小学六年级奥数试题(通用7篇)
小学六年级奥数题认识简单数列、上楼梯问题、平均数问题

小学六年级奥数题认识简单数列、上楼梯问题、平均数问题1.小学六年级奥数题认识简单数列篇一1、如果把1到999这些自然数按照从小到大的顺序排成一排,这样就组成了一个多位数:12345678910111213……996997998999。
那么在这个多位数里,从左到右的第2000个数字是多少?2、标有A,B,C,D,E,F,G记号的7盏灯顺次排成一行,每盏灯各安装着一个开关。
现在A,C,D,G这4盏灯亮着,其余3盏灯是灭的。
小方先拉一下A开关,然后拉B,C,……,直到G的开关各一次,接下去再按从A到G顺序拉动开关,并依此循环下去。
他这样拉动了1990次后,亮着的灯是哪几盏?3、在1,2两数之间,第一次写上3;第二次在1,3之间和3,2之间分别写上4,5,得到14352。
以后每一次都在已写上的两个相邻数之间,再写上这两个相邻数之和。
这样的过程共重复了8次,那么所有数的和是多少?4、有一列数:1,1989,1988,1,1987,……。
从第三个数起,每一个数都是它前面两个数中大数减小数的差。
那么第1989个数是多少?5、在1,9,8,9后面顺次写出一串数字,使得每个数字都等于它前面两个数之和的个位数字,即得到1,9,8,9,7,6,3,9,2,1,3,4…那么这个数串的前398个数字的和是多少?2.小学六年级奥数题上楼梯问题篇二1、有一幢楼房高17层,相邻两层之间都有17级台阶,某人从1层走到11层,一共要登多少级台阶?解:从1层走到11层共走:11-1=10(个)从1层走到11层一共要走:17×10=170(级)答:从1层走到11层,一共要登170级台阶。
2、从1楼走到4楼共要走48级台阶,如果每上一层楼的台阶数都相同,那么从1楼到6楼共要走多少级台阶?解:每一层楼梯的台阶数为:48÷(4-1)=16(级)从1楼到6楼共走:6-1=5(个)楼梯从1楼到6楼共走:16×5=80(级)台阶答:从1楼到6楼共走80级台阶。
六年级奥数思维训练10题及答案

六年级奥数思维训练10题及答案1.六年级奥数思维训练10题及答案篇一1、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?解题思路:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。
即可求甲比乙每小时快多少千米。
答题:解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。
2、李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?解题思路:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
答题:解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。
2.六年级奥数思维训练10题及答案篇二1、已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?解题思路:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
答题:解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
2、3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?解题思路:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
答题:解:45+5×3=45+15=60(千克)答:3箱梨重60千克。
3.六年级奥数思维训练10题及答案篇三1、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
小学六年级奥数题及解答(五篇)

【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是整理的《⼩学六年级奥数题及解答(五篇)》相关资料,希望帮助到您。
⼩学六年级奥数题及解答篇⼀ 3箱苹果重45千克.⼀箱梨⽐⼀箱苹果多5千克,3箱梨重多少千克? 考点:整数、⼩数复合应⽤题。
专题:简单应⽤题和⼀般复合应⽤题。
分析:可先求出3箱梨⽐3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量.据此解答 解答:解:45+5×3 =45+15 =60(千克) 答:3箱梨重60千克。
点评:本题的关键是先求出3箱梨⽐3箱苹果多的重量,然后再根据加法的意义求出3箱梨的重量。
⼩学六年级奥数题及解答篇⼆ 题⽬: ⼀块牧场长满了草,每天均匀⽣长。
这块牧场的草可供10头⽜吃40天,供15头⽜吃20天。
可供25头⽜吃多少天? 答案与解析: 假设1头⽜1天吃草的量为1份 (1)每天新⽣的草量为:(10×40-15×20)÷(40-20)=5(份); (2)原来的草量为:10×40-40×5=200(份); (3)安排5头⽜专门吃每天新长出来的草,这块牧场可供25头⽜吃:200÷(25-5)=10(天)。
⼩学六年级奥数题及解答篇三 我⼈民解放军追击⼀股逃窜的敌⼈,敌⼈在下午16点开始从甲地以每⼩时10千⽶的速度逃跑,解放军在晚上22点接到命令,以每⼩时30千⽶的速度开始从⼄地追击。
已知甲⼄两地相距60千⽶,问解放军⼏个⼩时可以追上敌⼈? 解答案与解析:是[10×(22-6)]千⽶,甲⼄两地相距60千⽶。
由此推知 追及时间=[10×(22-6)+60]÷(30-10)=220÷20=11(⼩时) 答:解放军在11⼩时后可以追上敌⼈。
六年级下册数学试题-奥数专题:完全平方数(基础篇) 全国通用

完全平方数(磨刀篇)
例1
(★★)
开学初,老师给学生们买了一些练习本做作业.练习本的数量恰好是一个完全平方数.老师让秀情给每人发5本,秀情发完之后发现多了3本.老师说:“你肯定发错了!”你知道为什么吗?
