 .【解析】试题分析:(1)首先根据A (m ,6),B (2,n )两点在反比例函数y=6x(x >0)的图象上,求出m ,n 的值各是多少;然后求出一次函数的解析式,再根据一元二次不等式的求法,求出x 的取值范围即可.(2)由-2x+1-6x<0,求出x的取值范围即可.(2)首先分别求出C点、D点的坐标的坐标各是多少;然后根据三角形的面积的求法,求出△AOB的面积是多少即可.试题解析:(1)∵A(m,6),B(2,n)两点在反比例函数y=6x(x>0)的图象上,∴6=6m,63n=,解得m=1,n=2,∴A(1,6),B(2,2),∵A(1,6),B(2,2)在一次函数y=kx+b的图象上,∴6{32 k bk b++==,解得2 {8kb-==,∴y=-2x+1.(2)由-2x+1-6x<0,解得0<x<1或x>2.(2)当x=0时,y=-2×0+1=1,∴C点的坐标是(0,1);当y=0时,0=-2x+1,解得x=4,∴D点的坐标是(4,0);∴S△AOB=12×4×1-12×1×1-12×4×2=16-4-4=1.24.如图,AB为⊙O的直径,点E在⊙O,C为弧BE的中点,过点C作直线CD⊥AE于D,连接AC、BC.试判断直线CD与⊙O的位置关系,并说明理由若AD=2,O的半径.【答案】(1)直线CD 与⊙O 相切;(2)⊙O 的半径为1.1.【解析】(1)相切,连接OC ,∵C 为BE 的中点,∴∠1=∠2,∵OA=OC ,∴∠1=∠ACO ,∴∠2=∠ACO ,∴AD ∥OC ,∵CD ⊥AD ,∴OC ⊥CD ,∴直线CD 与⊙O 相切;(2)连接CE ,∵AD=2,AC=6,∵∠ADC=90°,∴CD=22AC AD -=2,∵CD 是⊙O 的切线,∴2CD =AD•DE ,∴DE=1,∴CE=22CD DE +=3,∵C 为BE 的中点,∴BC=CE=3,∵AB 为⊙O 的直径,∴∠ACB=90°,∴AB=22AC BC +=2.∴半径为1.125.两个全等的等腰直角三角形按如图方式放置在平面直角坐标系中,OA 在x 轴上,已知∠COD=∠OAB=90°,OC=2,反比例函数y=k x 的图象经过点B .求k 的值.把△OCD 沿射线OB 移动,当点D 落在y=k x图象上时,求点D 经过的路径长.【答案】(1)k=2;(2)点D 6【解析】(1)根据题意求得点B 的坐标,再代入k y x=求得k 值即可; (2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB ,过D′作D′E ⊥x 轴于点E ,交DC 于点F ,设CD 交y 轴于点M (如图),根据已知条件可求得点D 的坐标为(﹣1,1),设D′横坐标为t ,则OE=MF=t ,即可得D′(t ,t+2),由此可得t (t+2)=2,解方程求得t 值,利用勾股定理求得DD′的长,即可得点D经过的路径长.【详解】(1)∵△AOB和△COD为全等三的等腰直角三角形,OC=2,∴AB=OA=OC=OD=2,∴点B坐标为(2,2),代入kyx=得k=2;(2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M,如图,∵2AOB=∠COM=45°,∴OM=MC=MD=1,∴D坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,∴D′F=DF=t+1,∴D′E=D′F+EF=t+2,∴D′(t,t+2),∵D′在反比例函数图象上,∴t(t+2)=2,解得31或t=31(舍去),∴D′31,3+1),∴22(311)(311)6-+++-=,即点D6【点睛】本题是反比例函数与几何的综合题,求得点D′的坐标是解决第(2)问的关键.26.如图,某同学在测量建筑物AB的高度时,在地面的C处测得点A的仰角为30°,向前走60米到达D 处,在D 处测得点A 的仰角为45°,求建筑物AB 的高度.【答案】(3【解析】解:设建筑物AB 的高度为x 米在Rt △ABD 中,∠ADB=45°∴AB=DB=x∴BC=DB+CD= x+60在Rt △ABC 中,∠ACB=30°,∴tan ∠ACB=ABCB ∴tan 3060xx ︒=+ 360xx =+∴x=30+30∴建筑物AB 的高度为(30+30)米中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A.33B.55C.233D.255【答案】D【解析】过B点作BD⊥AC,如图,由勾股定理得,AB=221310+=,AD=222222+=,cosA=ADAB=2210=255,故选D.2.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x-1)=1035 C.12x(x+1)=1035 D.12x(x-1)=1035【答案】B【解析】试题分析:如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程.∵全班有x名同学,∴每名同学要送出(x-1)张;又∵是互送照片,∴总共送的张数应该是x(x-1)=1.故选B考点:由实际问题抽象出一元二次方程.3.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是()A.t<B.t>C.t≤D.t≥【答案】B【解析】将一次函数解析式代入到反比例函数解析式中,整理得出x2﹣2x+1﹣6t=0,又因两函数图象有两个交点,且两交点横坐标的积为负数,根据根的判别式以及根与系数的关系可求解.【详解】由题意可得:﹣x+2=,所以x2﹣2x+1﹣6t=0,∵两函数图象有两个交点,且两交点横坐标的积为负数,∴解不等式组,得t>.故选:B.点睛:此题主要考查了反比例函数与一次函数的交点问题,关键是利用两个函数的解析式构成方程,再利用一元二次方程的根与系数的关系求解.4.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=42,则△CEF的面积是()A.22B.2C.32D.42【答案】A【解析】解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=42,∴AG=22AB BG-=2,∴AE=2AG=4;∴S△ABE=12AE•BG=1442822⨯⨯=.∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1,∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=14S△ABE=22.故选A.【点睛】本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.5.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A.(4,4)B.(3,3)C.(3,1)D.(4,1)【答案】A【解析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.【详解】∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选A.【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.6.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )A.能中奖一次B.能中奖两次C.至少能中奖一次D.中奖次数不能确定【答案】D【解析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.【详解】解:根据随机事件的定义判定,中奖次数不能确定.故选D.【点睛】解答此题要明确概率和事件的关系:()P A0=①,为不可能事件;()P A1=②为必然事件;()0P A1③<<为随机事件.7.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以。

