18.1勾股定理课件(人教版八下)-免费
合集下载
八年级数学下册 18.1勾股定理课件(共20张PPT)PPT文档共22页

八年级数学下册 18.1勾股定理课件
•
26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索
•
27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克
•
28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯
•
29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克
•
30、风俗可以造就法律,也0张PPT)
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
•
26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索
•
27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克
•
28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯
•
29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克
•
30、风俗可以造就法律,也0张PPT)
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
八年级数学下册 第18章 勾股定理 18.1 勾股定理 第1课时 勾股定理课件

第18章 勾股定理(ɡōu ɡǔ dìnɡ lǐ)
18.1 第1课时(kèshí) 勾股定理
第一页,共十三页。
第18章 勾股定理(ɡōu ɡǔ dìnɡ lǐ)
18.1 第1课时(kèshí) 勾股定理
知识目标 目标突破 总结反思
第二页,共十三页。
18.1 1 第 课时(kèshí) 勾股定理
知识(zhī shi)目标
(2)我国古代把直角三角形中较短的直角边称为勾,较长的直 角边称为股,斜边称为弦.因此我们称上述定理为勾股定理.
第十页,共十三页。
18.1 1 第 课时(kèshí) 勾股定理
已知直角三角形的两边长分别为 3 cm,4 cm,则第三边的长 是________.
王华同学的答案是 5 cm,小明同学的答案是 5 cm 或 7 cm, 哪个同学的答案正确?并给出理由.
∴S 梯形 BCC′D′=S△ABC+S△CAC′+S△D′AC′=12ab+12c2+12ab=c2+22ab, ∴(a+2 b)2=c2+22ab,∴a2+b2=c2.
第八页,共十三页。
18.1
1课时 第
(kèshí)
勾股定理
【归纳总结】拼图法证明勾股定理的基本思路: 先构造一个含有直角三角形的图形,再用两种不同的方法表示同一 图形的面积,然后根据“同一图形的面积相等”列等式,化简即得 勾股定理的结论.
第十二页,共十三页。
内容(nèiróng)总结
第18章 勾股定理(ɡōu ɡǔ dìnɡ lǐ)。18.1 第1课时 勾股定理(ɡōu ɡǔ dìnɡ lǐ)。a2+b2=c2
第十三页,共十三页。
图 18-1-1
第七页,共十三页。
18.1 第1课时(kèshí) 勾股定理
18.1 第1课时(kèshí) 勾股定理
第一页,共十三页。
第18章 勾股定理(ɡōu ɡǔ dìnɡ lǐ)
18.1 第1课时(kèshí) 勾股定理
知识目标 目标突破 总结反思
第二页,共十三页。
18.1 1 第 课时(kèshí) 勾股定理
知识(zhī shi)目标
(2)我国古代把直角三角形中较短的直角边称为勾,较长的直 角边称为股,斜边称为弦.因此我们称上述定理为勾股定理.
第十页,共十三页。
18.1 1 第 课时(kèshí) 勾股定理
已知直角三角形的两边长分别为 3 cm,4 cm,则第三边的长 是________.
王华同学的答案是 5 cm,小明同学的答案是 5 cm 或 7 cm, 哪个同学的答案正确?并给出理由.
∴S 梯形 BCC′D′=S△ABC+S△CAC′+S△D′AC′=12ab+12c2+12ab=c2+22ab, ∴(a+2 b)2=c2+22ab,∴a2+b2=c2.
第八页,共十三页。
18.1
1课时 第
(kèshí)
勾股定理
【归纳总结】拼图法证明勾股定理的基本思路: 先构造一个含有直角三角形的图形,再用两种不同的方法表示同一 图形的面积,然后根据“同一图形的面积相等”列等式,化简即得 勾股定理的结论.
第十二页,共十三页。
内容(nèiróng)总结
第18章 勾股定理(ɡōu ɡǔ dìnɡ lǐ)。18.1 第1课时 勾股定理(ɡōu ɡǔ dìnɡ lǐ)。a2+b2=c2
第十三页,共十三页。
图 18-1-1
第七页,共十三页。
18.1 第1课时(kèshí) 勾股定理
(精选幻灯片)勾股定理ppt课件

2 2 22
“总统证法”. 比较上面二式得 c2=a2+b2
16
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
17
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
b c
a2+b2=c2吗?
