物理学史与物理研究方法、单位制剖析

物理学史与物理研究方法、单位制剖析
物理学史与物理研究方法、单位制剖析

物理学史与物理研究方法、单位制 第一部分:物理学史 一、力学 1.自由落体运动的研究 (1)亚里士多德:(物体的下落快慢是由它们的重量决定的,重物比轻物落得快), 来自生活观察和经验。

(2)伽利略(意大利):(重物体和轻物体下落一样快) 自由落体运动是匀加速直线运动.

研究方法: 巧妙的推理→猜想与假说→数学推理2

s t ∝→实验验证→合理外推→得出结论.

(3)伽利略对物理学的贡献:

①发现摆的等时性

②物体下落过程中的运动情况与物体的质量无关

③伽利略的理想斜面实验:将实验与逻辑推理结合在一起探究科学真理的方法为物理学的研究开创了新的一页(发现了物体具有惯性,同时也说明了力是改变物体运动状态的原因,而不是使物体运动的原因)

经典题目

伽俐略首先将物理实验事实和逻辑推理(包括数学推理)和谐地结合起来(对)

伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去(对)

2胡克:(胡克定律)弹簧发生弹性形变时,弹力的大小跟弹簧的形变量(伸长或压缩)成正比,F kx =.

3.牛顿运动定律的提出

(1)亚里士多德:(力是维持物体运动的原因)必须有力作用在物体上,物体才能运动;没有力的作用,物体就要静止在一个地方.

(2)伽利略:(力是改变物体运动的原因)在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去。

(3)笛卡儿:(如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。)创立了直角坐标系,最初提出动量等于物体的质量乘以速率

(4)牛顿:(牛顿运动定律)一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态;物体加速度的大小跟它受到的作用力成正比、跟它的质量成反比,加速度方向跟作用力的方向相同;

两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一直线上.经典力学的建立标志着近代自然科学的诞生 经典题目 牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动(对) 牛顿提出的万有引力定律奠定了天体力学的基础(对)

亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动(对)

4.万有引力定律的研究

(1)托勒密:(地心说)地球是宇宙的中心,是静止不动的,太阳、月球以及其他行星都绕地球运动。

(2)哥白尼:(日心说)太阳是静止不动的,地球和其他行星都绕太阳运动。

(3)第谷:(行星的观测数据)行星位置的测量。

(4)开普勒:(开普勒三大定律)研究第谷的数据提出了轨道定律、面积定律、周期定律.

(5)牛顿:(万有引力定律)万有引力与物体质量及它们之间距离的关系,122m m F G

r =.奠定了天体力学的基础。牛顿通过月地检验探究了天上的力和地上的力是同一性质的力,即122m m F G r

=和G=mg 是遵循同一规律 (6)卡文迪许:(测出G 值)用扭称实验(也叫称量地球的质量实验)比较准确地测出了引力常量

34226.6710N m /G kg -=??,实验运用了放大法和转换法.被誉为第一个称量地球质量的人。

(7)爱因斯坦:(狭义相对论).表明经典力学(牛顿运动定律和万有引力定律)适用于宏观、低速、弱引力的领域,不适用于微观、高速、强引力的领域。

(8)威廉?赫歇耳(英国天文学家):用望远镜发现了太阳系的第七颗行星——天王星

(9)汤苞(美国天文学家):用“计算、预测、观察和照相”的方法发现了太阳系第九颗行星——冥王星

二、电学

(1)富兰克林:(放电现象和电性的研究)通过风筝实验揭示闪电的放电本质,验证闪电是放电的一种形式,把天电与地电统一起来,并发明了避雷针。

(2)库仑:(库仑定律)通过库仑扭秤实验发现了电荷之间的相互作用力122q q F k

r

=,标志着电学的研究从定

性走向定量。注:由后人测出了静电力常量k 的值,9229.010N m /C k =??.

(3)密立根:(测定电子的电荷量)通过油滴实验精确测定了元电荷e 电荷量,191.610C e -=?.

(4)法拉第:(静电场和电场线)最早引入了电场概念,并提出用电场线和磁感线形象地描述静电场和磁场。

(5)欧姆:(欧姆定律)通过实验得出U I R

=. (6)焦耳:(焦耳定律)发现电流通过导体时产生热效应,2Q I Rt =.

(7)泰勒斯(古希腊):发现毛皮摩擦过的琥珀能吸引羽毛、头发等轻小物体

(8)昂纳斯(荷兰物理学家):发现超导

三、磁学

(1)奥斯特:(电流的磁效应)发现电流可以使周围的小磁针发生偏转,揭示了电与磁的联系.

(2)安培:(分子电流假说、安培定则) 提出了安培分子电流假说;发现了电流的相互作用规律;并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系.

(3)洛仑兹:(洛伦兹力)提出磁场对运动电荷的洛伦兹力公式sin F qvB θ=. (4)阿斯顿:(质谱仪)设计的质谱仪可用来测量带电粒子的质量和分析同位素;发现非放射性元素的同位素。

(5)劳伦兹:(回旋加速器)发明了回旋加速器能在实验室中产生大量的高能粒子.

(6)霍尔:(霍尔效应)在匀强磁场中放置的矩形载流导体在与磁场、电流方向都垂直的方向上出现了霍尔电势差.

(7)法拉第:发现了电磁现象。纽曼、韦伯于1845年和1846年先后提出法拉第电磁感应定律,E n

t

φ?=?.

(8)楞次:(楞次定律)总结感应电流的磁场总要阻碍引起感应电流的磁通量的变化.

(9)亨利:(自感现象)发现线圈的电流变化时,在它本身激发出自感电动势,I E L t

?=?. (10)麦克斯韦:(电磁场理论)变化的磁场产生感生电场,变化的电场产生磁场;变化的电场和变化的磁场交替产生电磁场,向周围传播电磁波.

