新课标高一数学综合检测
高一数学必修4第一章综合检测题

第一章综合检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.若α是第二象限角,则180°-α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角[答案] A[解析] α为第二象限角,不妨取α=120°,则180°-α为第一象限角.2.sin(-600°)=( )A.12B.32 C .-12 D .-32 [答案] B3.已知角α的终边经过点P (3,-4),则角α的正弦值为( ) A.34 B .-4 C .-45 D.35 [答案] C[解析] x =3,y =-4,则r =x 2+y 2=5, 则sin α=y r =-45.4.函数y =tan ⎝ ⎛⎭⎪⎫x -π4的定义域是( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π4B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-π4C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x ≠k π+π4,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+3π4k ∈Z[答案] D[解析] 要使函数有意义,则有x -π4≠π2+k π,k ∈Z ,即x ≠3π4+k π,k ∈Z .5.已知sin(π+α)=13,则cos ⎝ ⎛⎭⎪⎫3π2-α等于( )A .-13 B.13 C .-33 D.33[答案] B[解析] sin(π+α)=-sin α=13,则sin α=-13,cos ⎝ ⎛⎭⎪⎫3π2-α=-sin α=13. 6.函数y =sin ⎝ ⎛⎭⎪⎫2x +π6的一个单调递减区间为( ) A.⎝ ⎛⎭⎪⎫π6,2π3 B.⎝ ⎛⎭⎪⎫-π3,π6 C.⎝ ⎛⎭⎪⎫-π2,π2 D.⎝ ⎛⎭⎪⎫π2,2π3 [答案] A[解析] 令π2+2k π≤2x +π6≤3π2+2k π(k ∈[]),整理得π6+k π≤x ≤2π3+k π,所以仅有⎝ ⎛⎭⎪⎫π6,2π3是单调递减区间.7.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ等于( ) A .-43 B.54 C .-54 D.45[答案] D[解析] sin 2θ+sin θcos θ-2cos 2θ =sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=tan 2θ+tan θ-21+tan 2θ=45. 8.将函数y =sin(x -π3)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向右平移π3个单位,得到的图象对应的解析式是( )A .y =sin 12xB .y =sin(12x -π2)C .y =sin(12x -π6)D .y =sin(2x -π6)[答案] B[解析] y =sin(x -π3)――→横坐标伸长为原来的2倍y =sin(12x -π3)错误!y=sin[12(x -π3-π3]=sin(12x -π2).9.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π2(x ∈R ),下面结论错误的是( )A .函数f (x )的最小正周期为2πB .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数 C .函数f (x )的图象关于直线x =0对称 D .函数f (x )是奇函数[答案] D[解析] ∵f (x )=sin ⎝ ⎛⎭⎪⎫x -π2=-cos x (x ∈R ), ∴T =2π,在⎣⎢⎡⎦⎥⎤0,π2上是增函数. ∵f (-x )=-cos(-x )=-cos x =f (x ).∴函数f (x )是偶函数,图象关于y 轴即直线x =0对称. 10.已知某帆船中心比赛场馆区的海面上每天海浪高度y (米)可看作是时间t (0≤t ≤24,单位:小时)的函数,记作y =f (t ),经长期观测,y =f (t )的曲线可近似地看成是函数y =A cos ωt +b ,下表是某日各时的浪高数据:A .y =12cos π6t +1B .y =12cos π6t +32C .y =2cos π6t +32D .y =12cos6πt +32[答案] B[解析] ∵T =12-0=12,∴ω=2πT =2π12=π6.又最大值为2,最小值为1,则⎩⎪⎨⎪⎧A +b =2,-A +b =1,解得A =12,b =32,∴y =12cos π6t +32.11.已知函数f (x )=A cos(ωx +φ)的图象如图所示,f ⎝ ⎛⎭⎪⎫π2=-23,则f (0)等于( )A .-23B .-12 C.23 D.12[答案] C[解析] 首先由图象可知所求函数的周期为T =2⎝ ⎛⎭⎪⎫11π12-7π12=2π3,故ω=2π2π3=3.将⎝ ⎛⎭⎪⎫11π12,0代入解析式, 得A cos ⎝ ⎛⎭⎪⎫3×11π12+φ=0,即cos ⎝ ⎛⎭⎪⎫11π4+φ=0,∴11π4+φ=π2+2k π,k ∈Z , ∴φ=-9π4+2k π(k ∈Z ).令φ=-π4,代入解析式得f (x )=A cos ⎝ ⎛⎭⎪⎫3x -π4.又∵f ⎝ ⎛⎭⎪⎫π2=-23, ∴f ⎝ ⎛⎭⎪⎫π2=-A sin π4=-22A =-23∴A =232,∴f (0)=232cos ⎝ ⎛⎭⎪⎫-π4=232cos π4=23.12.