北师大版九年级数学下册:2.4 二次函数的应用 教案1

北师大版九年级数学下册:2.4 二次函数的应用  教案1

二次函数的应用【教学目标】知识与技能:1.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值.过程与方法:1.通过分析和表示不同背景下实际问题中变量之间的二次函数关系,培养学生的分析判断能力.2.通过运用二次函数的知识解决实际问题,培养学生的数学应用能力.情感与态度:1.经历探究长方形和窗户透光最大面积问题的过程,获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值.2.能够对解决问题的基本策略进行反思,形成个人解决问题的风格.3.进一步体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心,具有初步的创新精神和实践能力.【教学重难点】重点:能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能运用二次函数的有关知识解决最大面积问题.难点:把实际问题转化成函数模型.【教学过程】一、创设情境,引入新知(放幻灯片2、3、4)1.(1)请用长20米的篱笆设计一个矩形的菜园.(2)怎样设计才能使矩形菜园的面积最大?设计意图:通过学生所熟悉的图形,引入新课,使学生初步了解解决最大面积问题的一般思路.2.如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,求围成花圃的最大面积 .设计意图:在上一个问题的基础上对问题情境进行变化,增大难度,同时板书解题过程,让学生明确规范的书写过程.二、探究新知(放幻灯片5、6、7)探究一:如图,在一个直角三角形的内部画一个矩形ABCD ,其中AB 和AD 分别在两直角边上,AN=40m ,AM=30m.(1)设矩形的一边AB=xm,那么AD 边的长度如何表示?(2)设矩形的面积为2ym ,当x 取何值时,y 的最大值是多少?探究二:在上一个问题中,如果把矩形改为如图所示的位置,其顶点A 和点D 分别在两直角边上,BC 在斜边上.其它条件不变,那么矩形的最大面积是多少?探究三:如图,已知△ABC 是一等腰三角形铁板余料,AB=AC=20cm,BC=24cm.若在△ABC 上截出一矩形零件DEFG,使得EF 在BC 上,点D 、G分别在边AB 、AC 上.问矩形DEFG 的最大面积是多少?设计意图:通过由学生讨论怎样用直角三角形剪出一个最大面积的矩形入手,由学生动手画出两种方法,和同学一起从问题中抽象出二次函数的模型,并求其最值,同时通过两种情况的分析,训练学生的发散思维能力,关键是教会学生方法,也是这类问题的难点所在,即怎样设未知数,怎样转化为我们熟悉的数学问题.在此基础上对变式三进行探究,进而总结此类题型,得出解决问题的一般方法.MND C B A PM N D C BF G E D CB A三、例题讲解(放幻灯片8、9)某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有的黑线的长度和)为15m.(1)用含x的代数式表示;(2)当x等于多少时,窗户通过的光线最多? (结果精确到0.01m)此时,窗户的面积是多少? (结果精确到0.01m2)归纳总结:二次函数应用的思路设计意图:让学生进一步经历解决最值问题的过程,明确解决这类问题的一般步骤.七、课堂练习八、课堂小结(放幻灯片10)【作业布置】。

北师大版九年级数学下册《二次函数的应用》教案及教学反思

北师大版九年级数学下册《二次函数的应用》教案及教学反思

北师大版九年级数学下册《二次函数的应用》教案及教学反思教学目标1.理解二次函数的概念及特性2.掌握二次函数应用实例3.培养学生分析问题、解决问题的能力教学内容1. 二次函数的概念与特性(1)定义二次函数是指自变量的二次方作为函数的函数,它的一般形式为:f(x) = ax^2 + bx + c其中 a、b、c 是常数,且 a ≠ 0。

(2)基本特征•定义域:实数集•值域:当 a > 0 时,二次函数的最小值为 c - (b^2) / (4a) ;当 a < 0 时,二次函数的最大值为 c - (b^2) / (4a)。