例2
(★★★)
下面是一个算式:1+1×2+1×2×3+1×2×3×4+1×2×3×4×5+1×2×3×4×5×6.这个算式的得数能否是某个数的平方?
例3
(★★★)
我们定义:个位数字是0,1,4,5,6,9,且不是完全平方数的自然数为“伪平方数”.那么在两位数中,偶数和伪平方数哪个多?
(★★★★★) 2222212320092010+++
++除以4的余数是____.
(★★★★)
观察这一组数:1,11,111,1111,11111,…,其中1是完全平方数.除了1以外,你还能找到其它完全平方数吗?如果能,请给出一个;如果不能,请说明理由.
例4
例5。
小学六年级奥数试题三篇六年级奥数题大全

小学六年级奥数试题三篇六年级奥数题大全 1.(鸡兔同笼问题)小丽买回0.8元一本和0.4元一本的练习本共50本,付出人民币32元。0.8元一本的练习本有多少本
2.(年龄问题)5年前父亲的年龄是儿子的7倍。15年后父亲的年龄是儿子的二倍,父亲和儿子今年各是多少岁
3.(盈亏问题)王老师发笔记本给学生们,每人6本则剩下41本,每人8本则差29本。求有多少个学生有多少个笔记本
4.(还原问题)便民水果店卖芒果,第一次卖掉总数的一半多2个,第二次卖掉剩下的一半多1个,第三次卖掉第二次卖后剩下的一半少1个,这时只剩下11个芒果。求水果店里原来一共有多少个芒果
5.(置换问题)学校买回6张桌子和6把椅子共用去192元。已知3张桌子的价钱和5把椅子的价钱相等,每张桌子和每把椅子各是多少元
6.(安排)烤面包的架子上一次最多只能烤两个面包,烤一个面包每面需要2分钟,那么烤三个面包最少需要多少分钟
7.(油和桶问题)一桶油连桶共重18千克,用去油的一半后,连桶还重9.75千克,原有油多少千克桶重多少千克
8.(和倍)青青农场一共养鸡、鸭、鹅共12100只,鸭的只数是鸡的2倍,鹅的只数是鸭的4倍,问鸡、鸭、鹅各有多少只
9.(鸡兔同笼)实验举行数学竞赛,每做对一题得9分,做错一题倒扣3分,共有12道题,小旺得了84分,小旺做错了几道题
10.(相遇问题)甲、乙两人同时从相距2000米的两地相向而行,甲每分钟行55米,乙每分钟行45米,如果一只狗与甲同时同向而行,每分钟行120米,遇到乙后,立即回头向甲跑去,遇到甲再向乙跑去。这样不断来回,直到甲和乙相遇为止,狗共行了多少米
1.(归一问题)工程队计划用60人5天修好一条长00米的公路,实际上增加了20人,每人每天比计划多修了4米,实际修完这条路少用了几天
2.(相遇问题)甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。两车距中点40千米处相遇。东西两地相距多少千米
小学六年级奥数应用题及答案五篇

【导语】奥数题中常常出现⼀些数量关系⾮常特殊的题⽬,⽤普通的⽅法很难列式解答,有时根本列不出相应的算式来。
我们可以⽤枚举法,根据题⽬的要求,⼀⼀列举基本符合要求的数据,然后从中挑选出符合要求的答案。
以下是整理的《⼩学六年级奥数应⽤题及答案五篇》相关资料,希望帮助到您。