(11)狄拉克(英国物理学家):预言磁单极必定存在(至今都没有发现)

四、热学

(1)布朗(布朗运动):悬浮在水中的花粉微粒不停地做无规则运动的现象

(2)波意耳(波意耳定律):一定质量的理想气体,在温度不变的情况下,压强p 与体积V 成反比,pV C =.

(3)查理(查理定律): 一定质量的理想气体,在体积不变的情况下,压强p 与热力学温度T 成正比,p CT =.

(4)盖—吕萨克(盖—吕萨克定律):一定质量的理想气体,在压强不变的情况下,其体积V 与热力学温度T 成正比,V CT =.

(5)赖尼策尔、雷曼(发现液晶):像液体一样具有流动性,而光学性质与某些晶体相似,具有各向异性。

(6)焦耳(热功当量):测量了热和机械功之间的当量关系。

(7)德谟克里特(热质说):热是一种流质,可以渗入一切物质,不生不灭,没有重量.

(8)伦福德(热动说):炮筒镗孔实验,热是物体内部微小粒子的机械运动.

(9)迈耳、焦耳(热力学第一定律):一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和.U Q W ?=+

(10)亥姆霍兹(能量守恒定律):能量即不会凭空产生,也不会凭空消失。

(11)克劳修斯(热力学第二定律):热量不能自发地从低温物体传到高温物体(熵增加原理).

(12)波尔兹曼(熵S 与微观态的数目Ω的关系ln S ∝Ω);普朗克(ln S k =Ω)。

(13)开尔文(热力学第二定律、热力学温标):不可能从单一热源库吸收热量,使之完全变成功,而不产生其他影响;建立了热力学温标,27.15T t K =+.

(14)能斯特(热力学第三定律):绝对零度不可达到.

五、波动学和光学

1.机械振动与机械波

(1)惠更斯(单摆的周期):确定了单摆的周期2l T g

π=. (2)多普勒(多普勒效应):波源与观察者互相靠近或者相互远离时,接受到的波的频率都会发生变化.

(3)惠更斯(惠更斯原理):介质中任一波面上的各点,都可以看做发射子波的波源.

2.光学

(1)托马斯·杨(光的干涉):两束频率相同的光叠加出现明暗相间的条纹.

(2)菲涅尔、泊松(泊松亮斑):光绕过圆盘的边缘叠加后形成明暗相间的亮斑。

(3)麦克斯韦(电磁场理论): ①建立了完整的电磁理论②预言了电磁波的存在,并且认为光是一种电磁波(赫兹通过实验证实电磁波的存在)。变化的磁场和变化的电场交替产生,由近及远地向周围传播电磁波。

(4)赫兹(光是电磁波):实验证明光的电磁理论

(5)爱因斯坦(相对论):在任何参考系中,物理规律都是相同的。

六、原子物理学

1.光的波粒二象性的研究

(1)普朗克:(能量子假说)为了解释黑体辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的(电磁波的发射和吸收不是连续的),而是一份一份的,每一份就是一个最小的能量单位,即能量子h εν=,E nh ν=总.

(2)爱因斯坦:(光子说和光电效应方程)光本身是由一个个不可分割的能量子组成的,频率为ν的光的能量子为h ν;成功解释了光电效应的四条规律,爱因斯坦光电效应方程0km E h W ν=-;揭示光的粒子性(表明光子具有能量);提出相对论

(3)康普顿:(康普顿效应)在研究石墨中的电子对X 射线的散射时,发现散射光的波长变长,证实光的粒子性(表明光子具有能量和动量)。

(4)赫兹:(光是电磁波)用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。

(5)伦琴:(伦琴射线)发现X 射线,并拍下第一张X 射线的人体照片.

(6)德布罗意:(物质波)大胆预言实物粒子在一定条件下会表现出波动性,叫物质波,波长=

h P λ;揭示实物粒子和光都具有波动性和粒子性.

(7)劳厄:利用晶体中排列规则的物质微粒作为衍射光栅,检验了X 射线的波动性,证实X 射线是电磁波.

(8)戴维孙、G.P.汤姆孙:利用晶体做电子束衍射的实验,得到衍射图样,证实了电子的波动性.

(9)波恩:(概率波)光子在空间出现的概率可以通过波动的规律确定,光波是一种概率波.

(10)海森伯:(不确定关系)微观粒子的位置不确定量x ?,粒子在x 方向上的动量的不确定量P ?,满足

高三物理专题复习(物理学史与物理方法)

专题复习:物理学史和物理方法 ●物理学史和物理方法是新课标选择题中常出的一种提醒。 ●物理学史包括物理学家发现物理规律的历史进程和物理实验。 ●物理方法:物理学家发现物理规律的思路和方法;物理学中一般研究方法,主要有观察、实验、抽象、理想化、比较、类比、假说、模型、数学方法等等:主要思维方法:类比法、等效法、理想模型法、图象法、合成与分解法、逆向思维法、假设法、微元法、极限法、对称法、外推法、数学(函数、几何、归纳、数列等)法。 【新课标高考试题回练】 1、(20XX年海南卷).自然界的电、热和磁等现象都是相互联系的,很多物理学家为寻找它们之间的联系做出了贡献。下列说法正确的是 A.奥斯特发现了电流的磁效应,揭示了电现象和磁现象之间的联系 B.欧姆发现了欧姆定律,说明了热现象和电现象之间存在联系 C.法拉第发现了电磁感应现象,揭示了磁现象和电现象之间的联系 D.焦耳发现了电流的热效应,定量得出了电能和热能之间的转换关系 2、(20XX年新课标)1873年奥地利维也纳世博会上,比利时出生的法国工程师格拉姆在布展中偶然接错了导线,把另一直流发电机发出的电接到了自己送展的直流发电机的电流输出端。由此而观察到的现象导致了他的一项重要发明,从而突破了人类在电能利用方中的一个瓶颐.此项发明是 A.新型直流发电机B.直流电动机 C.交流电动机D.交流发电机 3、(2012全国新课标).伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础。早期物理学家关于惯性有下列说法,其中正确的是 A.物体抵抗运动状态变化的性质是惯性 B.没有力作用,物体只能处于静止状态 C.行星在圆周轨道上保持匀速率运动的性质是惯性 D.运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动 4、(20XX年新课标)在力学理论建立的过程中,有许多伟大的科学家做出了贡献。关于科学家和他们的贡献,下列说法正确的是 A. 伽利略发现了行星运动的规律 B. 卡文迪许通过实验测出了引力常量 C.牛顿最早指出力不是维持物体运动的原因 D.笛卡尔对牛顿第一定律的建立做出了贡献 5、(2011新课标理综第14题).为了解释地球的磁性,19世纪安培假设:地球的磁场是由绕过地心的轴的环形电流I引起的。在下列四个图中,正确表示安培假设中环形电流方向的是(B) 【复习巩固题】 1、(2013上海徐汇测试))伽利略为了研究自由落体的规律,将落体实验转化为著名的“斜面