• 1881年,伽菲尔 德就任美国第二
A b 1 E aB ∵ S梯形ABCD= 2 a+b2
十任总统.后来, 1
人们为了纪念他 对勾股定理直观、 简捷、易懂、明
= (a2+2ab+b2) 2
又∵ S梯形 ABCD=S
AED+S
EBC+S
CED
了的证明,就把 这一证法称为
1 1 11 = ab+ ba+ c2= (2ab+c2)
33
34
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
3
s1 s2
s3
返 拼回 图 4
合作 & 交S流1+☞S2=S3
a等²+腰a直²=角c三²角形两直角边
“总统证法”. 比较上面二式得 c2=a2+b2
16
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
17
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
b c
a2+b2=c2吗?
• 1881年,伽菲尔 德就任美国第二
A b 1 E aB ∵ S梯形ABCD= 2 a+b2
十任总统.后来, 1
人们为了纪念他 对勾股定理直观、 简捷、易懂、明
= (a2+2ab+b2) 2
又∵ S梯形 ABCD=S
AED+S
EBC+S
CED
了的证明,就把 这一证法称为
1 1 11 = ab+ ba+ c2= (2ab+c2)
33
34
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
3
s1 s2
s3
返 拼回 图 4
合作 & 交S流1+☞S2=S3
a等²+腰a直²=角c三²角形两直角边
新人教版八年级下第18章第一节 勾股定理(第一课时)

利用多媒体展示分割、拼接的过程.让学生体会图形之间的联系。
(2)想一想,怎样利用小方格计算正方形P、Q、R面积?
P的面积
Q的面积
R的面积
图
(3)正方形P、Q、R面积之间的关系是什么?
(4)直角三角形三边之间的关系用命题形式怎样表述?
教师出示图表.
学生独立观察并计算图中正方形P、Q、R的面积并完成填表.
教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其用不同的方法得出大正方形的面积.
或者用割补的方法将正方形A、B中小等腰直角三角形补成一个大正方形得到:正方形A、B的面积之和等于大正方形C的面积.
教师引导学生,由正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方.
通过讲述故事来进一步激发学生学习兴趣,使学生在不知不觉中进入学习的最佳状态.
“问题是思维的起点”,通过层层设问,引导学生发现新知.
得到教科书66页图18.1—3图1,构造了以a、b为直角边的直角三角形,令斜边为c,沿直角三角形的斜边分割从而拼得边长为c的正方形,完成拼图. 学生容易想到:未剪之前,图形面积是a +b ,在拼图过程中,构造了以a、b为直角边的直角三角形,得到斜边为c.拼接之后新的正方形边长是c,面积为c .从而得到直角三角形三边的关系:a +b =c ,即验证了命题1.
课题
18.1勾股定理(第一课时)
学校
嘉积中学海桂学校
上课教师
刘红军
项目
内 容
理论依据或意图
教
材
分
析
教材地位与作用
《勾股定理》是人教版八年级(下册)第十八章第一节的内容。它是在学生已经掌握了直角三角形有关性质的基础上进行学习的,是直角三角形的一条非常重要的性质,也是几何中最重要的定理之一。它揭示了直角三角形三边之间的数量关系,将数与形密切联系起来,在数学的发展中起着重要的作用,它可以解决许多直角三角形的计算问题,在生产,生活中用途很大。
(2)想一想,怎样利用小方格计算正方形P、Q、R面积?
P的面积
Q的面积
R的面积
图
(3)正方形P、Q、R面积之间的关系是什么?
(4)直角三角形三边之间的关系用命题形式怎样表述?
教师出示图表.
学生独立观察并计算图中正方形P、Q、R的面积并完成填表.
教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其用不同的方法得出大正方形的面积.
或者用割补的方法将正方形A、B中小等腰直角三角形补成一个大正方形得到:正方形A、B的面积之和等于大正方形C的面积.
教师引导学生,由正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方.
通过讲述故事来进一步激发学生学习兴趣,使学生在不知不觉中进入学习的最佳状态.
“问题是思维的起点”,通过层层设问,引导学生发现新知.
得到教科书66页图18.1—3图1,构造了以a、b为直角边的直角三角形,令斜边为c,沿直角三角形的斜边分割从而拼得边长为c的正方形,完成拼图. 学生容易想到:未剪之前,图形面积是a +b ,在拼图过程中,构造了以a、b为直角边的直角三角形,得到斜边为c.拼接之后新的正方形边长是c,面积为c .从而得到直角三角形三边的关系:a +b =c ,即验证了命题1.
