航天发动机涡轮叶片主要冷却方式综述
航空燃气涡轮发动机概述

航空燃气涡轮发动机概述航空燃气涡轮发动机是现代航空工业中最重要的动力装置之一、它具有高效率、高功率密度和高可靠性等优点,被广泛应用于各类飞机中。
本文将概述航空燃气涡轮发动机的工作原理、结构组成、分类、性能指标以及未来发展方向等内容。
航空燃气涡轮发动机的工作原理基于燃烧室内的燃气推动涡轮。
它由压气机、燃烧室和涡轮组成。
首先,压气机将空气压缩,提高其温度和压力。
然后,压缩空气进入燃烧室,与燃料混合并燃烧,产生高温高压的燃气。
最后,高压燃气通过涡轮使其旋转,产生推力,并从尾喷管排出。
可见,航空燃气涡轮发动机的工作原理是通过涡轮驱动压气机,提供压缩空气并将其推向尾喷管。
航空燃气涡轮发动机的结构组成包括压气机、燃烧室、涡轮、尾喷管和附属系统等。
压气机主要通过叶片的旋转将空气压缩,提高其温度和压力。
燃烧室用于将燃料与压缩空气混合并燃烧,产生高温高压的燃气。
涡轮通过燃气的膨胀驱动压气机,使其继续工作,并产生推力。
尾喷管用于将高压燃气排出,并产生反作用力。
附属系统包括供油系统、冷却系统和控制系统等,用于保证发动机的正常运行。
航空燃气涡轮发动机可以根据压气机的工作循环分类为单转子和双转子发动机。
单转子发动机只有一个压气机和一个涡轮,如连杆式发动机。
双转子发动机具有两个对称的压气机和涡轮,如军用飞机上常用的分段式发动机。
根据尾喷管的形式,航空燃气涡轮发动机还可分为直喷式和径向喷管式。
航空燃气涡轮发动机的性能指标主要包括推力、燃油消耗率、比功率、绕程推力比和起动性能等。
推力是发动机提供的推动力量,决定飞机的加速能力和最大速度。
燃油消耗率是单位推力下消耗的燃油量,直接影响飞机的航程和经济性。
比功率是单位发动机质量下产生的推力,用于衡量发动机的功率密度。
绕程推力比是发动机在巡航状态下产生的推力与起飞推力的比值,用于衡量发动机的高空巡航性能。
起动性能包括发动机的起动时间和起动能力,在冷启动和热启动时对飞机的起飞和复飞具有重要影响。
《航空发动机》知识点总结

1. 理想气体的定义是:分子本身只有质量而不占有体积,分子间不存在吸引力的气体。
2. 理想气体的状态方程式:pv = RT ,R 为气体常数3. 热力学第一定律的解析式 dp = du + pdv ,u 为空气内能,pv 为位能4. 热力发动机是一种连续不断地把热能转换为机械能的动力装置。
5.⎧⎧⎨⎪⎩⎪⎪⎧⎧⎪⎪⎪⎪⎧⎫⎪⎪⎪⎧⎨⎪⎪⎪−⎨⎬⎨⎪⎪⎪⎩⎪⎪⎪⎪⎪⎩⎭⎪⎩⎨⎪⎧⎪⎧⎪⎨⎨⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩⎩⎩固体燃料火箭发动机火箭发动机液体燃料火箭发动机二行程 直列式活塞式吸气式四行程对列式增压式星型发动机冲压式航空发动机冲压式(无压气机) 脉动冲压式涡喷 空气喷气式涡扇 涡轮式(有压气机)涡轴 涡桨 6. 发动机的推力与每秒钟流过发动机的空气质量流量之比,叫做发动机的单位推力。
F s = F / q m7. 产生一牛(或十牛)推力每小时所消耗的燃油量,称为单位燃油消耗率。
sfc= 3600q mf / F8. 单转子涡喷发动机的站位规定及相应气流参数有:0站位:发动机的远前方,那里的气流参数为*0*00,,,,T p V T p o ;1站位:进气道的出口,压气机的进口,气流参数为*1*1111,,,,T p V T p ;2站位:压气机的出口,燃烧室的进口,气流参数为 *2*2222,,,,T p V T p ;3站位:燃烧室的出口,涡轮的进口,气流参数为*3*3333,,,,T p V T p ;4站位:涡轮的出口,喷管的进口,气流参数为*4*4444,,,,T p V T p ;5站位:喷管的出口,气流参数为*5*5555,,,,T p V T p ;---------------------------------------------------------------------9. 进气道对发动机性能的影响主要体现在:一,气流经过进气道的总压恢复系数影响流经发动机的空气流量,还影响循环的热效率;二,进气道本身的工作稳定性和出口气流流场是否均匀,前者会直接影响发动机的正常工作,后者会引起压气机效率下降甚至喘振;三,进气道对有效推力的影响,还包括1.超音速飞行时会有附加阻力2.进气道唇口的存在使外流急剧加速,可能引起气流分离或形成超音速区,使得外阻明显增加。