物理学史及其研究方法

高中物理学史 熟记物理学史,包括科学家的贡献,如亚里士多德、伽利略、牛顿、卡文迪许、库仑、安培、奥斯特、法拉第等;熟悉物理常用的思想方法:等效替代法、控制变量法、理想实验法、理想模型、放大(或缩小)思想(比如累积)、比值定义法、归纳演绎法、类比、推理等方法。 1、伽利略对物理学的贡献 (1)1638年,意大利物理学家伽利略用科学推理论证重物体和轻物体下落一样快;推翻了古希腊学者亚里士多德的观点; 提出假说:自由落体运动是一种对时间均匀变化的最简单的变速运动; 数学推理:由初速度为零、末速度为v 的匀变速运动平均速度 312222123s s s t t t ===和12v v =得出12s vt =;再应用v a t =从上式中消去v ,导出212 s at =即2s t ∝。 实验验证:由于自由落体下落的时间太短,直接验证有困难,伽利略用铜球在阻力很小的斜面上滚下,上百次实验表明:312222123s s s t t t ===;换用不同质量的小球沿同一斜面运动, 位移与时间平方的比值不变,说明不同质量的小球沿同一斜面做匀变速直线运动的情况相同;不断增大斜面倾角,重复上述实验,得出该比值随斜面倾角的增大而增大,说明小球做匀变速运动的加速度随斜面倾角的增大而变大。 合理外推:把结论外推到斜面倾角为90°的情况,小球的运动成为自由落体,伽利略认为这时小球仍保持匀变速运动的性质。(用外推法得出的结论不一定都正确,还需经过实验验证) 注:伽利略对自由落体的研究,开创了研究自然规律的一种科学方法。 (2)伽利略通过理想斜面实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 2、牛顿对物理学的贡献 牛顿在伽利略、笛卡儿、开普勒、惠更斯等人研究的基础上,采用归纳与演绎、综合与分析的方法,总结出一套普遍适用的力学运动规律——牛顿运动定律和万有引力定律,建立了完整的经典力学(也称牛顿力学或古典力学)体系,物理学从此成为一门成熟的自然科学 经典力学的建立标志着近代自然科学的诞生。 牛顿通过牛顿运动定律和开普勒行星运动定律得出万有引力定律(仅仅是定性讨论,没有定量计算,因为万有引力常数还没测出来);卡文迪许利用扭秤实验装置比较准确地测出了引力常量(利用转换放大的思想),被称为“测量地球质量的第一人”; 经典力学的基础是牛顿运动定律; 经典力学的局限性: 牛顿运动定律和万有引力定律适用于宏 观、低速、弱引力。 牛顿设想,物体被抛出速度很大时,就不会落回地面

2020年高三二轮复习强基础专题十五:物理学史及研究方法(解析版)

强基础专题十五:物理学史及研究方法 1.许多科学家在物理学发展过程中做出了重要贡献,下列叙述中符合物理学史实的是 A. 奥斯特发现了电流的磁效应,并总结出了右手定则 B. 牛顿提出了万有引力定律,并通过实验测出了万有引力恒量 C. 伽利略通过理想斜面实验,提出了力是维持物体运动状态的原因 D. 库仑在前人的基础上,通过实验得到真空中点电荷相互作用规律 2.在物理学发展的过程中,许多物理学家的科学研究推动了人类文明的进程。在对以下几位物理学家的叙述中,符合历史的说法是 A. 牛顿发现了万有引力定律 B. 在对自由落体运动的研究中,伽利略猜想运动速度与下落时间成正比,并直接用实验进行验证 C. 牛顿应用“理想斜面实验”推翻了亚里士多德的“力是维持物体运动的原因”的观点 D. 亚里士多德最早指出了“力不是维持物体运动的原因” 3.关于物理学研究方法和物理学史,下列说法正确的是 A. 在推导匀变速直线运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,然后把各小段的位移相加,这里采用了微元法 B. 根据速度定义式,当△t非常非常小时,就可以表示物体在t时刻的瞬时速度,该定义应用了微元法 C. 亚里士多德认为自由落体运动就是物体在倾角为90°的斜面上的运动,再根据铜球在斜面上的运动规律得出自由落体的运动规律,这是采用了实验和逻辑推理相结合的方法 D. 牛顿在伽利略等前辈研究的基础上,通过实验验证得出了牛顿第一定律