1.⼩学六年级奥数应⽤题及答案 1、A、B是⼀圈形道路的⼀条直径的两个端点,现有甲、⼄两⼈分别从、两点同时沿相反⽅向绕道匀速跑步(甲、⼄两⼈的速度未必相同),假设当⼄跑完100⽶时,甲、⼄两⼈第⼀次相遇,当甲差60⽶跑完⼀圈时,甲、⼄两⼈第⼆次相遇,那么当甲、⼄两⼈第⼗⼆次相遇时,甲跑完⼏圈⼜⼏⽶? 解答: 【分析】甲、⼄第⼀次相遇时共跑圈,⼄跑了100⽶;第⼆次相遇时,甲、⼄共跑1.5圈,则⼄跑了100×3=300⽶,此时甲差60⽶跑⼀圈,则可得0.5圈是300-60=240⽶,所以⼀圈是480⽶。
第⼀次相遇时甲跑了240-100=140⽶,以后每次相遇甲⼜多跑140×2=280⽶,所以第⼗⼆次相遇时甲共跑了140+280×11=3220⽶,即跑了6圈340⽶。
2、原来将⼀批⽔果按100%的利润定价出售,由于价格过⾼,⽆⼈购买,不得不按38%的利润重新定价,这样出售了其中的40%,此时因害怕剩余⽔果会变质,不得不再次降价,售出了全部⽔果。
结果实际获得的总利润是原来利润的30.2%,那么第⼆次降价后的价格是原来定价的百分之⼏? 答案与解析: 8%×40%+x%×(1-40%)=30.2% X%=25% (1+25%)÷(1+100%)=62.5% ⼆次降价后的价格是原来定价的百分之⼏,则需要求出第⼆次是按百分之⼏的利润定价。
设第⼆次降价是按x%的利润定价的。
2.⼩学六年级奥数应⽤题及答案 1、⼩明每天早晨6:50从家出发,7:20到校,⽼师要求他明天提早6分钟到校。
如果⼩明明天早晨还是6:50从家出发,那么,每分钟必须⽐往常多⾛25⽶才能按⽼师的要求准时到校。
六年级数学分数奥数题(附答案)

把甲乙丙三根木棒插入水池中,三根木棒的长度和为360厘米,甲有3/4在水外,乙有4/7在水外,丙有2/5在水外。
水有多深?设水深xcm则甲长4x,乙长7x/3,丙长5x/34x+7x/3+5x/3=360x=45水有45cm深小刚有假设干本书,小华借走一半加一本,剩下的书小明借走一半加两本,再剩下的书小峰借走一半加三本,最后小刚还剩下两本书,那么小刚原有还剩下两本书,那么小刚原有多少本书?考点:逆推问题.分析:此题需要从问题出发,一步步向前推,小刚剩的2本书加上3本就是小明借走后的一半,那么就可以求出小明借走后的数量,同理可以求出小华借走后的数量,进而可求小明原有的数量.解答:解:小峰未借前有书:(2+3)÷(1-1/2 )=10〔本〕,小明未借之前有:(10+2)÷(1-1/2 )=24〔本〕,小刚原有书:(24+1)÷(1-1/2 )=50〔本〕.答:小明原有书50本.故答案为:50.甲数比乙数多1/3,乙数比甲数少几分之几?乙数是单位“1〞,甲数是:1+1/3=4/3乙数比甲数少:1/3÷4/3=1/4有梨和苹果假设干个,梨的个数是全体的5/3少17个,苹果的个数是全体的7/4少31个,那么梨和苹果的个数共多少?解:设总数有35X个那么梨有35X*3/5-17=21X-17个苹果有35X*4/7-31=20X-31个20X-31+21X-17=35X41X-48=35X6X=48X=8所以梨有21×6-17=109个苹果有20×6-31=89个有一个分数,它的分母比分子多4,如果把分子、分母都加上9,得到的分数约分后是9分之7,这个分数是多少?设分子为X,分母为X+4,则;〔X+9〕/〔X+13〕=7/9;解之,得X=5答:该分子为5/9把一根绳分别折成5股和6股,5股比6股长20厘米,这根绳子长多少米?这根绳子长20÷〔1/5-1/6)=600cm小萍今年的年龄是妈妈的1/3,两年前母女的年龄相差24岁。