航空发动机涡轮叶片精密成型技术分析

航空发动机涡轮叶片精密成型技术分析摘要:航空发动机技术复杂且难以制造。
世界上只有几个国家可以完成航空发动机的设计和制造。
中国不断发展航空发动机的设计和制造,以提高自身的制造水平。
空心涡轮叶片是高性能航空发动机的主要部件之一,制造困难长期以来一直给中国的制造公司带来麻烦。
通过分析空心涡轮叶片的结构特性,分析和解释空心涡轮叶片的精密成型技术。
关键词:空心涡轮叶片;精密成型技术;精密铸造前言空心涡轮叶片是高性能航空发动机的关键组件,由于对精度的要求和制造困难,我们无法批量生产空心涡轮叶片。
为了提高空心涡轮叶片的制造合格率,我们将从叶片精密铸造的“形状控制”和“可控制性”两个方面出发分析空心涡轮叶片的精密铸造工艺,以提高叶片精密铸造的质量。
需要1空心涡轮叶片的精密铸造技术现代飞机发动机正朝着高推进力和低油耗的方向发展。
为了实现这一目标,当今世界上的主流方法是提高航空发动机涡轮的进气温度。
发动机涡轮的当前入口温度已经很高。
随着温度的不断升高,发动机涡轮叶片的温度达到1880℃±50℃,为了解决这个问题,目前的涡轮叶片主要用于复合膜冷却的单晶空心涡轮叶片(称为空心涡轮叶片)。
由于结构的复杂性和材料的特殊性,熔模铸造工艺主要用于制造空心涡轮叶片,但由于精度低,产量低,该工艺存在使空心涡轮叶片具有高性能的问题。
有。
通常,当今的空心涡轮叶片精密铸造的产率约为10%,其中约90%的废叶片的形状和尺寸偏差约为50%,而重结晶缺陷约占25%。
主要原因是铸造缺陷。
为了提高空心涡轮叶片的制造成品率,有必要解决“形状控制”和“铸造控制”两个问题:精密铸造后的尺寸精度和复合材料性能。
空心涡轮叶片的工艺复杂且难以制造:粗略的制造过程如下:首先,使用模芯来完成空心涡轮叶片精密铸造所需的陶瓷芯,并且陶瓷芯是空心的填充零件。
用来。
随后,使用蜡模工艺在芯的外层上制备涡轮叶片蜡模,然后通过烧结注射成型和其他工艺来制造空心涡轮叶片粗糙毛坯。
涡轮叶片气膜孔加工技术及其发展

涡轮叶片气膜孔加工技术及其发展涡轮是中热负荷和机械负荷最大的部件,涡轮叶片的工作环境尤为恶劣,在发动机循环中,它承受着燃烧后的高温高压燃气冲击,其制造技术也被列为现代航空发动机的关键技术。
发动机性能很大程度上取决于涡轮进口温度的高低,它受涡轮叶片材料的限制。
对这些部件进行连续不断的冷却,可以允许它们的工作环境温度超过材料的熔点,这样仍能安全可靠的工作,气膜冷却技术是具有代表性的重要结构改进之一,大大提高了发动机的性能,同时也对气膜孔加工技术提出了更高的要求。
随着制造技术的发展,气膜孔加工新技术也不断出现,在传统的激光打孔(Laser)、电火花高速打孔(EDM)、电化学打孔(ECM)等加工方法的基础上,又发展了激光电火花复合打孔、电解电火花复合打孔等新工艺,去除重熔层技术在磨粒流的基础上,又发展应用了化学研磨技术、电解质- 等离子加工等新技术,为提高涡轮叶片气膜孔加工质量、技术水平和生产效率做出了重要贡献。
气膜冷却技术的发展和应用据统计,涡轮前温度平均每年升高25K,其中约15K是依靠冷却技术的进步取得的。
在过去的三、四十年中,涡轮进口温度提高了大约450K。
其中70%是由于涡轮工作叶片和导向叶片的高效冷却设计取得的,而另外30% 应归于高温合金和铸造加工工艺的改进。
随着航空发动机技术的发展,出现了许多先进的涡轮叶片冷却技术,其发展趋势如图1所示。
提高涡轮进口温度是增大和提高发动机推力与推重比的重要手段。