4.在物理学发展上许许多多科学家做出了巨大贡献。下列符合物理史实的是 A. 牛顿提出了万有引力定律并利用扭秤实验装置测量出万有引力常量 B. 法拉第通过精心设计的实验,发现了电磁感应现象 C. 卡尔最先把科学实验和逻辑推理方法相结合,否认了力是维持物体运动状态的原因 D. 第谷用了20年时间观测记录行星的运动,发现了行星运动的三大定律 5.下列说法中正确的是 A. 伽利略设计的斜面实验巧妙地借用了“冲淡”重力的方法,通过实验现象推翻了亚里士多德的“物体运动需要力来维持”的错误结论。 B. 牛顿第一、第二、第三定律都可以用实验直接验证。 C. 第谷通过多年的观测,积累了大量可靠的数据,在精确的计算分析后得出了行星运动三定律。 D. 动量定理不仅适用于宏观物体的低速运动,而且对于微观粒子和高速(接近光速)运动的物体也适用。 6.在物理学发展过程中,观测、实验、假说和逻辑推理等方法都起到了重要作用,下列说法中,不正确的是 A. 奥斯特实验说明电流具有磁效应,首次揭示了电和磁之间存在联系 B. 直流电流、环形电流、通电螺线管的磁场均可用安培定则判断 C. 通电螺线管外部的磁场与条形磁铁的磁场十分相似,受此启发,安培提出了著名的分子电流假说 D. 洛伦兹力方向可用左手定则判断,此时四指指向与电荷运动方向一致 7.物理学的发展丰富了人类对物质世界的认识,推动了科学技术的创新和革命,促进了物质生产的繁荣与人类文明的进步,下列说法中正确的是 A. 亚里士多德发现了力是改变物体运动状态的原因 B. 哥白尼提出了日心说,并发现了行星沿椭圆轨道运行的规律

物理学史和物理方法

2016届呼和浩特市段考物理圈题 题组4 物理学史和物理方法 (一)考法解法 命题特点分析 段考选取物理学史上一些重要事件、典型思想和科学研究方法,这些学史中所包含的艰辛探索、研究方法、创造性思想及其对物理学发展的影响、对社会的推动等无不深深地影响着考生的情感态度价值观。 解题方法荟萃 物理学史和物理方法类选择题由于比较简单,通常直接课本上知识点,应加强识记。一、直接判断法:对于科学家的突出贡献、对重要实验的研究方法,只要加强识记,可以直接判断正误。 附:常考物理学史人物与事件 力学: 1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、1654年,德国的马德堡市做了一个轰动一时的实验--马德堡半球实验; 3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。 同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对) 6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。 17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 7、人们根据日常的观察和经验,提出"地心说",古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了"日心说",大胆反驳地心说。 8、17世纪,德国天文学家开普勒提出开普勒三大定律; 9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量; 10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。

物理学史

物理学史 ★伽利略(意大利物理学家)对物理学的贡献: ①发现摆的等时性 ②物体下落过程中的运动情况与物体的质量无关 ③伽利略的理想斜面实验:在1683年出版的《两种新科学的对话》一书中,运用观察—假设—数学推理的方法,详细地研究了落体运动。将实验与逻辑推理结合在一起探究科学真理的方法为物理学的研究开创了新的一页(发现了物体具有惯性,同时也说明了力是改变物体运动状态的原因,而不是使物体运动的原因) 经典题目1 伽利略根据实验证实了力是使物体运动的原因(错) 伽利略认为力是维持物体运动的原因(错) 伽俐略首先将物理实验事实和逻辑推理(包括数学推理)和谐地结合起来(对) 伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去(对) ★胡克(英国物理学家) 对物理学的贡献:胡克定律 经典题目2 胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对) ★牛顿(英国物理学家)对物理学的贡献 ①牛顿在伽利略、笛卡儿、开普勒、惠更斯等人研究的基础上,采用归纳与演绎、综合与分析的方法,总结出一套普遍适用的力学运动规律——牛顿运动定律和万有引力定律,建立了完整的经典力学(也称牛顿力学或古典力学)体系,物理学从此成为一门成熟的自然科学 ②经典力学的建立标志着近代自然科学的诞生 经典题目3 牛顿发现了万有引力,并总结得出了万有引力定律,卡文迪许用实验测出了引力常数(对) 牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动(对)牛顿提出的万有引力定律奠定了天体力学的基础(对) ★卡文迪许 贡献:测量了万有引力常量 典型题目4 牛顿第一次通过实验测出了万有引力常量(错)卡文迪许巧妙地利用扭秤装置,第一次在实验室里测出了万有引力常量的数值(对) ★亚里士多德(古希腊) 观点: ①重的物理下落得比轻的物体快 ②力是维持物体运动的原因 经典题目5 亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动(对) ★开普勒(德国天文学家) 对物理学的贡献开普勒三定律 经典题目6 开普勒发现了万有引力定律和行星运动规律(错)★托勒密(古希腊科学家) 观点:发展和完善了地心说 ★哥白尼(波兰天文学家)观点:日心说 ★第谷(丹麦天文学家)贡献:测量天体的运动 ★库仑(法国物理学家) 贡献:发现了库仑定律——标志着电学的研究从定性走向定量 典型题目7 库仑总结并确认了真空中两个静止点电荷之间的相互作用(对) 库仑发现了电流的磁效应(错) ★密立根贡献:密立根油滴实验——测定元电荷通过油滴实验测定了元电荷的数值。 e=1.6×10-19C ★昂纳斯(荷兰物理学家)发现超导 ★欧姆:贡献:欧姆定律(部分电路、闭合电路)★奥斯特(丹麦物理学家) 电流可以使周围的磁针偏转的效应,称为电流的磁效应(电流能够产生磁场)

物理学史及其物理研究方法 教案

微专题物理学史及常见的思想方法一、人物部分 1.力学部分 (1)胡克:发现了胡克定律. (2)伽利略:在研究自由落体中采用的“逻辑推理+实验研究”方法是人类思想史上最伟大的成就之一.(理想斜面实验) (3)牛顿:得出牛顿运动定律及万有引力定律,奠定了以牛顿运动定律为基础的经典力学. (4)开普勒:发现了行星运动规律——开普勒三定律,研究的是第谷的观察数据 (5)卡文迪许:巧妙地利用扭秤装置测出了万有引力常量,被称作是测出地球质量的人 2.电磁学部分 (1)库仑:,利用库仑扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量. (2)密立根:测定电荷量 (3)欧姆:德国物理学家,在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系——欧姆定律. (4)奥斯特:,通过试验发现了电流能产生磁场,电流的磁效应 (5)安培:,提出了著名的分子电流假说,总结出了右手螺旋定则和左手定则.安培在电磁学中的成就很多,被誉为“电学中的牛顿”. (6)劳伦斯:,发明了“回旋加速器”,使人类在获得高能粒子方面迈进了一步. (7)法拉第:英国科学家,发现了电磁感应,亲手制成了世界上第一台发电机,提出了电磁场及磁感线、电场线的概念. (8)楞次:概括试验结果,发表了确定感应电流方向的楞次定律. 3.选考部分 (4)麦克斯韦:总结前人研究的基础上,建立了完整的电磁场理论.