•对称轴:x = -b / (2a)•开口方向:当 a > 0 时,二次函数开口向上,当 a < 0 时,二次函数开口向下。

•零点:f(x) = 0 时的 x 值即为二次函数的零点。

2. 二次函数的应用实例(1)求最大值或最小值当一个物理问题能够用二次函数来表达时,可以利用二次函数的特性,求出物理量的最大值或最小值。

(2)求交点二次函数和直线之间的交点可以用来解决几何问题,如交点为两柱面相切的圆的半径等。

教学方法•解释法:通过示例或铺垫讲解二次函数的定义及特性。

•运用法:通过做一些典型题目,让学生理解二次函数的不同特性。

•发散法:通过一些拓展题目,让学生探究二次函数的应用及实际问题的解决。

教学过程1. 拓展题目(10分钟)请学生观察以下二次函数图像,思考不同函数的特点。

当学生了解了不同二次函数的特性并掌握了如何求解二次函数的基本问题后,开始进入二次函数应用问题实战。

2. 例题练习(30分钟)请学生在教师指导下,完成以下例题练习: 1. 某工程公司定价方案为:一个工程的成本为 10000 元,每增加 1 万的工程量,成本额外增加 2400 元。

如果公司想最多减少亏损,最多赚多少? 2. 在 xy 平面内,一个圆心坐标为 (2, 3),一点坐标为 (0, 1)。

当圆与直线 y=2 x-1 相切时,圆的半径为多少? 3. 有一个与 x 轴成 45 度角的光线通过点 P(6, 2) 射向 y 轴的一面镜子,反射之后定位在 Q(0, y) 处,求 y的值。

北师大版九年级数学下册:2.4《二次函数的应用》说课稿

北师大版九年级数学下册:2.4《二次函数的应用》说课稿

北师大版九年级数学下册:2.4《二次函数的应用》说课稿一. 教材分析北师大版九年级数学下册2.4《二次函数的应用》这一节主要介绍了二次函数在实际生活中的应用,通过学习,学生能够理解二次函数在实际生活中的意义,掌握二次函数解决实际问题的方法。

教材通过实例引导学生利用二次函数解决实际问题,培养学生的数学应用能力。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。

但学生在解决实际问题时,往往不知道如何将实际问题转化为二次函数问题,因此,在教学过程中,教师需要引导学生将实际问题抽象为二次函数模型,并运用二次函数的知识解决实际问题。

三. 说教学目标1.让学生理解二次函数在实际生活中的应用,体会数学与生活的联系。

2.培养学生将实际问题转化为二次函数模型,并运用二次函数解决实际问题的能力。

3.提高学生的数学思维能力,培养学生的数学素养。

四. 说教学重难点1.教学重点:让学生掌握二次函数解决实际问题的方法,培养学生的数学应用能力。

2.教学难点:如何引导学生将实际问题转化为二次函数模型,并运用二次函数的知识解决实际问题。

五.说教学方法与手段1.采用问题驱动的教学方法,引导学生从实际问题中发现数学问题,运用数学知识解决实际问题。

2.利用多媒体教学手段,展示二次函数在实际生活中的应用实例,增强学生的直观感受。

3.采用小组合作学习的方式,让学生在讨论中思考,培养学生的团队合作能力。

六. 说教学过程1.导入:通过展示一些实际问题,如抛物线形的物体运动、最大利润问题等,引导学生发现这些问题都可以用二次函数来解决,激发学生的学习兴趣。

2.新课导入:介绍二次函数在实际生活中的应用,引导学生理解二次函数的实际意义。

3.实例讲解:通过具体实例,讲解如何将实际问题转化为二次函数模型,并运用二次函数解决实际问题。

4.课堂练习:让学生尝试解决一些实际问题,巩固所学知识。

5.总结提升:引导学生总结二次函数解决实际问题的方法,提高学生的数学应用能力。

北师大版初三下册数学 2.4 二次函数的应用 教案(教学设计)

北师大版初三下册数学 2.4  二次函数的应用 教案(教学设计)

