北京理工大学信号与系统实验报告材料2 LTI系统的时域分析报告
北理工信号与系统MATLAB实验

title('x(t)=cos(\pit)[u(t)-u(t-2)]','FontSize',36,'FontName','Vijaya'); xlabel('t(s)','fontsize',24,'FontName','Times New Roman'); set(gca,'FontSize',24,'FontName','Times New Roman'); 运行结果如下:
1
2. 连续时间信号的时域运算 包括两信号的相加(+) 、相乘(*) 、微分、积分,以及移位、反 转和尺度变换(尺度伸缩)等。 MATLAB 中用 diff 函数来计算差分 xk+1-xk,用 quad 函数来计算 定积分,调用格式为: quad('function_name',a,b) 其中,function_name 为被积函数名,a、b 为积分区间。 3. 离散时间信号的 MATLAB 实现 在 MATLAB 中离散时间信号需要使用两个向量来表示。例如对 于如下离散时间信号:
目
录
实验 1 实验 2 实验 3 实验 4 实验 5 实验 6 实验 7
信号的时域描述与运算· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·1 LTI 系统的时域分析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 21 信号的频域分析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 42 LTI 系统的频域分析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 67 连续时间系统的复频域分析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 85 离散时间系统的 Z 域分析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·101 连续时间系统的创建与仿真 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·115
信号与系统实验实验报告材料

实验1 信号的时域描述与运算一、实验目的1. 掌握信号的MA TLAB表示及其可视化方法。
2. 掌握信号基本时域运算的MATLAB实现方法。
3. 利用MATLAB分析常用信号,加深对信号时域特性的理解。
二、实验原理与方法1. 连续时间信号的MA TLAB表示连续时间信号指的是在连续时间范围内有定义的信号,即除了若干个不连续点外,在任何时刻信号都有定义。
在MATLAB中连续时间信号可以用两种方法来表示,即向量表示法和符号对象表示法。
从严格意义上来说,MA TLAB并不能处理连续时间信号,在MA TLAB中连续时间信号是用等时间间隔采样后的采样值来近似表示的,当采样间隔足够小时,这些采样值就可以很好地近似表示出连续时间信号,这种表示方法称为向量表示法。
表示一个连续时间信号需要使用两个向量,其中一个向量用于表示信号的时间范围,另一个向量表示连续时间信号在该时间范围内的采样值。
例如一个正弦信号可以表示如下:>> t=0:0.01:10;>> x=sin(t);利用plot(t,x)命令可以绘制上述信号的时域波形,如图1所示。
如果连续时间信号可以用表达式来描述,则还可以采用符号表达式來表示信号。
例如对于上述正弦信号,可以用符号对象表示如下:>> x=sin(t);>> ezplot(X);利用ezplot(x)命令可以绘制上述信号的时域波形Time(seconds)图1 利用向量表示连续时间信号t图 2 利用符号对象表示连续时间信号sin(t)2.连续时间信号的时域运算对连续时间信号的运算包括两信号相加、相乘、微分、积分,以及位移、反转、尺度变换(尺度伸缩)等。
1)相加和相乘信号相加和相乘指两信号对应时刻的值相加和相乘,对于两个采用向量表示的可以直接使用算术运算的运算符“+”和“*”来计算,此时要求表示两信号的向量时间范围和采样间隔相同。
采用符号对象表示的两个信号,可以直接根据符号对象的运算规则运算。
北京理工大学信号与系统实验报告

北京理工大学信号与系统实验报告本科实验报告实验名称:信号与系统实验实验1 信号的时域描述与运算(基础型实验)一、实验目的1.掌握信号的MATLAB表示及其可视化方法。