课题
18.1勾股定理(第一课时)
学校
嘉积中学海桂学校
上课教师
刘红军
项目
内 容
理论依据或意图
教
材
分
析
教材地位与作用
《勾股定理》是人教版八年级(下册)第十八章第一节的内容。它是在学生已经掌握了直角三角形有关性质的基础上进行学习的,是直角三角形的一条非常重要的性质,也是几何中最重要的定理之一。它揭示了直角三角形三边之间的数量关系,将数与形密切联系起来,在数学的发展中起着重要的作用,它可以解决许多直角三角形的计算问题,在生产,生活中用途很大。
八年级数学下册_181_勾股定理_(第2课时)勾股定理的应用课件_人教新课标版

爬上去,所走的路程会最短。你能帮蜘蛛找到
最短路径吗?
(2)若蜘蛛爬行的速度是每秒10厘米,问蜘蛛
沿长方体表面至少爬行几秒钟,才能迅速地抓
到苍蝇?
H G
B F
D
A
C
H
B1
B3
G
F B2
A
CD
课本P71习题18.1第9题、 第10题。
Байду номын сангаас
探索与提高:
如图所示,现在已测得长方体木块的长
3厘米,宽4厘米,高24厘米。一只蜘蛛潜
伏在木块的一个顶点A处,一只苍蝇在这
个长方体上和蜘蛛相对的顶点B处。
H G
B F
D
A
C
(1)蜘蛛急于想捉住苍蝇,沿着长方体的表面
向上爬,它要从点A爬到点B处,有无数条路线,
它们有长有短,蜘蛛究竟应该沿着怎样的路线
1
12
3 45
❖ 用同样的方法,你能否 在数轴上画出表示
❖
,…
12
3
45
1
0 1 2 32 5 3 4 5
1.如图,是一个三级台阶,它的每一级的长、宽和高分别等于55cm,1 0cm和6cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁, 想到B点去吃可口的食物。请你想一想,这只蚂蚁从A点出发,沿着台阶 面爬到B点,最短线路是多少?
人教版八年级(下册)
第十八章勾股定理
18.1勾股定理(第2课时)
知识回顾
1 已知直角三角形ABC的三边为a,b,c ,
∠C= 90° ,则 a,b,c 三者之间的关系
是
。
2 矩形的一边长是5,对角线是13,则它
的面积是
。
八年级数学下18.1勾股定理(3)课件

( x 2)2 ( x 4)2 x 2 x 2 4 x 4 x 2 8 x 16 x 2 2 x 12 x 20 0 ( x 10)( x 2) 0 x1 10, x2 2 (舍去)
答:竿长10尺.
x
4
x- 4
2
5 5
(2,1) D
x
1
5
x
F (4, 0)
H ( 5, 0)
2 x C E 5 2 2 2 ( , 0) ( 5, 0) 1 (2 x ) x 4
O
x
1 4 4x x x
2
2
5 解得x 4
探究2:
荷花问题 平平湖水清可鉴, 面上半尺生红莲; 出泥不染亭亭立, 忽被强风吹一边; 渔人观看忙向前, 花离原位二尺远; 能算诸君请解题, 湖水如何知深浅.
第十八章
18.1
勾股定理
勾股定理(三)
历史因你而改变
学习因你而精彩
探究1:
你能在数轴上画出表示 13 的点吗?
13
步骤: 1、在数轴上找到点A,使OA=3;
2
2、作直线l⊥OA,在l上取一点B,使AB=2; 3,以原点O为圆心,以OB为半径作弧,弧与 数轴交于C点,则点C即为表示 13的点。 l B ∴点C即为表示 13 的点
你能在数轴上表示出 2 的点吗?
13 12 11
1
10
1
1 1
15 16
17
9
1
1
1 2 1
3
4
8
7
1 1 1
18 19
5
6
n
1
1
第七届国际数学 教育大会的会徽
勾股定理ppt课件
2 2 22
“总统证法”. 比较上面二式得 c2=a2+b2
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
AC=__1_5_______
面积 面积 面积
图1
C
9A
图1 2B5
每个小方格的面积均为1 图18.1-2
图2
A、B、 C面积 关系
直角三 角形三 边关系
补全
分割
探究
顶顶点点在在格格点点上上的的直直角角三三角角形形两两 直直角角边边的的平平方方和和等等于于斜斜边边的的平平方方吗。?