在材料耐温能力有限的前提下,涡轮叶片冷却技术成为了提高涡轮进口温度、保证涡轮在高温环境下可靠工作的可行且高效的途径。
为此,世界航空发动机设计与制造商研究和开发了大量的涡轮叶片冷却技术,成功地验证和应用了冲击、对流、气膜、复合冷却、铸冷和超冷等叶片技术,并且在提高涡轮进口温度(进而提高涡扇发动机的性能)方面取得了很好的效果。
图2为涡轮叶片及其内部冷却通道的形式图。
气膜孔加工技术气膜冷却技术的主要结构特点是在涡轮叶片前缘、叶身型面等部位设计了大量的气膜孔,孔径一般在0.2~0.8mm,空间角度复杂。
关于铸造单晶叶片的专利技术综述

关于铸造单晶叶片的专利技术综述航空发动机是飞机的心脏,而涡轮叶片是航空发动机核心部件之一,被誉为“皇冠上的明珠”。
涡轮叶片的制备工艺从早期的挤压、锻造发展为铸造,经历了等轴晶叶片、定向凝固柱状晶叶片和单晶叶片三个发展阶段。
作为最为先进的单晶叶片,其性能水平成为一种型号发动机先进程度的重要标志,在一定意义上,也是一个国家航空工业水平的显著标志[1-4]。
文章通过检索国内外铸造单晶叶片的专利文献,分析发现,铸造单晶叶片从最早的功率降低法进行冷却,逐渐发展为空冷法、液态金属冷却法;启晶方式由早期的晶种启晶的方式逐渐发展为现在主流的铜盘冷却方式;选晶方式主要有转折式和螺旋式选晶,并以螺旋选晶器为主。
标签:专利;单晶叶片;铸造1 单晶叶片的概述典型的单晶叶片制备装置如图1所示,叶片型壳设置于结晶器铜盘上,至于加热区中,铸造时铸件以一定的速度从炉中移出,以形成一定的温度梯度,从而制备形成单晶叶片[5]。
目前,我国将航空发动机列为国家战略,涌现了J20、运20、C919等一批航空设备,振奋人心。
通过对国内外专利文献进行梳理,发现对铸造单晶叶片的研究主要集中于冷却方式、启晶方式、选晶方式、型壳上的改进以及热处理方式等内容。
本文针对上述内容,对国内外铸造单晶叶片的专利文献进行检索和分析。
2 铸造单晶叶片的专利申请分析笔者对涉及单晶叶片的铸造的分类号进行了查询,其主要涉及分类号:B22C9/04(用熔模方法)、B22C9/22(铸型或型芯)、B22D27/04(影响金属温度,如用加热或冷却铸型)、C30B11/00(正常凝固法或温度梯度凝固法的单晶生长)。
此外,笔者结合标签:叶片、涡轮、燃气轮机、燃气机、发动机等以及vane、blade、impeller、paddle、fan、single crystal等进行检索。
检索截止日期为2017年06月08日,初步获得1000余篇中外文专利,通过筛选,得到的有效样本350余篇;经过数据整理,利用Excel对获取的样本数据的专利申请状况进行统计分析。
涡轮叶片冷却结构设计与试验方法简析

对于推重比高达20:1的航空发动机,提升以涡轮叶片为主的热端部件的耐高温性能的需求十分迫切,先进的涡轮叶片冷却结构设计与试验方法则是提高涡轮前温度的重要保障。
传统的典型涡轮叶片冷却结构主要包含前缘的冲击和气膜冷却结构、尾缘的扰流柱和劈缝冷却结构,以及中弦区域气膜冷却和带扰流肋的通道冷却结构等(如图1所示)。
然而,随着涡轮前温度的不断提升,通过典型冷却结构的简单组合的设计已经不能满足冷却的需求,优化设计已势在必行。
由于涡轮叶片冷却结构设计是一个综合了气动、传热、结构、强度、可靠性等多学科的复杂问题,所以设计过程中不仅需要先进的方法和流程,相关的配套试验也同样不可或缺。
图1 现代涡轮叶片典型冷却结构涡轮叶片冷却结构设计涡轮叶片冷却结构的设计是依据涡轮叶片的工作环境、设计寿命以及降温需求等为基础,在涡轮叶片各位置采用合理的冷却方式来实现最佳冷却效果,同时满足寿命、强度以及耐高温的要求。
传统设计方法和流程涡轮叶片冷却结构的传统设计主要分为方案设计和详细设计两个阶段。
在方案设计阶段是初步确定涡轮叶片冷却结构并进行初步热分析,初步热分析通常采用S1流面流动以及换热计算,基于经验公式的管网计算以及二维导热计算相结合,实现对叶片二维温度场的预测。
在详细设计阶段则是根据涡轮叶片冷效试验结果进行改进设计(设计流程如图2所示)。