2.掌握信号基本时域运算的MATLAB实现方法。
3.利用MATLAB分析常用信号,加深对信号时域特性的理解。
二、实验原理及方法1.连续时间信号的MATLAB表示连续时间信号在连续时间范围内除若干不连续点外在任何时刻都有定义,在MATLAB中的表示法包括向量表示法和符号对象表示法。
1)向量表示法MATLAB从严格意义上来说并不能处理连续时间信号,但可以通过等时间间隔采样后的采样值来近似表示,如果采样间隔足够小,则采样值就可以很好地近似表示出连续时间信号。
这种方法称为向量表示法。
表示一个连续时间信号需要用到两个向量,一个表示时间范围,另一个表示连续时间信号在相对应时间范围内的采样值。
2)符号对象表示法如果连续时间信号可以用表达式来描述,则可以采用符号对象表达法。
例:对于余弦信号,采用两种方式来表示:>> t=0:0.01:10;>> x=sin(t);>> subplot(121)>> plot(t,x)>> title('向量表示法')>> clear>> syms t>> x=sin(t);>> subplot(122)>> ezplot(x)>> title('符号对象表示法')符号对象表示法向量表示法t常用信号产生函数2.连续时间信号的时域运算连续时间信号的运算包括两信号相加、相乘、微分、积分,以及移位、反转、尺度变换等。
1) 相加和相乘信号的相加和相乘指两信号对应时刻值相加或相乘。
两个采用向量表示法的信号可以直接使用‘+’和‘*’进行运算,此时要求二者的向量时间范围以及采样间隔相同。
实验2-LTI系统地时域分析报告

一,实验目的作为根底性实验局部,实验2使我们了解和掌握利用MATLAB对系统进展时域分析的方法,掌握了连续时间系统和离散时间系统下对零状态响应、单位抽样响应的方法,以与求卷积积分和卷积和的方法。
二,实验原理〔1〕连续时间系统时域分析的MATLAB实现。
①连续时间系统的MATLAB表示。
用系统微分方程描述LTI连续系统,然后在matlab中建立模型:b=[b1,b2,……]a=[a1,a2,……]sys=tf(b,a)②连续时间系统的零状态响应。
调用函数lsim(sys,x,t)绘出信号与响应的波形。
③连续时间系统的冲击响应与阶跃响应。
描述系统的单位冲击响应调用impulse函数:impulse(sys)在默认时间X围内绘出系统冲激响应的时域波形。
impulse(sys,T)绘出系统在0~TX围内冲激响应的时域波形。
impulse(sys,ts:tp:te)绘出系统在ts~teX围内,以tp为时间间隔取样的冲击响应波形。
描述系统的单位阶跃响应调用step函数:impulse(sys)impulse(sys,T)impulse(sys,ts:tp:te)〔2〕离散时间系统时域分析的MATLAB实现。
①离散时间系统的MATLAB表示。
用向量b=[b1,b2,……],a=[a1,a2,……]可以表示系统。
②离散时间系统对任意输入的响应。
可以调用函数filter〔b,a,x〕③离散时间系统的单位抽样响应。
可以调用函数impz:impz〔b,a〕在默认时间X围内绘出系统单位抽样响应的时域波形。
impz (b,a,N绘出系统在0~NX围内单位抽样响应的时域波形。
impz(b,a,ns:ne)绘出系统在ns~neX围内的单位抽样响应波形。
〔3〕卷积与卷积积分①离散时间序列的卷积和可以调用函数conv求得两个离散序列的卷积和。
②连续时间信号的卷积积分在取样间隔足够小的情况下,由卷积和近似求得卷积积分。
三,实验内容〔1〕描述模拟低通、高通、带通和带阻滤波器的微分方程如下,试采用MATLAB绘出各系统的单位冲激响应和单位阶跃响应波形。
北京理工大学信号与系统实验报告2-LTI系统的时域分析

实验2 LTI 系统的时域分析(基础型实验)一.实验目的1. 掌握利用MATLAB 对系统进行时域分析的方法。
2. 掌握连续时间系统零状态响应、冲击响应和阶跃响应的求解方法。
3. 掌握求解离散时间系统响应、单位抽样响应的方法。
4.加深对卷积积分和卷积和的理解。
掌握利用计算机进行卷积积分和卷积和计算的方法。