已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点M (3π4,0)对称,且在区间[0,π]上是单调函数,则ω+φ=( )A.π2+23B.π2+2 C.π2+32 D.π2+103[答案] A[解析] 由于f (x )是R 上的偶函数,且0≤φ≤π,故φ=π2.图象关于点M (3π4,0)对称,则f (3π4)=0,即sin(3π4ω+π2)=0,所以cos 3ωπ4=0.又因为f (x )在区间[0,π]上是单调函数,且ω>0, 所以ω=23.故ω+φ=π2+23.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.某人的血压满足函数式f (t )=24sin160πt +110,其中f (t )为血压,t 为时间,则此人每分钟心跳的次数为________.[答案] 8014.化简1-2sin4cos4=________. [答案] cos4-sin4[解析] 原式=sin 24+cos 24-2sin4cos4=(sin4-cos4)2=|sin4-cos4|.则sin4<cos4,所以原式=cos4-sin4.15.定义在R 上的函数f (x )既是偶函数,又是周期函数.若f (x )的最小正周期是π,且当x ∈[0,π2]时,f (x )=sin x ,则f (5π3)的值为________.[答案] 32[解析] ∵T =π,∴f (5π3)=f (π+2π3)=f (23π)=f (π-π3)=f (-π3)=f (π3)=32.16.已知函数f (x )=sin ⎝ ⎛⎭⎫2x -π4,在下列四个命题中:①f (x )的最小正周期是4π;②f (x )的图象可由g (x )=sin2x 的图象向右平移π4个单位长度得到;③若x 1≠x 2,且f (x 1)=f (x 2)=-1,则x 1-x 2=k π(k ∈Z ,且k ≠0); ④直线x =-π8是函数f (x )图象的一条对称轴.其中正确命题的序号是________(把你认为正确命题的序号都填上).[答案] ③④[解析] f (x )的最小正周期是T =2π2=π,所以①不正确;f (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π8, 则f (x )的图象可由g (x )=sin2x 的图象向右平移π8个单位长度得到,所以②不正确;当f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4=-1时,有2x -π4=-π2+2k π(k ∈Z ),则x =-π8+k π(k ∈Z ),又x 1≠x 2,则x 1=-π8+k 1π(k 1∈Z ),x 2=-π8+k 2π(k 2∈Z ),且k 1≠k 2,所以x 1-x 2=(k 1-k 2)π=k π(k ∈Z 且k ≠0),所以③正确;当x =-π8时,f (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫-π8-π4=-1,即函数f (x )取得最小值-1,所以④正确.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)设f (θ)= 2cos 3θ+sin 2(2π-θ)+sin (π2θ)-32+2sin 2(π2+θ)-sin (3π2-θ),求f (π3)的值.[解析] 解法一:f (π3)=2cos 3π3+sin 2(2π-π3)+sin (π2+π3)-32+2sin 2(π2+π3)-sin (32π-π3)=2cos 3π3+sin 25π3+sin 5π6-32+2sin 25π6-sin7π6=2×18+34+12-32+2×14+12=-12.解法二:∵f (θ)=2cos 3θ+sin 2θ+cos θ-32+2cos 2θ+cos θ =2cos 3θ+1-cos 2θ+cos θ-32+cos θ+2cos 2θ=2cos 3θ-2-(cos 2θ-cos θ)2+cos θ+2cos 2θ =2(cos 3θ-1)-cos θ(cos θ-1)2+2cos 2θ+cos θ=(cos θ-1)(2cos 2θ+cos θ+2)2cos 2θ+cos θ+2=cos θ-1,∴f (π3)=cos π3-1=-12.18.(本题满分12分)(2011~2012·山东济南一模)已知sin θ=45,π2<θ<π.(1)求tan θ;(2)求sin 2θ+2sin θcos θ3sin 2θ+cos 2θ的值. [解析] (1)∵sin 2θ+cos 2θ=1,∴cos 2θ=1-sin 2θ=925.又π2<θ<π, ∴cos θ=-35.∴tan θ=sin θcos θ=-43. (2)sin 2θ+2sin θcos θ3sin 2θ+cos 2θ=tan 2θ+2tan θ3tan 2θ+1=-857.19.(12分)已知x ∈[-π3,2π3],(1)求函数y =cos x 的值域;(2)求函数y =-3sin 2x -4cos x +4的值域.[解析] (1)∵y =cos x 在[-π3,0]上为增函数,在[0,2π3]上为减函数,∴当x =0时,y 取最大值1; x =2π3时,y 取最小值-12.∴y =cos x 的值域为[-12,1].(2)原函数化为:y =3cos 2x -4cos x +1, 即y =3(cos x -23)2-13,由(1)知,cos x ∈[-12,1],故y 的值域为[-13,154].20.(本题满分12分)已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫12x +π4-1,x ∈R . 