B
A C
正方形A 正方形B 正方形C 的单位 的单位 的单位
┏
勾a
a2+b2=c2
证明2:
大正方形的面积可以表示为 (a+b)2 ;
也可以表示为
ab 4 C2
2
c a
b
c a
b
c a
b
c a
b
∵ (a+b)2 = 4 ab C2 2
a2+2ab+b2 = 2ab +c2
∴a2+b2=c2
证明3:
C
你能只用这两个 D
直角三角形说明 a c
b c
a2+b2=c2吗?
3
s1 s2 s3
返 拼回 图
合作 & 交S流1+☞S2=S3
“总统证法”. 比较上面二式得 c2=a2+b2
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
AC=__1_5_______
面积 面积 面积
图1
C
9A
图1 2B5
每个小方格的面积均为1 图18.1-2
图2
A、B、 C面积 关系
直角三 角形三 边关系
补全
分割
探究
顶顶点点在在格格点点上上的的直直角角三三角角形形两两 直直角角边边的的平平方方和和等等于于斜斜边边的的平平方方吗。?
B
A C
正方形A 正方形B 正方形C 的单位 的单位 的单位
┏
勾a
a2+b2=c2
证明2:
大正方形的面积可以表示为 (a+b)2 ;
也可以表示为
ab 4 C2
2
c a
b
c a
b
c a
b
c a
b
∵ (a+b)2 = 4 ab C2 2
a2+2ab+b2 = 2ab +c2
∴a2+b2=c2
证明3:
C
你能只用这两个 D
直角三角形说明 a c
b c
a2+b2=c2吗?
3
s1 s2 s3
返 拼回 图
合作 & 交S流1+☞S2=S3
18.1勾股定理精品PPT课件
1.观察图1-1(图中每个小方格代表一个单位面积)
正方形A中含有 9 个
小方格,即A的面积是
9 个单位面积.
正方形B的面积是
9 个单位面积.
正方形C的面积是
18 个单位面积.
1 2 3 继续
C A
B
图1-1
你是怎样得到上面的 结果的?与同伴交流
交流.
正方形周边上的 格点数L=12
正方形内部的格 点数N=13
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
§18.1
活动 1
你见过这个图案吗? 你听说过勾股定理吗?
这就是本届大会 会徽的图案.
这个图案是我国汉代数学 家赵爽在证明勾股定理时用到 的,被称为“赵爽弦图”.
活动 2
相传2500年前,毕达哥拉斯有一次 在朋友家里做客时,发现朋友家用砖铺 成的地面中反映了直角三角形三边的某 种数量关系.
我们也来观察右 图中的地面,看看有 什么发现?
其实勾股定理 中国比西方早 500多年就发现
了哦!
勾股世界
我国是最早了解勾股定理的国家 之一。早在三千多年前,周朝数 学家商高就提出,将一根直尺折 成一个直角,如果勾等于三,股 等于四,那么弦就等于五,即 “勾三、股四、弦五”,它被记 载于我国古代著名的数学著作 《周髀算经》中。
1945年,人们在研究古巴比伦人遗 留下的一块数学泥板时,惊讶地发 现上面竟刻有15组能构成直角三角 形三边的数,其年代远在商高之前。
所以,正方形C的 面积为:
•
八年级数学下18.1勾股定理(2)课件
∴BE=1.5-0.7=0.8m≠0.4m
答;梯子底端B不是外移0.4m
练习:如图,一个3米长的梯子AB,斜着靠在 竖直的墙AO上,这时AO的距离为2.5米.
①求梯子的底端B距墙角O多少米? ②如果梯子的顶端A沿墙角下滑0.5米至C, 请同学们:
A C
猜一猜,底端也将滑动0.5米吗? 算一算,底端滑动的距离近似值 是多少? (结果保留两位小数)
(1)如图,池塘边有两点A、B,点C是与BA方 向成直角的AC方向上的一点,测得CB= 60m,
AC= 20m ,你能求出A、B两点间的距离吗?
(结果保留整数)
例1:一个2.5m长的梯子AB斜靠在一竖直的墙 AC上,这时AC的距离为2.4m.如果梯子顶端A 沿墙下滑0.4m,那么梯子底端B也外移0。4m A 吗?
O
B
D
例2:如图,铁路上A,B两点相距25km,C,D为两庄, DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km, 现在要在铁路AB上建一个土特产品收购站E,使得C,D 两村到E站的距离相等,则E站应建在离A站多少km处?