二. 实验原理与方法1. 连续时间系统时域分析的MATLAB 实现1) 连续时间系统的MATLAB 表示LTI 连续系统通常可以由系统微分方程描述,设描述系统的微分方程为:(N)(N 1)(M)(M 1)1010(t)(t)...(t)b (t)b (t)...b (t)N N M M a y a y a y x x x ----++=++则在MATLAB 中可以建立系统模型如下:1010[b ,b ,...,b ];a [a ,a ,...,a ];sys tf(b,a);M M N N b --=== 其中,tf 是用于创建系统模型的函数,向量a 和b 的元素是以微分方程求导的降幂次序来排列的,如果有缺项,应用0补齐,例如由微分方程2''(t)y'(t)3y(t)x(t)y ++=描述的系统可以表示为: >> b=[1]; >> a=[2 1 3]; >> sys=tf(b,a); 而微分方程由''(t)y'(t)y(t)x''(t)x(t)y ++=-描述的系统则要表示成 >> b=[1 0 -1]; >> a=[1 1 1]; >> sys=tf(b,a);2) 连续时间系统的零状态响应零状态响应指系统的初始状态为零,仅由初始信号所引起的响应。
MATLAB 提供了一个用于求解零状态响应的函数lism ,其调用格式如下:lism (sys,x,t )绘出输入信号及响应的波形,x 和t 表示输入信号数值向量及其时间向量。
数字信号处理实验离散时间 LTI 系统的时域分析与 Z 域分析

实验一离散时间LTI系统的时域分析与Z域分析一、实验目的1、掌握用MATLAB求解离散时间系统的零状态响应、单位脉冲响应和单位阶跃响应;2、掌握离散时间系统系统函数零极点的计算方法和零极点图的绘制方法,并能根据零极点图分析系统的稳定性。
二、实验原理1、离散时间系统的时域分析(1)离散时间系统的零状态响应离散时间LTI系统可用线性常系数差分方程来描述,即MATLAB中函数filter可对式(1-1)的差分方程在指定时间范围内的输入序列所产生的响应进行求解。
函数filter的语句格式为:y=filter(b,a,x)其中,x为输入的离散序列;y为输出的离散序列;y的长度与x的长度一样;b与a分别为差分方程右端与左端的系数向量。
(2)离散时间系统的单位脉冲响应系统的单位脉冲响应定义为系统在 (n)激励下系统的零状态响应,用h(n)表示。
MATLAB求解单位脉冲响有两种方法:一种是利用函数filter;另一种是利用函数impz。
impz函数的常用语句格式为impz(b,a,n),其中b和a的定义见filter,n表示脉冲响应输出的序列个数。
(3)离散时间系统的单位阶跃响应系统的单位阶跃响应定义为系统在ε(n)激励下系统的零状态响应。
MATLAB求解单位脉冲响应有两种方法:一种是利用函数filter,另一种是利用函数stepz。
stepz函数的常用语句格式为stepz(b,a,N)其中,b和a的定义见filter,N表示脉冲响应输出的序列个数。
2、离散时间系统的Z域分析(1)系统函数的零极点分析离散时间系统的系统函数定义为系统零状态响应的z变换与激励的z变换之比,即如果系统函数H(z)的有理函数表示式为那么,在MATLAB中系统函数的零极点就可通过函数roots得到,也可借助函数tf2zp得到。
roots的语法格式为:Z=roots(b)%计算零点b=[b1b2…bmbm+1]P=roots(a)%计算极点a=[a1a2…anan+1]tf2zp的语句格式为[Z,P,K]=tf2zp(b,a)其中,b与a分别表示H(z)的分子与分母多项式的系数向量。
北京理工大学信号与系统实验实验报告
北京理工大学信号与系统实验实验报告信号与系统实验报告姓名:肖枫学号:1120111431班号:05611102专业:信息对抗技术学院:信息与电子学院12实验1 信号的时域描述与运算一、实验目的1. 掌握信号的MATLAB表示及其可视化方法。
2. 掌握信号基本时域运算的MATLAB实现方法。
3. 利用MATLAB分析常用信号,加深对信号时域特性的理解。
二、实验原理与方法1. 连续时间信号的MATLAB表示连续时间信号指的是在连续时间范围内有定义的信号,即除了若干个不连续点外,在任何时刻信号都有定义。
在MATLAB中连续时间信号可以用两种方法来表示,即向量表示法和符号对象表示法。
从严格意义上来说,MATLAB并不能处理连续时间信号,在MATLAB中连续时间信号是用等时间间隔采样后的采样值来近似表示的,当采样间隔足够小时,这些采样值就可以很好地近似表示出连续时间信号,这种表示方法称为向量表示法。
表示一个连续时间信号需要使用两个向量,其中一个向量用于表示信号的时间范围,另一个向量表示连续时间信号在该时间范围内的采样值。