2.4.1 二次函数的应用一、教学目标1.掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.2.学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题.二、课时安排1课时三、教学重点掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.四、教学难点运用二次函数的知识解决实际问题.五、教学过程(一)导入新课引导学生把握二次函数的最值求法:(1)最大值:(2)最小值:(二)讲授新课活动1:小组合作如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上.(1)设矩形的一边AB=xm,那么AD 边的长度如何表示?(2)设矩形的面积为ym 2,当x 取何值时,y 的值最大?最大值是多少?解:()31AD bm,b x 30.4==-+设易得 ()2332(30)3044y xb x x x x ==-+=-+()2320300.4x =--+ 24:20,300.24b ac b x y a a-=-===最大值或用公式当时 活动2:探究归纳先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值.(三)重难点精讲例题:某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m.当x 等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?解:4715.y x x ++π=由 157.4x x y --π=得 2215722()242x x x x S xy x π--ππ=+=+窗户面积 271522x x =-+ 2715225().21456x =--+ 2b 154ac b 225x 1.07,s 4.02.2a 144a 56-=-=≈==≈最大值当时 即当x≈1.07m 时,窗户通过的光线最多.此时窗户的面积为4.02m 2.(四)归纳小结“最大面积” 问题解决的基本思路:1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性.(五)随堂检测1.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是cm2.2.用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2x m.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.3.学校计划用地面砖铺设教学楼前的矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米,图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都是小正方形的边长,阴影部分铺设绿色地面砖,其余部分铺设白色地面砖.(1)要使铺设白色地面砖的面积为5 200平方米,那么矩形广场四角的小正方形的边长为多少米?(2)如图铺设白色地面砖的费用为每平方米30元,铺设绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺设广场地面的总费用最少?最少费用是多少?4.如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B,C重合).连接DE,作EF⊥DE,EF与线段BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式.(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若12y,要使△DEF为等腰三角形,m的值应为多少?m5.如图,东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x ,面积为y .(1)求y 与x 的函数关系式,并求出自变量x 的取值范围.(2)生物园的面积能否达到210平方米?说明理由.【答案】1.12.52. 根据题意可得:等腰三角形的直角边为2x m 矩形的一边长是2xm,其邻边长为((20422x1022x,2-+=-(121022222S x x x x ⎡⎤=•-++⎣⎦所以该金属框围成的面积 30202,.322x ==-+当时金属框围成的图形面积最大 )((()2x 602m ,1022103210210m .=--+⨯-=此时矩形的一边长为另一边长为 )2S 3002002m .=-最大3.解: (1)设矩形广场四角的小正方形的边长为x 米,根据题意得4x 2+(100-2x )(80-2x )=5 200,整理,得x 2-45x +350=0,解得:x 1=35,x 2=10,经检验x 1=35,x 2=10均适合题意,所以,要使铺设白色地面砖的面积为5 200平方米,则矩形广场四角的小正方形的边长为35米或者10米.(2)设铺设矩形广场地面的总费用为y 元,广场四角的小正方形的边长为x 米,则 y =30[4x 2+(100-2x)(80-2x)]+20[2x(100-2x)+2x(80-2x)]即y =80x 2-3 600x +240 000,配方,得y =80(x -22.5)2+199 500.当x =22.5时,y 的值最小,最小值为199 500.所以当矩形广场四角的小正方形的边长为22.5米时,铺设矩形广场地面的总费用最少,最少费用为199 500元.4. ⑴在矩形ABCD 中,∠B=∠C=90°,∴在Rt△BFE 中, ∠1+∠BFE=90°,又∵EF⊥DE, ∴∠1+∠2=90°,∴∠2=∠BFE,∴Rt△BFE∽Rt△CED, ∴BF BE CE CD =, ∴8y x x m-= 即28x x y m -=.⑵当m=8时,28,8x x y -=化成顶点式: ()21428y x =--+ (3)由12y m =,及28x x y m-=得关于x 的方程: 28120x x -+=,得1226x x ==,.∵△DEF 中∠FED 是直角,∴要使△DEF 是等腰三角形,则只能是EF=ED ,此时, Rt△BFE≌Rt△CED.∴当EC=2时,m=CD=BE=6;当EC=6时,m=CD=BE=2.即△DEF为等腰三角形,m的值应为6或2.5. 解:(1)依题意,得y=(40-2x)x.∴y=-2x2+40x.x的取值范围是0< x <20.(2)当y=210时,由(1)可得,-2x2+40x=210.即x2-20x+105=0.∵ a=1,b=-20,c=105,∴2--⨯⨯<(20)411050,∴此方程无实数根,即生物园的面积不能达到210平方米.六.板书设计2.4.1二次函数的应用探究:例题:“最大面积” 问题解决的基本思路:1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性.2.4.2二次函数的应用一、教学目标1.经历探索T恤衫销售过程中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,感受数学的应用价值.2.掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值.二、课时安排1课时三、教学重点运用二次函数的知识求出实际问题的最大值、最小值.四、教学难点运用二次函数的知识求出实际问题的最大值、最小值.五、教学过程(一)导入新课某超市有一种商品,进价为2元,据市场调查,销售单价是13元时,平均每天销售量是50件,而销售价每降低1元,平均每天就可以多售出10件. 若设降价后售价为x元,每天利润为y元,则y与x之间的函数关系是怎样的?(二)讲授新课活动1:小组合作二次函数y=a(x-h)2+k(a 0),顶点坐标为(h,k),则①当a>0时,y有最小值k;②当a<0时,y有最大值k【探究】某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.请你帮助分析,销售单价是多少时,可以获利最多?【解析】设销售单价为x (x≤13.5)元,那么销售量可以表示为: 件;每件T恤衫的利润为: 元;所获总利润可以表示为: 元;即y=-200x 2+3 700x-8 000=-200(x-9.25)2+9 112.5∴当销售单价为 元时,可以获得最大利润,最大利润是 元.活动2:探究归纳先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值.(三)重难点精讲例题2.某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x 元(x 为10的整数倍).(1)设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围.(2)设宾馆一天的利润为w 元,求w 与x 的函数关系式.(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?【解析】(1)y=50-10x ; (2)w=(180+x-20)y=(180+x-20)(50-10x )=2x 34x 8 000.10-++ (3)因为w=2x 34x 8 000,10-++ 所以x=b -2a=170时,w 有最大值,而170>160,故由函数性质知,x=160时,利润最大,此时订房数y=50- 10x =34,此时的利润为10 880元.例题3 某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.(1)现该商场要保证每天盈利1 500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多?【解析】(1)设每千克应涨价x元,列方程,得(5+x)(200-10x)=1 500,解得x1=10,x2=5.因为要顾客得到实惠,5<10,所以x=5. 答:每千克应涨价5元.(2)设商场每天获得的利润为y元,则根据题意,得y=( x +5)(200-10x)= -10x2+150x+1 000,当x=1507.522(10)ba-=-=⨯-时,y有最大值.因此,这种水果每千克涨价7.5元,能使商场获利最多(四)归纳小结“何时获得最大利润” 问题解决的基本思路.1.根据实际问题列出二次函数关系式.2.根据二次函数的最值问题求出最大利润(五)随堂检测1.某广场有一喷水池,水从地面喷出,如图,以水平地面为轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-(x-2)2+4(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米C.2米D.1米2.为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5 000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次性购买100个以上,则购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3 500元/个.乙商家一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1,y2与x之间的函数关系式.(2)若市政府投资140万元,最多能购买多少个太阳能路灯?3.桃河公园要建造圆形喷水池.在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m.由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在距离OA 1m处达到最大高度2.25m.如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外?4.某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似地看作一次函数:(1)设李明每月获得利润为w (元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2 000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2 000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)【答案】1. 【解析】选A. 抛物线的顶点坐标为(2,4),所以水喷出的最大高度是4米.2. 【解析】(1)由题意可知,当x ≤100时,购买一个需5 000元,故y 1=5 000x当x>100时,因为购买个数每增加一个,其价格减少10元但售价不得低于3 500元/个,所以x ≤ 5 000 3 50010025010-+= 即100<x≤250时,购买一个需5 000-10(x-100)元,故y 1=6 000x-10x 2;当x>250时,购买一个需3 500元,故y 1=3 500x;21 5 000x,y 6 000x 10x ,3 500x,⎧⎪=-⎨⎪⎩所以 0x 100100x 250x 250≤≤<≤> 2500080%4000.y x x =⨯=(2) 当0≤x ≤100时,y 1=5 000x ≤500 000<1 400 000;当100<x ≤250时,y 1=6 000x -10x 2=-10(x -300)2+900 000<1 400 000;∴由35001400000x = 得到x=400由40001400000x = 得到350400x =<故选择甲商家,最多能购买400个太阳能路灯3.【解析】建立如图所示的坐标系,根据题意,得,点A(0,1.25),顶点B(1,2.25).设抛物线的表达式为y=a(x-h)2+k,由待定系数法可求得抛物线表达式为:y=-(x-1)2+2.25. 当y=0时,得点C(2.5,0);同理,点D(-2.5,0).根据对称性,那么水池的半径至少要2.5m,才能使喷出的水流不致落到池外.4.解析:(1)由题意,得:w = (x -20)·y=(x -20)·(-10x+500)=-10x 2+700x-10 000 当352b x a=-=时,w 有最大值. 答:当销售单价定为35元时,每月可获得最大利润.(2)由题意,得21070010 000 2 000.x x -+-=解这个方程,得x 1 = 30,x 2 = 40.答:李明想要每月获得2 000元的利润,销售单价应定为30元或40元.(3)∵10a =-<0∴抛物线开口向下.∴当30≤x≤40时,w≥2 000.∵x≤32,∴当30≤x≤32时,w≥2 000. 设成本为P (元),由题意,得P=20(-10x+500)=-200x+10 000, ∵k=-200<0,∴P 随x 的增大而减小.∴当x = 32时,P 最小=3 600.答:想要每月获得的利润不低于2 000元,每月的成本最少需要3 600元.六.板书设计2.4.2二次函数的应用探究:例题2:例题3:“何时获得最大利润” 问题解决的基本思路.1.根据实际问题列出二次函数关系式;2.根据二次函数的最值问题求出最大利润.。