目前,涡轮叶片冷却设计都是结合实际情况对上述涡轮叶片设计步骤进行改良的过程。
图2 涡轮叶片冷却结构传统设计流程新型设计方法和流程随着数值仿真技术的发展和计算能力的提升,设计人员更多地借助数值方法提高涡轮叶片冷却结构设计的可靠性并缩短设计周期。
例如,哈尔滨工业大学的涡轮叶片设计团队结合冷却结构参数化建模技术、传统的管网计算方法与新兴的全三维气热耦合数值模拟技术,提出了一套新的涡轮叶片冷却结构设计方法和流程,并编写了相关的设计程序与计算程序(如图3所示)。
在初步设计阶段,设计人员根据气冷叶片的气动参数和叶型特征,参考以往的气冷叶片设计结果,选择多种形式的初步冷却结构。
航空发动机结构_ ppt课件

结构类型: 轴流式 离心式 混合式
24
轴流式压气机的特点: 增压比高、效率高、单位空气流量大。
➢在相同迎风面积下,轴流式比离心式吸入的空气多 得多,产生的推力更大。 ➢通过增加级数就能增加增压比。 ➢高增压比有利于采用轴流式压气机,因为它改善了 效率,并进而改善了给定推力下的耗油率。 ➢在大、中推力发动机上,普遍采用轴流式压气机。
19
核心发动机(燃气发生器):
发生燃气的部件,即压气机、燃烧室和涡 轮称为燃气发生器。由于它处于发动机的核心 部位,故又称为核心发动机。
• 对单转子发动机来讲,就是指压气机、主燃烧 室的带动压气机的涡轮;
• 对双转子发动机来讲,就是指高压压气机、主 燃烧室和高压涡轮。
以核心机为基础,增添不同类型的部件 就可以发展成不同类型的发动机。
涡轮),尾喷管 特点:发动机的推力是内外涵道气流反作用力的总和。 涵道比(流量比):外、内涵道空气流量之比。
2021/7/5
15
4、WZ发动机
主要部件:进气道、压气机、燃烧室、动力涡 轮、自由涡轮、尾喷管
特点:通常带有自由涡轮,而其他形式的涡轮 喷气发动机一般没有自由涡轮。2021/7/5源自165 桨扇发动机
2021/7/5
6
航空发动机研究工作的特点
•技术难度大
一台发动机内有十几个部件和系统及数万个零件
研制一种新的发动机需要1万小时的整机试验和10万小
时的部件和系统试验。
•周期长
先进发动机的研制周期为9-15年,F119从1986年开始
到2005年投入使用,前后达19年。
•费用高
F119的研制费用超过20亿美元;发动机的研究和发展
转子结构设计的基本问题就是针对这些缺点而进行的。
航空叶片机原理

航空叶片机原理解析1. 引言航空叶片机是飞机发动机中的重要组成部分。
它承担着将空气吸入并加速的任务,为发动机提供动力。
本文将深入探讨航空叶片机的基本原理,包括工作原理、结构组成、动力学特性等。
2. 工作原理航空叶片机的工作原理涉及两个关键要素:压气机和涡轮。
2.1 压气机在航空叶片机中,空气首先通过进气口进入压气机。
压气机由一系列叶轮和导流器构成。
叶轮由许多叶片组成,它们位于一个圆筒状的壳体内。
当空气通过叶轮时,叶片将空气加速并压缩。
这是由于叶片的形状和旋转速度的作用。
在叶轮的两侧都有导流器,它们帮助引导空气进入下一个叶轮,并确保流动的方向。
通过多级压气机的配置,空气在每个级别中被进一步压缩,从而增加了空气的压力和密度。
2.2 涡轮压缩后的空气进入燃烧室,加入燃料后点燃。
燃烧产生的高温高压气体通过喷嘴排出,并喷向涡轮。
涡轮位于压气机的后面,与压气机通过一个轴连接。
喷出的高温高压气体旋转涡轮,并转化为动能。
涡轮的旋转驱动压气机和涡轮之间的轴,使其旋转起来。
3. 结构组成航空叶片机包含多个重要组成部分,它们共同实现了叶片机的工作原理。
3.1 涡轮涡轮是航空叶片机的核心组件之一。
它由许多叶片和一个中心轴组成。
涡轮叶片通常采用镍合金等高温合金制成,以应对高温和高速飞行环境。
叶片的形状和尺寸是关键设计参数。
它们既要确保空气能够被有效地加速和转化为动能,又要保持足够的强度,以抵抗高速旋转和高温燃烧气体的冲击和腐蚀。
3.2 叶轮叶轮是航空叶片机的另一个重要组成部分。
它由一系列叶片和导流器组成。