(5)赫兹:在麦克斯韦预言电磁波存在后二十多年,第一次用实验证实了电磁波的存在,并测得电磁波传播速度等于光速,证实了光是一种电磁波. (6)惠更斯:在对光的研究中,提出了光的波动说,发明了摆钟. (7)托马斯·杨:,首先巧妙而简单地解决了相干光源问题,成功地观察到光的干涉现象. (8)伦琴:德国物理学家,继英国物理学家赫谢耳发现红外线,德国物理学家里特发现紫外线后,发现了当高速电子打在管壁上,管壁能发射出X射线——伦琴射线. (9)普朗克:德国物理学家,提出量子概念——电磁辐射(含光辐射)的能量是不连续的,其在热力学方面也有巨大贡献. (10)爱因斯坦:他提出了“光子”理论及光电效应方程,建立了狭义相对论及广义相对论. (11)德布罗意:提出一切微观粒子都有波粒二象性;提出物质波概念,任何一种运动的物体都有一种波与之对应. (12)汤姆生:,研究阴极射线时发现了电子,测得了电子的比荷;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象. (13)卢瑟福:通过α粒子的散射现象,提出原子的核式结构.实现人工核转变的第一人,发现了质子. (14)玻尔:,把普朗克的量子理论应用到原子系统上,提出原子的玻尔理论. (15)查德威克:英国物理学家,从原子核的人工转变实验研究中,发现了中子. (16)威尔逊:英国物理学家,发明了威尔逊云室以观察α、β、γ射线的径迹. (17)贝克勒尔:法国物理学家,首次发现了铀的天然放射现象,开始认识原子核结构是复杂的. (18)玛丽·居里夫妇:法国(波兰)物理学家,是原子物理的先驱者,“镭”的发现者. (19)约里奥·居里夫妇:法国物理学家,老居里夫妇的女儿女婿;首先发现了用人工核转变的方法获得放射性同位素.

高中物理学史和物理方法总结

高中物理学史总结 1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);伽利略时代的仪器、设备十分简陋,技术也比较落后,但伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,最早研究“匀加速直线运动”,导出S正比于t2并给以实验检验;伽利略的科学推理方法是人类思想史上最伟大的成就之一。17世纪,伽利略通过构思的斜面理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。另外他还发现了“摆的等时性”。 1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。牛顿于1687年正式发表万有引力定律,1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量(微小形变放大思想);另外牛顿还发现了光的色散原理;创立了微积分、发明了二项式定理;研究光的本性并发明了反射式望远镜。历史上关于光的本质有两种学说:一种是牛顿主张的微粒说——认为光是光源发出的一种物质微粒;一种是荷兰物理学家惠更斯提出的波动说——认为光是在空间传播的某种波。 爱因斯坦,德籍犹太人,后加入美国籍,20世纪最伟大的科学家,他提出了“光子”理论及光电效应方程,建立了狭义相对论及广义相对论。提出了“质能方程E=mc2”。经典力学不适用于微观粒子和高速运动物体。1905年爱因斯坦:受到普朗克的启发在德国物理学家赫兹首先发现“光电效应”实验(注:实验做法)的基础上提出了“光子说”,成功地解释了光电效应规律,提出著名的爱因斯坦光电效应方程:E k=hv—W)因此获得诺贝尔物理奖。 1905年爱因斯坦:提出狭义相对论,有两条基本原理: ①相对性原理——不同的惯性参考系中,一切物理规律都是相同的; ②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。 狭义相对论的其他结论: ①时间和空间的相对性——长度收缩和动钟变慢(或时间膨胀) ②相对论速度叠加:光速不变,与光源速度无关;一切运动物体的速度不能超过光速,即光速是物质运动速度的极限。 ③相对论质量:物体运动时的质量大于静止时的质量。 1900年,德国物理学家普朗克为解释物体热辐射规律提出:电磁波的发射和吸收不是连续的,而是一份一份的,提出能量子假说:物质发射或吸收能量时,能量不是连续的,而是一份一份的,每一份就是一个最小的能量单位,即能量子,把物理学带进了量子世界;E与频率υ成正比,即E=hv;另外其在热力学方面也有巨大贡献。 1913年,丹麦物理学家玻尔把普朗克的量子理论应用到原子系统上,提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础;玻尔最先得出氢原子能级表达式。十九世纪末以前建立的物理学通常称为经典物理学,按照经典物理学理论,如果带电粒子做变速运动,包括振动和圆周运动,粒子一定以电磁波的形式向外辐射能量,辐射的频率等与振动或圆周运动的频率。为了解释与经典物理学的一系列矛盾,玻尔提出了自己的原子结构假说,即玻尔理论。 英国物理学家汤姆生发现电子,说明原子是可分的,有复杂的内部结构,并提出原子的枣糕模型,在当时能解释一些实验现象。并测得了电子的比荷e/m;研究了阴极射线,并指