2.4 二次函数的应用 -九年级下册数学教案教案(北师大版)

2.4 二次函数的应用 -九年级下册数学教案教案(北师大版)

2.4 二次函数的应用 - 九年级下册数学教案(北师大版)一、教学目标1.理解二次函数的实际应用场景;2.掌握二次函数的图像特征及其对应的实际含义;3.能够解决与二次函数有关的实际问题。

二、教学重点1.二次函数图像的特征理解;2.实际问题与二次函数的联系。

三、教学难点1.运用二次函数解决实际问题;2.分析实际问题与二次函数图像之间的关系。

四、教学方法1.探究法:通过展示实际生活中的问题,引导学生理解二次函数的应用;2.讲解结合实例:通过教师讲解二次函数的图像特征和实际应用问题,帮助学生全面理解知识点;3.引导学生完成练习:通过练习题的完成,巩固学生对二次函数应用的掌握。

五、教学过程1. 导入(5分钟)教师通过提出一个简单的实际问题,引导学生思考二次函数的应用场景。

例如:某个物体从地面上抛出,其高度与时间的关系是什么样的?学生可以先自由发挥,然后与同桌讨论,最后集体讨论。

2. 概念讲解(15分钟)教师针对二次函数的应用场景,介绍二次函数的基本概念,包括函数的定义、二次函数的一般形式以及二次函数的图像特征。

教师通过绘制函数图像和给出具体实例,帮助学生理解二次函数的图像特征。

3. 实际问题解决(25分钟)教师给出一些实际问题,让学生运用所学的二次函数知识解决。

例如:问题一:小明在一年前购买了一块地,当时的价格是每平方米2000元。

经过一年的发展,该地区的房价每年以4%的比例上涨,请问一年后该地的房价是多少?问题二:某校图书馆每天新增的书籍数量满足二次函数y = 2x^2 + 3x + 5(x表示天数,y表示新增的书籍数量),请问第10天图书馆新增了多少书籍?学生在解决问题的过程中,需要分析问题,确定自变量和因变量,并运用二次函数的相关知识进行解答。