叶片的形状和数量是根据设计要求和气流特性来确定的。
叶轮的设计既要考虑性能,又要考虑结构强度。
叶片的材料通常是铝合金或钛合金,以确保足够的强度和耐久性。
导流器的作用是指导压缩空气流经叶轮,并把空气引导到下一个级别。
3.3 压气机壳体压气机壳体是容纳叶轮和导流器的圆筒状结构。
它的作用是封装压气机,确保压缩空气的流动方向和压力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
航天发动机涡轮叶片主要冷却方式综述 航天发动机是为航空器提供飞行所需动力的发动机。有3种类型:①活塞式航空发动机。早期在飞机或直升机上应用的航空发动机,用于带动螺旋桨或旋翼。大型活塞式航空发动机的功率可达2500千瓦。后来为功率大、高速性能好的燃气涡轮发动机所取代。但小功率的活塞式航空发动机仍广泛地用于轻型飞机、直升机及超轻型飞机。②燃气涡轮发动机。应用最广。包括涡轮喷气发动机、涡轮风扇发动机、涡轮螺旋桨发动机和涡轮轴发动机,都具有压气机、燃烧室和燃气涡轮。涡轮螺旋桨发动机主要用于时速小于800千米的飞机;涡轮轴发动机主要用作直升机的动力;涡轮风扇发动机主要用于速度更高的飞机;涡轮喷气发动机主要用于超声速飞机。③冲压发动机。特点是无压气机和燃气涡轮,进入燃烧室的空气利用高速飞行时的冲压作用增压。它构造简单、推力大,特别适用于高速高空飞行。由于不能自行起动和低速下性能欠佳,限制了应用范围,仅用在导弹和空中发射的靶弹上。 参考发动机工作原理,我们知道,在燃烧室产生温度极高的气体,通过涡轮叶片把内能转化成机械能,所以涡轮叶片承受着很大的温度。我们知道,温度过高会对涡轮叶片的性能和寿命都有不利的影响,尽管现在的高温材料已经取得了很大的成就,但是相对于从燃烧室出来的气体的温度,还远远不够。于是,我们必须采取其他的措施来使冷却发动机的涡轮叶片。 目前应用最广的冷却方式主要有一下几种: 一:对流冷却。靠液体或气体的流动来传热的方式叫对流。根据冷却介质的不同,分为水冷系统和风冷系统。这是一种最简单的冷却方式,冷却剂流过受热零件壁面,靠对流传热将热量带走,如对着受热壁面喷射冷却剂以提高对流冷却的效果。对流冷却广泛用于发动机的各种受热零、组件。航天发动机的涡轮叶片采用空气对流冷却,可使叶片温度降低200~250°C。如果流过冷却套的推进剂由喷管末端一周小孔直接排出,排放射流也能产生一部分推力。 二:冲击冷却。冷气通过细小的冲击孔,以很高的速度冲击到叶片内壁面,对内壁面进行有效的冷却。冲击冷却比一般对流冷却效果高出好几倍,由于它这种特殊的方式,大多用来冷却受热最严重而冷却条件又差的领域。[1] 三:气膜冷却。在壁面附近沿一定方向向主流喷人冷气,这股冷气在主流的压力和摩擦力作用下向下游弯曲。粘附在壁面附近,形成温度较低的冷气膜,将壁面同高温燃气隔离,并带走部分高温燃气或明亮火焰对壁面的辐射热量,从而对壁面起到良好的保护作用,这种冷却方式就是气膜冷却。最初有关气膜冷却的研究是Wieghardt为解决机翼的防冻所做的二维槽缝热气喷射,航空燃气轮机出现后,人们发现可以喷射冷气对高温部件进行冷却,这种技术首先被用于燃烧室中。到七十年代,气膜冷却开始被运用到涡轮叶片上。由于涡轮前温度的不断升高,对叶片的冷却也日益关键,气膜冷却的研究很快展开,成为涡轮叶片外表面的重要冷却技术。通常影响气膜冷却效果的因素有:①气膜孔的几何参数,比如气膜孔的喷射角度、孔径的大小、孔长与孔径的比、孔的间距、孔排数亦即孔出口的形状;②孔的气动参数,比如主流速度、吹风比、冷气流与主流的动量比、主流湍流度、气膜孔前边界层发展情况、压力梯度等。该冷却技术的效果可达650℃以上,是现代涡轮高温部件的主要冷却方法。 四:气膜-对流冷却 。这是一种对流冷却和气膜冷却相结合的技术,不仅能够提高冷却效果,还能减少冷却空气量,这种复合冷却方法广泛用于高温涡轮的导向片和工作叶片上的某些温度最高的部位,特别是叶片前缘、叶盆表面及叶栅通道的端面。 五:对流-冲击-气膜相结合的复合冷却技术。