解:设AE= x km, 则 BE=(25-x)km
D
C
10
解:在Rt△ABC中, ∵∠ACB=90° ∴ AC2+ BC2=AB2 2.42+ BC2=2.52
C B
D
E
∴BC=0.7m 由题意得:DE=AB=2.5m
DC=AC-AD=2.4-0.4=2m
在Rt△DCE中, ∵∠DCE=90° ∴ DC2+ CE2=DE2 22+ BC2=2.52 ∴CE=1.5m
C
S3
A
S2
B
S1 S2 S3
答;梯子底端B不是外移0.4m
练习:如图,一个3米长的梯子AB,斜着靠在 竖直的墙AO上,这时AO的距离为2.5米.
①求梯子的底端B距墙角O多少米? ②如果梯子的顶端A沿墙角下滑0.5米至C, 请同学们:
A C
猜一猜,底端也将滑动0.5米吗? 算一算,底端滑动的距离近似值 是多少? (结果保留两位小数)
(1)如图,池塘边有两点A、B,点C是与BA方 向成直角的AC方向上的一点,测得CB= 60m,
AC= 20m ,你能求出A、B两点间的距离吗?
(结果保留整数)
例1:一个2.5m长的梯子AB斜靠在一竖直的墙 AC上,这时AC的距离为2.4m.如果梯子顶端A 沿墙下滑0.4m,那么梯子底端B也外移0。4m A 吗?
O
B
D
例2:如图,铁路上A,B两点相距25km,C,D为两庄, DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km, 现在要在铁路AB上建一个土特产品收购站E,使得C,D 两村到E站的距离相等,则E站应建在离A站多少km处?
解:设AE= x km, 则 BE=(25-x)km
D
C
10
解:在Rt△ABC中, ∵∠ACB=90° ∴ AC2+ BC2=AB2 2.42+ BC2=2.52
C B
D
E
∴BC=0.7m 由题意得:DE=AB=2.5m
DC=AC-AD=2.4-0.4=2m
在Rt△DCE中, ∵∠DCE=90° ∴ DC2+ CE2=DE2 22+ BC2=2.52 ∴CE=1.5m
C
S3
A
S2
B
S1 S2 S3
人教版第十八章第18.1节《勾股定理》
让学生从中 学会总结归纳, 学 会反思提升, 学会 感悟数学。
板书设计 18.1 勾股定理 勾股定理:
c a
b
三边关系: 三边关系:a
2
+b2=c2
教学反思 1.有待改进之处:课堂教学语言应凸显抑扬顿挫,营造跌岩起伏的教学氛围。数学语言虽以简洁、 抽象而闻名,但是光有简洁、抽象的语言只会显示出数学的单调乏味,使人敬而远之。数学教师除了在 表述概念、定理、法则、性质时应力求严谨、规范外,其他情况应力求用轻松、活泼的教学语言,使学 生悦耳、爱听。这就需要数学教师具有深厚的文学功底,超强的演讲能力。 2.课堂教学充分体现学生的主体性, 给学生留下最大化的思维空间。 数学教学实则数学思维的教学, 一切教学活动都应围绕着一个中心,那就是促进学生思维能力的发展。在课堂上表现为应尽最大可能给 学生的思维“留白”,学生只有不断地思维,才能学会思维,思维才能得到发展。 3.注重数学思想方法的渗透,整个勾股定理的探索、发现、证明都着意渗透数形结合,又从一般到 特殊,从特殊回归到一般的数学思想方法。 4.重视数学史教育,激发学生的爱国情感。 5.数学问题生活化。用数学知识解决生活中的实际问题,关键在于把生活问题转化为数学问题,让 生活问题数学化,然后才能得以解决。在这个过程中,很多时候需要老师帮助学生去理解、转化,而更 多时候需要学生自己去探索、尝试,并在失败中寻找成功的途径。教学中,如果能让学生自己反思答案 与方法的合理性,那么效果会更好了。
联想到用字母 表示数字的方法, 贯 彻代数的基本应用 思想。
活动 3:
观光之旅
1、勾股弦图
2、勾股世界 3、勾股定理简介 4、千古第一定理
让学生根据 个人的兴趣和知 识结构去吸取自 己所需的知识, 渗 透对学生的人文 教育, 同时这种课 堂形式, 给了学生 一个生动、形象、 鲜活的情感体验。