4. 练习与巩固(15分钟)教师让学生独立完成一些练习题,巩固所学知识。

例如:练习题一:已知二次函数图像上的两个点的坐标分别为(1,4)和(2,9),求该二次函数的函数表达式。

北师大版九年级数学下册教案:2.4二次函数的应用

3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对二次函数在实际问题中应用的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。如果有任何疑问或不明白的地方,请随时向我提问。
学生小组讨论的环节,我尽量让自己成为一个引导者和协助者,而不是单纯的讲解者。我发现这样的角色转变能鼓励学生们更积极地思考和表达,但同时也暴露出一些问题:部分学生在分析问题时思路不够清晰,对二次函数的理解还不够深入。这提示我在今后的教学中,需要更多关注学生的思维过程,培养他们的逻辑思维能力。
另外,我也意识到在教学难点和重点的把握上,还要进一步加强。对于二次函数图像的变换、顶点的应用等难点,我应该准备更多的例子和练习,让学生在实践中逐步攻克这些难关。
3.重点难点解析:在讲授过程中,我会特别强调二次函数的图像特点和解题步骤这两个重点。对于难点部分,比如顶点的物理意义和图像变换,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次函数相关的实际问题,如最大高度、最小距离等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如抛小球来观察其运动轨迹,从而直观感受二次函数的性质。
北师大版九年级数学下册教案:2.4二次函数的应用
一、教学内容
北师大版九年级数学下册教案:2.4二次函数的应用
1.二次函数在实际问题中的应用。
2.利用二次函数解决最大(小)值问题,包括距离、面积、利润等。
3.探索二次函数图像与实际问题之间的关系。

2024北师大版数学九年级下册2.4.1《二次函数的应用》教学设计

2024北师大版数学九年级下册2.4.1《二次函数的应用》教学设计一. 教材分析《二次函数的应用》是北师大版数学九年级下册第2章4节的内容,主要介绍了二次函数在实际生活中的应用。

本节课的内容是学生学习了二次函数的图象和性质之后,对二次函数的进一步运用,旨在培养学生解决实际问题的能力。

教材通过实例引导学生了解二次函数在实际生活中的应用,如抛物线形的物体运动、最优化问题等,让学生感受数学与生活的紧密联系。

二. 学情分析九年级的学生已经掌握了二次函数的基本知识,对二次函数的图象和性质有一定的了解。

但在解决实际问题时,部分学生可能会遇到将实际问题转化为数学模型的困难。

因此,在教学过程中,教师需要引导学生将实际问题抽象为二次函数模型,并运用已知的二次函数知识解决问题。

三. 教学目标1.理解二次函数在实际生活中的应用,提高解决实际问题的能力。

2.学会将实际问题转化为二次函数模型,培养数学建模思想。

3.巩固二次函数的图象和性质,提高学生的数学素养。

四. 教学重难点1.重点:二次函数在实际生活中的应用。

2.难点:将实际问题转化为二次函数模型,并运用二次函数知识解决问题。

五. 教学方法采用问题驱动的教学方法,通过实例引导学生了解二次函数在实际生活中的应用,并以小组合作的形式,让学生在探究中掌握二次函数模型的建立和应用。

同时,运用启发式教学法,引导学生主动思考、提问,提高课堂互动性。

六. 教学准备1.准备相关的实例,如抛物线形的物体运动、最优化问题等。

2.准备教学PPT,展示二次函数在实际生活中的应用。

3.准备练习题,巩固学生对二次函数应用的掌握。

七. 教学过程1.导入(5分钟)教师通过抛物线形的物体运动实例,引导学生了解二次函数在实际生活中的应用。

让学生感受数学与生活的紧密联系,激发学生的学习兴趣。

2.呈现(10分钟)教师通过PPT展示其他实际问题,如最优化问题等,让学生尝试将这些问题转化为二次函数模型。

引导学生认识到二次函数在实际问题中的重要性。

北师大版数学九年级下册2.4《二次函数应用》说课稿1

北师大版数学九年级下册2.4《二次函数应用》说课稿1一. 教材分析北师大版数学九年级下册2.4《二次函数应用》这一节的内容,是在学生已经掌握了二次函数的图像和性质的基础上进行授课的。

本节课的主要内容是让学生学会如何运用二次函数解决实际问题,提高学生运用数学知识解决实际问题的能力。

教材通过引入实际问题,引导学生运用二次函数的知识进行解答,培养学生的数学应用意识。

二. 学情分析九年级的学生已经具备了一定的数学基础,对二次函数的概念和性质有了初步的了解。

但是,学生在解决实际问题时,往往不知道如何将实际问题转化为数学问题,运用二次函数进行解答。

因此,在教学过程中,教师需要引导学生将实际问题与数学知识相结合,提高学生的数学应用能力。

三. 说教学目标1.知识与技能目标:让学生掌握二次函数在实际问题中的应用方法,提高学生运用二次函数解决实际问题的能力。

2.过程与方法目标:通过解决实际问题,培养学生将实际问题转化为数学问题,运用二次函数进行解答的能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,提高学生学习数学的积极性。