复合冷却是一种高效的冷却方式,它是在冷却空气形成气膜以前,通过强制对流尽可能多的吸收冷却壁面的热量,使得冷却壁面的温度降低,从而达到冷却壁面的要求。复合冷却能降低壁面温度,减小流动方向上的温度梯度,在保持相同壁面热负荷的情况下冷却空气量较纯气膜冷却显著减少。目前国内对于复合冷却的研究还不完全充分,尤其对于冲击+逆向对流+气膜复合冷却的集合结构对冷却效果的影响规律,国内的研究还少之又少,国外对复合冷却进行了大量的研究,取得了很多研究成果。 在航天发动机冷却这一重大领域,一方面我们应该尽可能去改进现有的冷却技术,另一方面,应该去积极探索新的发展方向。目前国际上主要着眼于多孔层板发散冷却和发散冷却这两种新的冷却技术上。 多孔层板发散冷却。用多孔层板发散技术制造的涡轮叶片由两片组成,夹层内部的冷却空气必须通过相当密集的锭状迷宫通道,而后才能从表面的排列孔冲出来,这一冷却过程使空气在金属叶片周围形成气膜,将叶片与高温燃气隔开,采用这种发散技术的叶片可承受高达2200-2477K的燃气温度,冷却气流可减少40%。目前很多专家学者都在做有关这方面的研究,Gritsch 等人[2 ]针对不同吹风比下不同形状气孔的冷却效果进行了试验,气孔形状分别为圆形、扇形和松弛扇形。试验中保持外部主流马赫数、冷却气与主流的密度比以及内部冷却气流马赫数不变,采用红外摄影系统进行温度测量。结果表明,2 种经过梯形扩展的孔型都比普通的圆形孔冷却效果好,而松弛扇形孔更显示出良好的侧流性。Goldstein 等人[3 ]论述了气孔排列方式、二次流密度以及主流区湍流边界层厚度等因素对叶片离散孔气膜冷却效果的影响。Cho 和Goldstein[4 ]采用萘升华技术研究不同吹风比下有交叉流动存在时,气膜孔内、其附近区域以及平板外表面的换热效果,讨论了Sher2wood 数的变化特点。Honami 等人[5 ]研究了平板上单排孔侧吹的气膜冷却,主流区为完全发展的湍流边界层。试验采用双线探针测量不同吹风比下的速度场和温度场,其结果显示出由于主流与冷却气掺混而产生的三维流场与温度场特性以及侧吹导致的不对称流动。Lakehal 等人[6 ]在该试验研究的基础上采用有限元方法进行数值模拟,比较2 种不同的湍流模型获得的结果。Lee 等人[7 ]在试验中布置了不同侧吹角度的排孔,在主流有波动的情况下考察了气膜冷却效果。NASA 的Glenn 研究中心的Garg和Abhari[8 ]在共开有93 个气膜孔的ACE 旋转涡轮转子叶片上进行气膜冷却实验,并将试验数据与数值模拟的结果进行比较,讨论模拟的准确性。Pa2panicolaou 等人[9 ]对火焰筒壁发散冷却进行了数值模拟,得到不同吹风比及密度比条件下的气膜冷却效率,通过比较2 种不同导热性能的板材,考察材料导热率对气膜冷却特性的影响。通过这些人的努力,这块领域最终会被我们攻破。 发散冷却。又称发汗冷却,它是由高温合金多孔层板构造而成的空心叶片,高压冷却空气流团叶片内腔通过壁面的密集的细孔渗出并流到叶片外表面。在高温燃气与叶片表面之间形成一层完整连续的空穴隔热层,它既能使叶片表面与燃气完全隔开,又能吸收叶片表面部分热量,采用这种冷却方法,可使叶片材料温度接近于冷却空气温度,发散冷却效果可达800℃以上,可望用在未来新一代高性能发动机上。发散冷却的主要技术局限是燃烧室的小颗粒可能会堵塞小孔,在烧结多孔材料结构上存在局部堵塞时, 局部孔隙率的减小会导致局部阻力降低, 因此局部堵塞处温度升高, 当固体颗粒导热系数较小时, 与堵塞区相邻的区域温度下降; 而固体颗粒导热系数较大时, 整个壁面的温度都会随之上升。当结构上存在局部缺陷时, 冷却剂集中从缺陷处流出, 因此缺陷区域局部壁面温度下降, 当固体颗粒导热系数较小时, 与缺陷区域相邻的壁面温度会升高; 而当固体颗粒导热系数较大时, 整个多孔壁面的温度都会随之下降。局部高温或大热流能够使承受大热流密度的壁面温度飞升, 温度梯度增大。冷却失效产生的影响会沿着壁面扩散, 导致整个壁面的温度上升, 在恶化区进一步扩大之后, 可导致发散冷却的失败。