物理学史和物理思想方法

物理学史和物理思想方法 寄语: 物理学史或物理思想方法其本上每年都考,通常为选择题,难度上属于送分题,每位考生都务必拿下. 学史内容:亚里士多德的观点力是维持物体运动的原因、伽利略理想实验和比萨斜塔实验、牛顿三定律及万有引力定律、开普勒三定律、卡文迪许扭秤实验 电流磁效应奥斯特、电磁感应法拉第电磁感应定律和电场线、库仑定律库仑扭秤实验、楞 次定律、麦克斯韦理论、赫兹实验、密立根油滴实验、安培定则 物理思想方法:理想化模型、理想实验、控制变量法、等效替换、微元法、放大法 练习题组 【题组 1】力学史 1.(单选 )下列对运动的认识中不正确的是( ).A.亚里士多德认为必须有力作用在物体上,物体才能运动,没有力的作用,物体就静止 B.伽利略认为如果完全排除空气的阻力,所有的物体将下落得同样快 C.牛顿认为力不是维持物体速度的原因,而是改变物体速度的原因 D.伽利略根据理想实验推论出,若没有摩擦,在水平面上运动的物体将保持其速度继续运动下去2.(单选)伽利略是意大利文艺复兴后期伟大的天文学家、力学家、哲学家、物理学家、数学家,也是近代 实验物理学的开拓者,被誉为“近代科学之父”.下面关于伽利略的观点和研究方法的描述不正确的是 ( ) . A.伽利略通过“理想实验”得出“力不是维持物体运动的原因” B.伽利略运用“控制变量法”否定了亚里士多德关于重的物体下落快、轻的物体下落慢的论断C.伽利略最早提出“自由落体”是一种最简单的变速直线运动——匀变速直线运动 D.伽利略在研究自由落体运动时总体的思想方法是:对观察现象的研究→提出假说→逻辑推理→实验检验→对假说进行修正和推广 【题组 2】电磁学史 3.(多选 )在电磁学发展过程中,许多科学家做出了贡献.下列说法正确的是( ).

高中物理学史及研究方法

高中物理学史总结 一、力学 1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 4、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观 粒子和高速运动物体。 5、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。 6、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。 7、17世纪,德国天文学家开普勒提出开普勒三大定律; 8、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量; 9、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。 10、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。 11、1957年10月,苏联发射第一颗人造地球卫星;1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。 二、电磁学 12、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。 13、16世纪末,英国人吉伯第一个研究了摩擦是物体带电的现象。18世纪中叶,美国人富兰克林提出了正、负电荷的概念。1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。 14、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。 15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。 16、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。 17、1911年,荷兰科学家昂纳斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。 18、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳定律。

E物理学史 物理单位 物理方法

物理学史物理单位物理方法 第一部分:物理学史 必修部分:(必修1、必修2) 一、力学: 1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 3、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。 同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 4、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对) 5、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。 6、17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。 8、17世纪,德国天文学家开普勒提出开普勒三大定律; 9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量; 10、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。 11、17世纪,德国天文学家开普勒提出开普勒三定律;牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量(体现放大和转换的思想);1846年,科学家应用万有引力定律,计算并观测到海王星。 选修部分:(选修3-1、3-2、3-3、3-4、3-5) 二、电磁学:(选修3-1、3-2) 12、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。 13、1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。 14、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。 15、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。

物理教学中物理学史的重要意义

物理教学中物理学史的重要意义 物理学史是研究人类对自然界各种物理现象的认识史,它的基本任务就是描述物理概念、定律、理论和研究方法的脉络,揭示物理学观念、方法和内容的发生、发展的原因和规律性。研究学习物理学史,不仅会为物理教学注入新的活力,还有利于激发学生学习物理、攀登科学高峰的积极热情。 一、可以了解物理学的本来面目,消除对物理的神秘感 在物理教学中,我们主要是引导学生学习前人已经获得的理论知识。教学中的物理知识都是人们经过多次整理而形成的严密的理论逻辑体系。因此,我们在教学中只重视对知识本身的讲解,而对于一些概念、规律产生的历史事实很少问津。有的物理教师虽然试图引进一些史料,但讲的不够准确,常见的错误有:牛顿因为观察苹果落地而发现万有引力定律、瑞利-金斯定律的失败引导着普郎克提出量子论等等。 这些神话使得学生对物理知识的来源、理论体系的形成等都产生很神秘的感觉,往往会认为各个物理学概念、原理和定律的获得等只是历史上的某些科学伟人们的灵感创造出来的,是历史的巧合和偶然的机遇,对于一般人而言根本就不能及的,这种认识是十分错误的,进而也会阻碍学生创造思维的发展。事实上对于熟悉科学创造历史过程的人都知道,任何一个物理知识的获得,都必须要经历一个动

态的过程,即从低级到高级,从感性到理性,从片面到全面,从粗糙到严格的产生、发展和演变的过程,而根本就不是任何天才的脑袋偶然地创造出来的。 经过对这些物理史的本来面目的了解和熟悉,学生们就会慢慢学着具体理解任何一个重要概念、定理和理论的获得,都是经过"试探-除错"的多次选择而得到一个动态的历史过程。在物理教学中,我们可以通过必要的历史回顾,促使学生们了解物理学的各种原理、定律的实验基础,了解各种模型所依据的客观事实的原形,了解各种假说、观点和物理思想的演变。虽然讲述时用的时间不多,但可以使学生了解物理概念、规律、原理产生、形成和发展的过程,这种做法不仅会消除学生对物理知识来源的神秘感和错误认识,还可以培养学生的创造性思维能力。 二、了解物理学的发展性和近似性,克服对物理知识的僵化认识 在物理教学中,教师不应单纯向学生传播知识,而应向学生揭示物理学的发展规律,了解物理概念、规律的局限性和近似性。但是,教学中常常对此重视不够,在一味追求知识的严密性和精确性的面目下,容易使学生思维单一,认识僵化,使他们感到物理难学,没有兴趣,只能机械的搬用公式,这种对知识绝对化、僵化的理解,影响了学生发展思维能力的发展。 事实上,在物理学的发展史中,经常发生着各种情况的理论变迁,具体表现为:以比较正确的认识代替错误认识,例如以热之唯