例如一个正弦信号可以表示如下:>> t=0:0.01:10;>> x=sin(t);利用plot(t,x)命令可以绘制上述信号的时域波形,如图1所示。
如果连续时间信号可以用表达式来描述,则还可以采用符号表达式來表示信号。
例如对于上述正弦信号,可以用符号对象表示如下:>> x=sin(t);>> ezplot(X);利用ezplot(x)命令可以绘制上述信号的时域波形10.80.60.40.2-0.2-0.4-0.6-0.8-1012345678910Time(seconds)图1 利用向量表示连续时间信号3sin(t)10.5-0.5-1-6-4-20246t图 2 利用符号对象表示连续时间信号常用的信号产生函数函数名功能函数名功能 heaviside 单位阶跃函数 rectpuls 门函数 sin 正弦函数 tripuls 三角脉冲函数 cos 余弦函数 square 周期方波 sinc sinc函数 sawtooth 周期锯齿波或三角波 exp 指数函数2.连续时间信号的时域运算对连续时间信号的运算包括两信号相加、相乘、微分、积分,以及位移、反转、尺度变换(尺度伸缩)等。
信号与系统实验报告实验三 连续时间LTI系统的频域分析
实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法与特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习与掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MA TLAB 语言进行系统频响特性分析的方法。
基本要求:掌握LTI 连续与离散时间系统的频域数学模型与频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波与滤波器的概念,掌握利用MATLAB 计算与绘制LTI 系统频率响应特性曲线中的编程。
二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response),就是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况与响应的相位随频率的变化情况两个方面。
上图中x(t)、y(t)分别为系统的时域激励信号与响应信号,h(t)就是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3、1或者: )()()(ωωωj X j Y j H =3、2)(ωj H 为系统的频域数学模型,它实际上就就是系统的单位冲激响应h(t)的傅里叶变换。
即⎰∞∞--=dt e t h j H tj ωω)()( 3、3由于H(j ω)实际上就是系统单位冲激响应h(t)的傅里叶变换,如果h(t)就是收敛的,或者说就是绝对可积(Absolutly integrabel)的话,那么H(j ω)一定存在,而且H(j ω)通常就是复数,因此,也可以表示成复数的不同表达形式。
在研究系统的频率响应时,更多的就是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3、4上式中,)j (ωH 称为幅度频率相应(Magnitude response),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。
实验二-LTI系统时域分析(guo)
实验二——LTI 系统的时域分析实验性质:提高性 实验级别:必做开课单位:机械电子工程学院 学 时:2一、实验目的1、深刻理解卷积运算,利用离散卷积实现连续卷积运算;2、深刻理解信号与系统的关系,学习MA TLAB 语言实现信号通过系统的仿真方法。
二、实验设备计算机,MATLAB 软件三、实验原理1、 离散卷积和:调用函数:conv ()∑∞-∞=-==i i k f i f f f conv S )()(1)2,1(为离散卷积和, 其中,f1(k), f2 (k) 为离散序列,K=…-2, -1, 0 , 1, 2, …。
但是,conv 函数只给出纵轴的序列值的大小,而不能给出卷积的X 轴序号。
为得到该值,进行以下分析:对任意输入:设)(1k f 非零区间n1~n2,长度L1=n2-n1+1;)(2k f 非零区间m1~m2,长度L2=m2-m1+1。