四. 说教学重难点1.教学重点:让学生掌握二次函数在实际问题中的应用方法。

2.教学难点:如何引导学生将实际问题转化为数学问题,运用二次函数进行解答。

五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生通过解决实际问题,学会运用二次函数进行解答。

2.教学手段:利用多媒体课件,展示实际问题,引导学生进行思考和解答。

六. 说教学过程1.导入新课:通过展示一个实际问题,引发学生的思考,引出本节课的主题。

2.讲解新课:引导学生将实际问题转化为数学问题,运用二次函数进行解答。

在此过程中,教师要注意讲解二次函数在实际问题中的应用方法。

3.巩固新课:通过一些练习题,让学生巩固所学知识,提高运用二次函数解决实际问题的能力。

4.课堂小结:对本节课的内容进行总结,让学生明确二次函数在实际问题中的应用方法。

九年级数学下册《二次函数应用》教案 北师大版

北京九年级数学下册《二次函数应用》教案北师大版课题二次函数的应用;学习目标1、掌握二次函数运用的几种重要题型2、在应用题中,会分析题目,以及题目中的量来解题学习重难点教学重点:将实际问题转化成数学模型教学难点:将所列的等量关系与已学的二次函数结合,将一般式化成顶点式教学方法由典型例题入手,逐渐深入,边讲边练;【相关知识点】一、利润问题总利润=单利 数量单利=售价- 进价例1:某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=-2x+100.(利润=售价-制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?二、面积问题例2:如图,在△ABC中∠B=90º,AB=12cm,BC=24cm,动点P从A开始沿AB边以2cm/s的速度向B运动,动点Q从B开始沿BC边以4cm/s的速度向C运动,如果P、Q分别从A、B同时出发。

(1)写出△PBQ的面积S与运动时间t之间的函数关系式,并写出自变量t的取值范围;(2)当t为何值时,△PBQ的面积S最大,最大值是多少?三、拱桥问题例3:某涵洞是抛物线形,它的截面如图26.2.9所示,现测得水面宽1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?例4:一个涵洞成抛物线形,它的截面如图,现测得,当水面宽AB=1.6 m时,涵洞顶点与水面的距离为2.4 m.这时,离开水面1.5 m处,涵洞宽ED是多少?是否会超过1 m?四、投篮问题例5:某校九年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高920m ,与篮圈中心的水平距离为7m ,当球出手后水平距离为4m 时到达最大高度4m ,设篮球运动的轨迹为抛物线,篮圈距地面3m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年九年级数学下册2.4.1二次函数的应用教案1新版北
师大版
教学目标:
1.经历探究矩形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学知识的应用价值.
2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值.
3. 积极参加数学活动,发展解决问题的能力,体会数学的应用价值,从而增强数学学习信心,体验成功的乐趣.
教学重点与难点:
重点:分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题.
难点:利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学知识的应用价值.
教学过程:
一、创设情境,引出问题
如图,在一个直角三角形的内部作一个长方形ABCD,其中AB
和AD分别在两直角边上.
(1)设长方形的一边AB=x m,那么AD边的长度如何表示?
(2)设长方形的面积为y m2,当x取何值时,y的值最大?最
大值是多少?
处理方式:以问题串的形式引导学生思考,让学生思考并回答以上问题,在集体交流时,对于学生给出的正确答案给予肯定,不足之处给予纠正.
(1)要求AD边的长度,即求BC边的长度,而BC是△EBC中的一边,因此可以用三角
形相似求出BC.由△EBC∽△EAF,得EB BC
EA AF
=即
40
4030
x BC
-
=.所以AD=BC=
3
4
(40-x).
(2)要求面积y的最大值,即求函数y=AB·AD=x·3
4
(40-x)的最大值,就转化为
数学问题了.
要求学生讨论写出步骤.
(1)∵BC ∥AD , ∴△EBC ∽△EAF .∴
EB BC
EA AF
=
. 又AB =x ,BE =40-x , ∴
404030
x BC
-=
.∴BC =34(40-x ). ∴AD =BC =
34(40-x )=30-3
4
x . (2)y =AB ·AD =x (30-34x )=-3
4
x 2+30x =-34
(x 2
-40x +400-400) =-34
(x 2
-40x +400)+300 =-
34
(x -20)2
+300. 当x =20时,y 最大=300.
即当x 取20m 时,y 的值最大,最大值是300m 2