新课标高考高中物理学史及研究方法

新课标高考高中物理学史(新人教版)专题 必修部分:(必修1、必修2 ) 一、力学: 1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验; 3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。 同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对) 6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。 17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。 8、17世纪,德国天文学家开普勒提出开普勒三大定律; 9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量; 10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。 9、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;但现代火箭结构复杂,其所能达到的最大速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比); 俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。多级火箭一般都是三级火箭,我国已成为掌握载人航天技术的第三个国家。

高中物理学史和物理方法

物理学史和物理方法 1.(2014?烟台市一模)学习物理除了知识的学习外,还要了解物理学家对物理规律的发现,领悟并掌握处理物理问题的思想与方法.关于以上两点下列叙述正确的是 A.奥斯特发现了电流的磁效应,揭示了电与磁的联系 B.库仑提出了用电场线描述电场的方法 C.用点电荷来代替实际带电体是采用了理想模型的方法 D.在验证力的平行四边形定则的实验中使用了控制变量的方法 【答案】AC 【解析】法拉第提出了用电场线描述电场的方法,B错误;在验证力的平行四边形定则的实验中使用了等效替换的思想方法,D错误。选项AC说法符合物理学史。 2.(2014?潍坊一模)下列说法符合物理学史实的是 A.开普勒发现了万有引力定律 B.伽利略首创了理想实验的研究方法 C.卡文迪许测出了静电力常量 D.奥斯特发现了电磁感应定律 【答案】B 【解析】牛顿发现了万有引力定律,库仑测出了静电力常量,法拉第发现了电磁感应定律,故选项ACD错误,选项B符合物理学史实。 3.(2014?滨州市一模)在物理学的发展过程中,许多物理学家都做出了重要的贡献,他们也创造出了许多的物理学研究方法,下列关于物理学研究方法的叙述中正确的是 A.理想化模型是把实际问题理想化,略去次要因素,突出主要因素,例如质点、位移等是理想化模型 B.重心、合力和交变电流的有效值等概念的建立都体现了等效替代的思想 C.用比值法定义的物理概念在物理学中占有相当大的比例,例如场强 F E q =,电容 C Q U = ,加速度 F a m =都是采用比值法定义的 D.根据速度定义式 x v t ? = ? 半,当t?非常小时, x t ? ? 就可以表示物体在t时刻的瞬时 速度,该定义应用了极限思想方法 【答案】BD 【解析】选项A中位移不是理想化模型,故A错误。选项C,比值法定义的基本特点是

2013年高考物理专项冲击波讲练测系列专题35物理学史和物理方法

2013年高考物理专项冲击波讲练测系列 专题35 物理学史和物理方法 【重点知识解读】 1.物理学史 2.物理方法 理想模型法:质点、点电荷; 理想实验法:伽利略应用理想实验说明力不是维持物体运动的原因。 放大法:微小形变的演示、卡文迪许扭秤测出引力常量,库伦扭秤研究电荷之间作用力。微元法:在推导匀变速直线运动位移公式时,把整个运动过程划分成很多很多小段,每一小段近似看作匀速直线运动,然后把各小段的位移相加之和代表物体的位移; 极限思想法:瞬时速度定义,瞬时加速度定义。 控制变量法:探究加速度、力和质量三者之间的关系。 类比法:电势能类比重力势能,电场力做功类比重力做功;磁感线类比电场线; 科学假说法:安培分子电流假说;原子核式结构假说; 等效替代方法:引入平均速度描述变速运动,分力与合力。 【高考命题动态】 高考对物理学史和物理方法的考查,一般以了解、知道为主。难度较易。 【最新模拟题专项训练】。 1.(2013山东枣庄检测)许多科学家对物理学的发展作出了巨大贡献,也创造出了许多物

理学方法,如理想实验法、控制变量法、极限思想法、建立物理模型法、类比法和科学 假说法等等。以下关于物理学史和所用物理学方法的叙述正确的是 A .卡文迪许测出引力常量用了放大法 B .伽利略为了说明力是维持物体运动的原因用了理想实验法 C .在不需要考虑物体本身的形状和大小时,用质点来代替物体的方法叫假设法 D .在推导匀变速直线运动位移公式时,把整个运动过程划分成很多很多小段,每一小 段近似看作匀速直线运动,然后把各小段的位移相加之和代表物体的位移,这里采用了 微元法 2.(2013杭州七校联考)在物理学的重大发现中科学家们创造出了许多物理学方法,如理 想实验法、控制变量法、极限思想法、类比法和科学假说法、建立物理模型法等。以下关于 所用物理学研究方法的叙述不正确... 的是 A .在不需要考虑物体本身的大小和形状时,用质点来代替物体的方法叫假设法 B .根据速度定义式t x v ??=,当t ?非常非常小时,t x ??就可以表示物体在t 时刻的瞬时速度,该定义应用了极限思想方法 C .在探究加速度、力和质量三者之间的关系时,先保持质量不变研究加速度与力的关系, 再保持力不变研究加速度与质量的关系,该实验应用了控制变量法 D .在推导匀变速运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,然后把各小段的位移相加,这里采用了微元法