参考文献: 1 倪萌,朱惠人,裘 云,等.航空发动机涡轮叶片冷却技术综述[J].燃气轮机技术,2005,18(4):25—38. 2 Gritsch M , Schulz A , Wittig S. Film - cooling holes with expanded exits : near - hole heat transfer coefficients. Inter2 national Journal of Heat and Fluid Flow , 2000 , 21 : 146~ 155. 3 Goldstein R J , Eckert E R G, Burggraf F. Effects of hole geometry and density on three - dimensional film cooling. International Journal of Heat and Mass Transfer , 1974 , 17 : 595~607. 4 Cho H H , Goldstein R J . Heat (mass) transfer and film cooling effectiveness with injection through discrete holes. Part I : Within holes and on the back surface. & Part II : On the exposed surface. American Society of Mechanical Engineers ,1993 , Nov 28 - Dec 3 , Published by ASME: 1 - 11 0402 - 1215. film cooling : Measurements of surface temperature and velocity/ temperature field within the jet . 92 - GT - 180. 6 Lakehal D , Theodoridis G S , Rodi W. Computation of film cooling of a flat plate by lateral injection from a row of holes. International Journal of Heat and Fluid Flow , 1998 , 19 : 418~430. 7 Lee J S. J ung I S. Effect of bulk flow pulsations on film cooling with compound angle holes. International Journal of Heat and Mass Transfer , 2002 , 45 : 113~123. 8 Garg Vijay K. Comparison of predicted and experimental Nusselt number for a film - cooled rotating turbine blade. International Journal of Heat and Fluid Flow. 1997 , 18 : 452~460. 9 Papanicolalou E , Giebert D , Koch R , et al. A conservation - based discretization approach for conjugate heat transfer calculations in hot - gas ducting turbomachinery compo2 nents. International Journal. Heat and Mass Transfer , 2001 , 44 : 3413~3429.