则:)(*)()(21k f k f k s =非零区间从n1+m1开始,长度为L=L1+L2-1,所以S (K )的非零区间为:n1+m1~ n1+m1+L-1。
2、 连续卷积和离散卷积的关系:计算机本身不能直接处理连续信号,只能由离散信号进行近似:设一系统(LTI )输入为)(t P ∆,输出为)(t h ∆,如图所示。
)t)()(t h t P ∆∆→)()(lim )(lim )(00t h t h t P t =→=∆→∆∆→∆δ 若输入为f(t):∆∆-∆=≈∑∞-∞=∆∆)()()()(k t P k f t f t f k 得输出: ∆∆-∆=∑∞-∞=∆∆)()()(k t h k f t y k当0→∆时:⎰∑∞∞-∞-∞=∆→∆∆→∆-=∆∆-∆==ττδτd t f k t P k f t f t f k )()()()(lim )(lim )(00⎰∑∞∞-∞-∞=∆→∆∆→∆-=∆∆-∆==τττd t h f k t h k f t y t y k )()()()(lim )(lim )(00所以:∆∆-∆=-==∑⎰→∆)()(lim )()()(*)()(2102121k t f k f d t f f t f t f t s τττ 如果只求离散点上的f 值)(n f ∆])[()()()()(2121∑∑∞-∞=∞-∞=∆-∆∆=∆∆-∆∆=∆k k k n f k f k n f k f n f所以,可以用离散卷积和CONV ()求连续卷积,只需∆足够小以及在卷积和的基础上乘以∆。
信号与系统实验报告实验三 连续时间LTI系统的频域分析
实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法与特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习与掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MA TLAB 语言进行系统频响特性分析的方法。
基本要求:掌握LTI 连续与离散时间系统的频域数学模型与频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波与滤波器的概念,掌握利用MATLAB 计算与绘制LTI 系统频率响应特性曲线中的编程。
二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response),就是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况与响应的相位随频率的变化情况两个方面。
上图中x(t)、y(t)分别为系统的时域激励信号与响应信号,h(t)就是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3、1或者: )()()(ωωωj X j Y j H =3、2)(ωj H 为系统的频域数学模型,它实际上就就是系统的单位冲激响应h(t)的傅里叶变换。
即⎰∞∞--=dt e t h j H tj ωω)()( 3、3由于H(j ω)实际上就是系统单位冲激响应h(t)的傅里叶变换,如果h(t)就是收敛的,或者说就是绝对可积(Absolutly integrabel)的话,那么H(j ω)一定存在,而且H(j ω)通常就是复数,因此,也可以表示成复数的不同表达形式。
在研究系统的频率响应时,更多的就是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3、4上式中,)j (ωH 称为幅度频率相应(Magnitude response),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验2 LTI 系统的时域分析(基础型实验)一.实验目的1. 掌握利用MATLAB 对系统进行时域分析的方法。
2. 掌握连续时间系统零状态响应、冲击响应和阶跃响应的求解方法。
3. 掌握求解离散时间系统响应、单位抽样响应的方法。
4. 加深对卷积积分和卷积和的理解。
掌握利用计算机进行卷积积分和卷积和计算的方法。