小学六年级暑假奥数题

小学六年级暑假奥数题奥数题中常常出现一些数量关系非常特殊的题目,用普通的方法很难列式解答,有时根本列不出相应的算式来。
我们可以用枚举法,根据题目的要求,一一列举基本符合要求的数据,然后从中挑选出符合要求的答案。
以下是整理的《小学六年级暑假奥数题》相关资料,希望帮助到您。
1.小学六年级暑假奥数题1、书架分上、中、下三层,一共分放192本书。
现在从上层取出与中层同样多的书放到中层,再从中层取出与下层同样多的书放到下层,最后从下层取出与上层剩下的本数同样多的书放到上层,这时三层所放的书本数相同。
试问:这个书架的上、中、下层原来各有书多少本?2、有铅笔若干支,分给甲、乙、丙三个学生。
甲得最多,乙得较少,丙得最少。
后重新分配。
第一次分配,甲分给乙、丙,各给乙、丙所有数多4支,结果乙得最多;第二次分配,乙给甲、丙,各给甲、丙所有数多4支,结果丙得最多;第三次分配,丙给甲、乙,各给甲、乙所有数多4支。
经三次重新分配后,甲、乙、丙三个学生各得铅笔44支。
最初甲、乙、丙三个学生各得铅笔多少支?3、将八个数从左到右排成一行,从第三个数开始,每个数1/ 5都恰好等于前两个数之和。
如果第7个数和第8个数分别是81,131,那么第一个数是多少?4、一个数减去2487,小明在计算时错把被减数百位和十位上的数交换了,结果得8439,正确的结果是多少?5、一群猴子分一堆桃子,第一个猴子取走了一半零一个,第二个猴子取走剩下的一半零一个,……直到第七个猴子按上述方式取完后恰好取尽。
这堆桃子一共有多少个?6、一个数的4倍,加上2减去10,乘以2得44。
求这个数。
7、某数加上7,乘以7,再减去7,除以7商7。
求某数。
8、小明问妈妈:“奶奶今年多少岁?”妈妈想了想对小明说:“把奶奶的年龄加上17用4除,再减去15后用10乘,恰巧是100岁。
”请你帮小明算一算奶奶今年多少岁?9、爸爸买来一些橘子,全家人第一天吃了这些橘子的一半多1个,第二天吃了剩下的一半多1个,第三天又吃掉了剩下的一半多1个,还剩下1个,问爸爸买了多少个橘子?10、甲、乙、丙三艘船共运货9400箱,甲船比乙船多运300箱,丙船比乙船少运200箱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级奥数试题
小学六年级奥数试题(通用7篇)
六年级既是我们学习的冲刺阶段,又是我们为升学打基础的关键时期,所以同学们一定要抓住每一次练习的机会,给自己增强实力。
下面是小编为大家整理的小学六年级奥数试题三篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
小学六年级奥数试题篇1
1、(鸡兔同笼问题)小丽买回0.8元一本和0.4元一本的练习本共50本,付出人民币32元。
0.8元一本的练习本有多少本?