物理学史在物理教学中的应用

物理学史在物理教学中的应用 发表时间:2019-03-07T17:00:39.780Z 来源:《教育学》2019年3月总第170期作者:焦颖 [导读] 本文通过对科学课堂的探索研究,结合自身的课堂经验,发现物理教学过程中结合物理学史,可以让学生对物理学知识的建构有一个更清醒的认识,更加有利于物理学习和培养探究精神。 陕西省西咸新区秦汉中学712000 摘要:本文通过对科学课堂的探索研究,结合自身的课堂经验,发现物理教学过程中结合物理学史,可以让学生对物理学知识的建构有一个更清醒的认识,更加有利于物理学习和培养探究精神。 关键词:物理学史科学探究 一、物理学史与物理教学结合的必要性 物理学史与物理教学的结合是国内外基础教育改革的一项重要课题。以逻辑方法为主的传统物理教育忽视了科学知识建构的过程,对科学方法论没有给以足够重视,忽视了学生的兴趣、态度、情感和创造力培养,不利于科学本质理解,不利于科学精神和创新能力的培养。物理学史和物理教学的结合是改革传统物理教学的有益手段。美国《面向全体美国人的科学-2061计划》和《国家科学教育标准》都非常重视“科学本质”和“历史观点”教育。斯诺的“两种文化”问题和萨顿的“将科学史作为联结科学文化和人文文化之间的一座重要桥梁”的观点使得科学史与科学教学结合的作用日益受到重视。 1.引用物理学史料可以帮助学生理解掌握物理学知识的本质。 物理学习中仅仅掌握住有关内容的理论、事实、定义、结论、公式和计算方法,还不等于理解了知识的深刻本质和丰富的内涵。现有的物理知识都是在人类与物理世界的长期对话中,经过无数的曲折与反复,抽象、概括而获得的。对现有知识的历史考察,可以把发现的本质放在更真实的背景下,使学生真正懂得它们的本质,并得到超出定律和公式的许多启示。比如伽利略著名的几个思想实验,一个是质量大的物理是否下落得更快,他通过把大球和小球连接起来,若大球快则会拖动小球,速度应该介于大球速度和小球速度之间,但是若大球小球看做整体按照前人的想法应该比单个大球下落速度更快。两项矛盾轻松地化解了这个存在于很多人意识中的错误。类似的实验很多,很容易理解,精巧的设计思路、科学假设和最后的总结,既让学生对重力有了更深层次的理解,又使学生在科学思维和科学方法上受到启迪。 2.可以让学生认识到真理的绝对性与相对性辩证关系。 光记住一些物理概念、数据、定律和公式,并不表示真正理解了物理学。因为科学的本质并不在于它所获得知识的多寡与深度,而更重要的在于“探索”。对物理学理论本质的全面理解,包含着对物理学理论发展的动态性以及对物理学理论的相对真理性的认识。作为知识的历史选择结果的物理学理论,都包含着对与错、真与假的双重因素,包含有大量未知因素,不可能完善无缺。在教学中作必要的历史回顾,会使学生从知识的更替演变中认识它的条件性、局限性,认识科学理论的相对真理性。在现代物理学发展的各个领域和各个时期,历来都有人做出发展已近尾声的预言,但物理学发展的历史却表明,每一个领域都会不断涌现出激动人心的新发现。可以肯定,物理学永远是一个充满生机和活力的学科,它永远不会老化和僵死,永远不会终止探索的步伐。比如,人们对原子结构从最早的汤姆孙模型到后来的玻尔量子化模型,直到近代量子力学建立后,人们才对原子核内部运动有了基本了解。学生们会理解真理的探究过程,增强他们的科学思维。 3.引用物理学史料让学生了解物理学基本观念的变革。 物理学的发展最本质地表现在物理学基本观念的演变上,一个新的概念甚至会发展成为一个新的领域。就像最初人们认为空气中存在氧素,后来拉瓦锡测定空气成分才发现了氧气等各种气体。再比如最初人们通过声音传播,认为光的传播也需要介质,而空间中到处存在这么一种介质成为以太,当然后来都证明了光传播不需要介质。每一种新的物理学发现不断地在推翻我们的认知,量子力学的出现推翻了无数经典力学的“真理”。通过对物理学史的学习,学生们可以感受到物理学的发展,有助于他们打破常规思路,开拓创新,探索前人所未敢触碰的地方。 4.培养学生的科学素质。 这里的科学素养包括独立思考和怀疑精神、想象力和判断力以及科学的探索问题探究问题的方法。1956年正是杨振宁和李政道敏锐地审察了从未被人怀疑过的宇称守恒定律的适用范围,大胆提出了弱相互作用中宇称不守恒的假说,从而导致了物理学理论的一个突破性进展。批判的头脑、怀疑的精神,是打开未知科学大门的钥匙。在我们以往的教学中,经常提到要培养学生“分析问题和解决问题的能力”,而忽视了“提出问题的能力”。但往往对于培养有创造性的、能独立思考的科学人才来说,这后一点才是最重要的。牛顿从苹果落地想到万有引力,汤姆孙从面包中得到原子模型的灵感,凯库勒梦见衔尾蛇想到的苯环结构,可见想象力在科学研究中的作用。其次物理学的探究过程充满了严谨的实验、严密的逻辑推理,这不仅是探究物理的方法,也是一个人探索世界的方法。 5.激发学生的兴趣和求知欲。 物理学是研究物质运动的一般规律和物质的基本结构的一门学科,是实践和理论相结合的产物。各种概念、定律、公式、法则之间关系复杂,学生在学习时一时难以掌握它们的物理意义以及它们之间的关系,久之则产生畏难情绪。因此,大多数学生觉得物理难学,有的甚至对物理课有一种恐惧感,所以在教学中适当加入一些物理学史知识,既可以使学生体会到自然界的奇妙,引发学生兴趣,又可以使学生了解物理学家长期探索、不断努力、刻苦钻研的奋斗过程,激发学生刻苦学习的决心。 例如,结合“单摆”一节内容的学习,教师可以向学生介绍古代有关时间的测量及摆钟发明的过程。早在远古时代,人们便学会了根据天文变化计算较长的时间间隔,对于比日更短的时间单位,人们不得不用某些不精确的办法。在中世纪,机械钟开始进入人们的生活,表盘上的指针是靠悬挂重物控制的齿轮来带动的,重物会使齿轮转动。但是,必须有一种十分恒定的运动,才能调节齿轮有规律地运转。荷兰科学家惠更斯敏锐地想到伽利略青年时代所发现的单摆运动的“等时性”,通过自己的反复构思和实验,发明了带摆的钟,成了人类测量时间的第一部精确仪器,科学实验为人类带来意想不到的好处。 二、物理学史与教学结合的方式和模式 考虑到学生的认知水平和对物理学史的需要情况,我们针对两种不同的物理知识,提出两种在基础物理教学中引入物理学史的方式。

相关文档
最新文档