二.实验原理与方法1. 连续时间系统时域分析的MATLAB 实现1) 连续时间系统的MATLAB 表示LTI 连续系统通常可以由系统微分方程描述,设描述系统的微分方程为:(N)(N 1)(M)(M 1)1010(t)(t)...(t)b (t)b (t)...b (t)N N M M a y a y a y x x x ----++=++则在MATLAB 中可以建立系统模型如下:1010[b ,b ,...,b ];a [a ,a ,...,a ];sys tf(b,a);M M N N b --=== 其中,tf 是用于创建系统模型的函数,向量a 和b 的元素是以微分方程求导的降幂次序来排列的,如果有缺项,应用0补齐,例如由微分方程2''(t)y'(t)3y(t)x(t)y ++=描述的系统可以表示为: >> b=[1]; >> a=[2 1 3];>> sys=tf(b,a);而微分方程由y++=-''(t)y'(t)y(t)x''(t)x(t)描述的系统则要表示成>> b=[1 0 -1];>> a=[1 1 1];>> sys=tf(b,a);2)连续时间系统的零状态响应零状态响应指系统的初始状态为零,仅由初始信号所引起的响应。
MATLAB提供了一个用于求解零状态响应的函数lism,其调用格式如下:lism(sys,x,t)绘出输入信号及响应的波形,x和t表示输入信号数值向量及其时间向量。
y= lism(sys,x,t)这种调用格式不绘出波形,而是返回响应的数值向量。
3)连续时间系统的冲激响应与阶跃响应MATLAB提供了函数impulse来求指定时间围,由模型sys描述的连续时间系统的单位冲激响应impulse函数基本调用格式如下:impulse(sys)在默认时间围绘出系统冲激响应impulse(sys,T)绘出系统在0-T围冲激响应的时域波形。
Impulse(sys,ts:tp:te)绘出系统在ts-te围以tp为时间间隔取样的冲激响应波形。
[y,t]=impulse(...)该调用格式不绘出冲激响应波形,而是返回冲激响应的数值向量及其对应的时间向量。
求解单位阶跃响应用到函数step ,几种调用格式如下: step(sys) step(sys,T) step(sys,ts:tp:te) [y,t]=step(...)2. 离散时间系统时域分析的MATLAB 实现1) 离散时间系统的MATLAB 表示LTI 离散系统通常可以由系统差分方程描述,设描述系统的差分方程为:0101(n)(n 1)...(n M)b (n)b (n 1)...b (n N)N M a y a y a y x x x +-++-=+-++-则在MATLAB 里,我们可以用如下两个向量来表示这个系统:0101[,,...,];[,,...,];M N b b b b a a a a ==2) 离散时间系统对任意输入的响应MATLAB 提供了求LTI 离散系统响应的专用函数filter ,该函数用于求取由差分方程所描述的离散时间系统在指定时间围对输入序列所产生的响应,该函数的基本调用格式为 y=filter(b,a,x)其中x 为输入序列,y 为输出序列,输出序列y 对应的时间区间与x 对应的时间区间相同。
3) 离散时间系统的单位抽样响应MATLAB 提供了函数impz 来求指定时间围,由向量b 和a 描述的离散时间系统的单位抽样响应,具体调用格式如下:impz(b,a)在默认的时间围绘出系统抽样响应的时域波形。
impz(b,a,N)绘出系统在0~N 围单位抽样响应的时域波形。
impz(b,a,ns:ne)绘出系统在ns~ne 围的单位抽样响应波形。
[y,t]=impz(...)该调用格式不绘出单位抽样响应波形,而是返回单位抽样响应的数值向量及其对应的时间向量。
3. 卷积和与卷积积分1) 离散时间序列的卷积和卷积和是离散系统时域分析的基本方法之一,离散时间序列1(n)x 和2(n)x 的卷积和(n)x 定义如下:1212(n)(n)*(n)(k)(n k)k x x x x x +∞=-∞==-∑对已离散LTI 系统,设其输入信号为(n)x ,单位抽样响应为h(n),则其零状态响应(n)y 为(n)(n)*h(n)y x =即离散LTI 系统的零状态响应可以表示成输入信号x(n)和单位抽样响应h(n)的卷积。
MATLAB 中conv 函数可以用来求两个离散序列的卷积和,调用格式为conv(x1,x2)。
例如: >> x1=ones(1,3); >> x2=[1 2 3 4]; >> x=conv(x1,x2) x =1 3 6 9 7 4此例中x1、x2、x 中都没有时间信息,实际上要考察的信号中还需要知道各时刻对应的时间序列,所以还需要根据序列x1、x2对应的时间序列确定卷积结果x 对应的时间序列。