2、(年龄问题)5年前父亲的年龄是儿子的7倍。
15年后父亲的年龄是儿子的二倍,父亲和儿子今年各是多少岁?
3、(盈亏问题)王老师发笔记本给学生们,每人6本则剩下41本,每人8本则差29本。
求有多少个学生?有多少个笔记本?
4、(还原问题)便民水果店卖芒果,第一次卖掉总数的一半多2个,第二次卖掉剩下的一半多1个,第三次卖掉第二次卖后剩下的一半少1个,这时只剩下11个芒果。
求水果店里原来一共有多少个芒果?
5、(置换问题)学校买回6张桌子和6把椅子共用去192元。
已知3张桌子的价钱和5把椅子的价钱相等,每张桌子和每把椅子各是多少元?
6、(安排)烤面包的架子上一次最多只能烤两个面包,烤一个面包每面需要2分钟,那么烤三个面包最少需要多少分钟?
7、(油和桶问题)一桶油连桶共重18千克,用去油的一半后,连桶还重9.75千克,原有油多少千克?桶重多少千克?
8、(和倍)青青农场一共养鸡、鸭、鹅共12100只,鸭的只数是鸡的2倍,鹅的只数是鸭的4倍,问鸡、鸭、鹅各有多少只?
9、(鸡兔同笼)实验小学举行数学竞赛,每做对一题得9分,做错一题倒扣3分,共有12道题,小旺得了84分,小旺做错了几道题?
10、(相遇问题)甲、乙两人同时从相距20xx米的两地相向而行,甲每分钟行55米,乙每分钟行45米,如果一只狗与甲同时同向而行,
每分钟行120米,遇到乙后,立即回头向甲跑去,遇到甲再向乙跑去。
这样不断来回,直到甲和乙相遇为止,狗共行了多少米?
小学六年级奥数试题篇2
1、一个整数乘以13后,乘积的最后三位数是123,那么这样的整数中最小的是多少?
2、将37拆成若干个不同的质数之和,使得这些质数的乘积尽可能大,那么,这个乘积等于多少?
3、一个五位数,五个数字各不同,且是13的倍数,则符合以上条件的最小的数是多少?
4、一把钥匙只能开一把锁,现在有4把锁,但不知道哪把钥匙开哪把锁,最多要试几次能配好全部的钥匙和锁?
5、用长和宽是4公分和3公分的长方形小木块,拼成一个正方形,最少要用这样的木块多少块?
6、100个自然数,他们的总和是10000,在这些数里,奇数的个数比偶数是个数多,那么这些数里至多有多少个偶数?
7、975×935×972×(),要使这个连乘积的最后四个数字都是零,在括号内最小应填多少?
8、有三个连续自然数,他们依次是12、13、14的倍数,这三个连续自然数中(除13外)是13倍数的那个数最小是多少?
9、将进货的单价为40块的商品按50块售出时,每个的利润是10块,但只能卖出500个,已知这种商品每个涨价1块,其销售量就减少10个,为了赚得最多的利润,售价应定为多少?
10、一个三角形的三条边长是三个两位的连续偶数,他们的末位数字和能被7整除,这个三角形的周长等于多少?
小学六年级奥数试题篇3
1、(归一问题)工程队计划用60人5天修好一条长4800米的公路,实际上增加了20人,每人每天比计划多修了4米,实际修完这条路少用了几天?
2、(相遇问题)甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车距中点40千米处相遇。
东西两地相距多少千米?
3、(追及问题)大客车和小轿车同地、同方向开出,大客车每小时行60千米,小轿车每小时行84千米,大客车出发2小时后小轿车才出发,几小时后小轿车追上大客车?