设计意图:通过师生分析交流,让学生经历用含x 的代数式表示矩形的另一边,变三个变量为两个变量,为建立二次函数模型做好铺垫,也让学生体会数形结合时表示线段的重要意义.此问是解决整个实际问题的关键之处,也是难点所在,让学生在充分交流的基础上,回忆起运用三角形相似解决问题. 二、尝试成功,探究创新
活动内容:
如果我们将这个问题再进行变式:
如图,在一个直角三角形的内部作一个矩形ABCD ,其中点A 和点D 分别在两直角边上,BC 在斜边上.
(1)设矩形的一边BC =x m ,那么AB 边的长度如何表示? (2)设矩形的面积为y m 2
,当x 取何值,y 的最大值是多少?
处理方式:以问题串的形式引导学生思考,让学生思考并回
答以上问题,在集体交流时,对于学生给出的正确答案给予肯定,不足之处给予纠正
设计意图:有了前面两题作基础,这个问题可以留给学生课下自己解决,作为练习.解决问题的基本思路一样,只是用到了对应高之比等于相似比,这是此题的难点,本题既加深了旧知的复习应用,又在比较中总结表示线段的多种方法,让学生体会到类比解题,又在同中找异.
40m
30m
D N
O
A
B
C
M
三、例题讲解,学以致用
窗户是一幢建筑最重要的标志之一,我们每个人的家里都有窗户,我们小时候还经常爬在窗户前数星星,下面我们来看一个和窗户有关的问题:
某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m .当x 等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?
处理方式:x 为半圆的半径,也是矩形的较长边,因此x 与半圆面积和矩形面积都有关
系.要求透过窗户的光线最多,也就是求矩形和半圆的面积之和最大,即2xy +2πx 2
最大,而由于4y +4x +3x +πx =7x +4y +πx =15,所以y =1574
x x π--.面积S =12πx 2
+2xy
=12πx 2+2x ·1574x x π--=12πx 2+(157)2
x x x π--=-3.5x 2
+7.5x ,这时已经转化为数学问题即二次函数了,只要化为顶点式或代入顶点坐标公式中即可.
解:∵7x +4y +πx =15, ∴y =
1574
x x
π--.
设窗户的面积是S (m 2
),则
S =1
2πx 2+2xy
=12πx 2
+2x ·1574
x x π-- =12πx 2
+(157)2x x x π-- =-3.5x 2
+7.5x =-3.5(x 2-15
7
x ) =-3.5(x -1514)2+1575392
. ∴当x =
15
14
≈1.07时,
B A
D C G
F H
S 最大=
1575
392
≈4.02. 即当x ≈1.07m 时,S 最大≈4.02m 2
,此时,窗户通过的光线最多.
设计意图:把数学问题变式到实际生活问题,让学生运用数学知识到日常生活中,体会用数学的过程,由矩形面积变式到复合型面积,拓展了思维,以不变应万变,通过本题的训练让学生进一步体会利用二次函数解决最大面积问题的方法、过程.
四、巩固提升 展示自我 活动内容:
1. 用6米长的木料做成“目”字形的框架,设框架的宽为x 米,框架的面积为S 平方米,当x = 米时,S 最大?S 最大 = 平方米.
2.如图,矩形ABCD 中,AB = 3,BC = 1,点E 、F 、G 、H 分别在
AB 、BC 、CD 、DA 上,设EB = BF = GD = DH = x ,则四边形EFGH 的最大面积为 .
3.如图,△ABC 中,BC = 4 cm ,AC = 23cm ,∠C = 60°.在BC 边上有一动点P ,过P 作PD ∥AB 交AC 于点D ,问:点P 在何处时,△APD 的面积最大?最大面积是多少?
处理方式:学先让学生思考,完成练习后,再用课件展示图例,并统计学生答题情况.学生根据答案进行纠错.
设计意图:通过这三道题目对学生的掌握情况进行反馈,发现学生在解决这类问题是存在的不足之处,如果学生感觉到困难,可以进行小组讨论或者教师加以引导点拨.
五、总结概括,整理知识
本节课我们学习了用二次函数知识解决最大面积问题,增强了应用意识,获得了利用数学方法解决实际问题的经验,并进一步感受了数学模型思想和数学的应用价值.
1.请你总结一下解决这类问题的基本思路及要注意的问题. 2.本节课,你最深的感受是什么?
3.在这节课学习过程中,你还有什么疑问没有解决?
处理方式:由学生进行课堂小结,要给学生充足的时间进行思考,得出结论后,再进行集体交流和课件展示.
设计意图:通过复习,让学生学会把知识系统化,加深对知识的理解和掌握,同时,培
B
A P D
C
养学生有条理的进行思考,以形成完整知识结构,培养归纳概括能力和语言表达能力.评价自己的学习表现,有利于学生看到自己的优点和不足,以及今后改正的方向,同时也有助于学习习惯的培养.
六、达标测试,反馈纠正
A 组:1.如图,在矩形ABCD 中,AB=m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与
B ,
C 重合).连接DE ,作EF ⊥DE ,EF 与线段BA 交于点F ,设CE=x ,BF=y . (1)求y 关于x 的函数关系式.
(2)若m =8,求x 为何值时,y 的值最大,最大值是多少?
(3)若 要使△DEF 为等腰三角形,m 的值应为多少?
B 组:2
如图,阴平中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x ,面积为y .
(1)求y 与x 的函数关系式,并求出自变量x 的取值范围. (2)生物园的面积能否达到210平方米?说明理由.
处理方式:学生在学案上做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.
设计意图:分层设练,使学生知识、技能螺旋式的上升,也是一种思维与能力的训练. 七、布置作业,落实目标 课本习题P 47第2题 板书设计:
12y m
第1题
第2题。

相关文档
最新文档