设x1、x2为两个在有限时间区间非零的离散时间序列,即序列x1在区间n1~n2非零,序列x2在区间m1~m2非零,则序列x1的时域宽度为L1=n2-n1+1,序列x2的时域宽度为L2=m2-m1+1。
由卷积和的定义可知,卷积和序列序列x 的时域宽度为L=L1+L2-1,且只在区间(n1+m1)~(n1+m1)+(L1+L2-2)非零。
2) 连续时间信号的卷积积分对连续LTI 系统,输入x(t),单位冲击响应为h(t),零状态响应y(t),则有(t)(t)*h(t)y x =利用MATLAB 可以采用数值计算的方法近似计算卷积积分,卷积积分可以用求和运算来实现121212(t)(t)*(t)()(t )d lim (k )(t k )k x x x x x x x τττ+∞+∞∆→=-∞-∞==-=∆-∆⋅∆∑⎰现在考虑只求t n =∆时(t)x 的值(n )x ∆,则由上式可得12(n )(k )((n k))k x x x +∞=-∞∆=∆⋅∆-∆∑当∆足够小,(n )x ∆就是()x t 的数值近似。
可以利用计算离散序列卷积和的conv 来计算卷积积分,具体步骤如下:1) 将连续时间信号1()x t 和2()x t 以时间间隔∆进行取样,得到离散序列1(n )x ∆和2(n )x ∆;2) 构造离散序列1(t)x 和2(t)x 对应的时间向量1t 和2t ;3) 调用该函数conv 计算卷积积分在t n =∆时的近似采样值(n )x ∆;4) 构造离散序列(n )x ∆对应的时间向量n.。
三.实验容(1)已知描述模拟低通、高通、带通和带阻滤波器的微分方程如下,试采用MATLAB 绘制出各系统的单位冲激响应和单位阶跃响应的波形。
1) ''(t)'(t)y(t)x(t)y ++= >> b=[0 0 1]; >> a=[1 sqrt(2) 1] >> sys=tf(b,a); >> subplot(121)>> impulse(sys) >> subplot(122) >> step(sys)Impulse ResponseTime (seconds)A m p l i t u deStep ResponseTime (seconds)A m p l i t u d e2). ''(t)'(t)y(t)x''(t)y += >> b=[2 0 0]; >> a=[1 sqrt(2) 1]; >> sys=tf(b,a); >> subplot(121)>> impulse(sys) >> subplot(122) >>step(sys)Impulse ResponseTime (seconds)A m p l i t u d eStep ResponseTime (seconds)A m p l i t u d e3) ''(t)'(t)y(t)x'(t)y y ++= >> b=[0 1 0]; >> a=[1 1 1]; >> sys=tf(b,a); >> subplot(121)>> impulse(sys) >> subplot(122) >> step(sys)Time (seconds)A m p l i t u d eTime (seconds)A m p l i t u d e4) ''(t)'(t)y(t)x''(t)x(t)y y ++=+ >> b=[1 1 0]; >> a=[1 1 1]; >> sys=tf(b,a); >> subplot(121)>> impulse(sys) >> subplot(122) >> step(sys)Time (seconds)A m p l i t u deTime (seconds)A m p l i t u d e(2)已知某系统可以由如下微分方程描述''(t)'(t)6y(t)x(t)y y ++= 1)利用MATLAB 绘制出该系统冲激响应和阶跃响应的时域波形。
>> b=[0 0 1]; >> a=[1 1 6]; >> sys=tf(b,a); >> subplot(121)>> impulse(sys) >> subplot(122) >> step(sys)Impulse ResponseTime (seconds)A m p l i t u d eStep ResponseTime (seconds)A m p l i t u d e2)根据冲激响应的时域波分析系统的稳定性。