4、(过桥问题)列车通过一座长2700米的大桥,从车头上桥到车尾离桥共用了3分钟。
已知列车的速度是每分钟1000米,列车车身长多少米?
5、(错车问题)一列客车车长280米,一列货车车长200米,在平行的轨道上相向而行,从两个车头相遇到车尾相离经过20秒。
如果两车同向而行,货车在前,客车在后,从客车头遇到货车尾再到客车尾离开货车头经过120秒。
客车的速度和货车的速度分别是多少?
6、(行船问题)客轮和货轮从甲、乙两港同时相向开出,6小时后客轮与货轮相遇,但离两港中点还有6千米。
已知客轮在静水中的速度是每小时30千米,货轮在静水中的速度是每小时24千米。
求水流速度是多少?
7、(和倍问题)小李有邮票30枚,小刘有邮票15枚,小刘把邮票给小李多少枚后,小李的邮票枚数是小刘的8倍?
8、(差倍问题)同学们为希望工程捐款,六年级捐款数是二年级的3倍,如果从六年级捐款钱数中取出160元放入二年级,那么六年级的捐款钱数比二年级多40元,两个年级分别捐款多少元?
9、(和差问题)一只两层书架共放书72本,若从上层中拿出9本给下层,上层还比下层多4本,上下层各放书多少本?
10、(周期问题)20xx年7月1日是星期六,求10月1日是星期几?
小学六年级奥数试题篇4
奥数是一种理性的精神,使人类的思维得以运用到最完善的程度.让我们一起来阅读六年级奥数试题问答---原来面积,感受奥数的奇异世界!
一个长方形,如果宽不变,长增加6米,那么它的.面积增加54平方米,如果长不变,宽减少3米,那么它的面积减少36平方米,这个
长方形原来的面积是多少平方米?
答案与解析:由:“宽不变,长增加6米,那么它的面积增加54平方米”可知它的宽是54÷6=9(米);又由“长不变,宽减少3米,那么它的面积减少了36平方米”,可知它的长为:36÷3=12(米),所以,这个长方形的面积是12×9=108(平方米)。
(36÷3)×(54÷9)=108(平方米)
为您提供的六年级奥数试题问答---原来面积,希望给您带来启发! 小学六年级奥数试题篇5
标有A、B、C、D、E、F、G记号的七盏灯顺次排成一行,每盏灯安装着一个开关,现在A、C、D、G四盏灯亮着,其余三盏灯是灭的。
小方先拉一下A的开关,然后拉B、C……直到G的开关各一次,接下去再按A到G的顺序拉动开关,并依此循环下去。
他拉动了1990次后,亮着的灯是哪几盏?
答案:B、C、D、G
解析:小方循环地从A到G拉动开关,一共拉了1990次。
由于每一个循环拉动了7次开关,1990÷7=284……2,故一共循环284次。
然后又拉了A和B的开关一次。
每次循环中A到G的开关各被拉动一次,因此A和B的开关被拉动248+1=285次,C到G的开关被拉动284次。
A和B的状态会改变,而C到G的状态不变,开始时亮着的灯为A、C、D、G,故最后A变灭而B变亮,C到G的状态不变,亮着的灯为B、C、D、G。
小学六年级奥数试题篇6
甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?
解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差,
所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。
小学六年级奥数试题篇7
在甲、乙、丙三个酒精溶液中,纯酒精的含量分别占48%、62.5%和2/3.已知三个酒精溶液中总量是100千克,其中甲酒精溶液量等于乙、丙两个酒精溶液的总量.三个溶液混合后所含纯酒精的百分数将达56%.那么,丙中纯酒精的量是几千克?
解:设丙缸酒精溶液的重量为x千克,则乙缸为(50-x)千克。
50×48%+(50-x)×62.5%+x×(2/3)=100×56%,解得:x=18,
所以丙缸中纯酒精含量是18×(2/3)=12(千克)。
答:丙缸中纯酒精的量是12千克.。