求:(1)函数f (x )的最小值及此时自变量x 的取值集合; (2)函数y =sin x 的图象经过怎样的变换得到函数f (x )=3sin ⎝ ⎛⎭⎪⎫12x +π4-1的图象? [解析] (1)函数f (x )的最小值是3×(-1)-1=-4,此时有12+π4=2k π-π2,解得x =4k π-3k π2(k ∈Z ), 即函数f (x )的最小值是-4,此时自变量x 的取值集合是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =4k π-3π2,k ∈Z . (2)步骤是:①将函数y =sin x 的图象向左平移π4个单位长度,得到函数y =sin ⎝ ⎛⎭⎪⎫x +π4的图象; ②将函数y =sin ⎝ ⎛⎭⎪⎫x +π4的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y =sin ⎝ ⎛⎭⎪⎫12x +π4的图象; ③将函数y =sin ⎝ ⎛⎭⎪⎫12x +π4的图象上所有点的纵坐标伸长为原来的3倍(横坐标不变),得到函数y =3sin ⎝ ⎛⎭⎪⎫12x +π4的图象; ④将函数y =3sin ⎝ ⎛⎭⎪⎫12x +π4的图象向下平移1个单位长度,得函数y =3sin ⎝ ⎛⎭⎪⎫12+π4-1的图象. 21.(本题满分12分)已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的周期为π,且图象上一个最低点为M (2π3,-2). (1)求f (x )的解析式;(2)当x ∈[0,π12]时,求f (x )的最值.[解析] (1)由最低点为M (2π3,-2),得A =2. 由T =π,得ω=2πT =2ππ=2. 由点M (2π3,-2)的图象上,得2sin(4π3+φ)=-2, 即sin(4π3+φ)=-1. 所以4π3+φ=2k π-π2,(k ∈Z ). 故φ=2k π-11π6(k ∈Z ). 又φ∈(0,π2), 所以φ=π6.所以f (x )=2sin(2x +π6). (2)因为x ∈[0,π12],所以2x +π6∈[π6π3]. 所以当2x +π6=π6,即x =0时,f (x )取得最小值1; 当2x +π6=π3,即x =π12时,f (x )取得最大值 3. 22.(本题满分12分)已知f (x )=2sin(2x +π6)+a +1(a 为常数). (1)求f (x )的单调递增区间;(2)若当x ∈[0,π2]时,f (x )的最大值为4,求a 的值; (3)求出使f (x )取得最大值时x 的取值集合.[解析] (1)由2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,得k π-π3≤x ≤k π+π6,k ∈Z ,所以f (x )的单调递增区间为[k π-π3,k π+π6](k ∈Z ).(2)当x ∈[0,π2]时,2x +π6∈[π6,76π], 故当2x +π6=π2,即x =π6时,f (x )有最大值a +3=4,所以a =1. (3)当sin(2x +π6)=1时f (x )取得最大值, 此时2x +π6=2k π+π2,k ∈Z ,即x =k π+π6,k ∈Z ,此时x 的取值集合为{x |x =k π+π6,k ∈Z }.。
高一数学必修3第一章综合素质检测

第一章综合素质检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下面对程序框图中的图形符号的说法错误的是()A.起、止框是任何流程不可少的,表明程序开始和结束B.输入、输出可用在算法中任何需要输入、输出的位置C.算法中间要处理数据或计算,可分别写在不同的注释框内D.当算法要求对两个不同的结果进行判断时,判断条件要写在判断框内[答案]C[解析]算法中间要处理数据或计算,可分别写在不同的处理框内.2.十进制数389化成四进制数的末位数是()A.1B.2C.3D.0[答案]A[解析]故389=12 011(4),故末位是1.3.下列程序的功能是()S=1i=3WHILE S<=10 000S=S*ii=i+2WENDPRINT iENDA.求1×2×3×4×…×10 000的值B.求2×4×6×8×…×10 000的值C.求3×5×7×9×…×10 000的值D.求满足1×3×5×…×n>10 000的最小正整数n[答案]D[解析]解法一:S是累乘变量,i是计数变量,每循环一次,S 乘以i一次且i增加2.当S>10 000时停止循环,输出的i值是使1×3×5×…×n>10 000成立的最小正整数n.解法二:最后输出的是计数变量i,而不是累乘变量S,由排除法可知,D正确.4.(2011~2012·广东广州模拟)用辗转相除法,计算56和264的最大公约数时,需要做的除法次数是()A.3 B.4C.6 D.7[答案]B[解析]由辗转相除法,264=56×4+40,56=40×1+16,40=16×2+8,16=8×2,即得最大公约数为8,做了4次除法,故选B.5.下面的程序运行后,输出的值是()i =0DOi =i +1LOOP UNTIL i *i >=2 000 i =i -1PRINT i ENDA .42B .43C .44D .45[答案] C[解析] 由题意知,此程序为循环语句,当i =44时,44×44=1 936;当i =45时,45×45=2 025>2 000,输出结果为i =45-1=44,故选C .6.下面的程序运行后的输出结果为( )A .17B .19C .21D .23[答案] C[解析] 第一次循环,i =3,S =9,i =2;第二次循环,i=4,S=11,i=3;第三次循环,i=5,S=13,i=4;第四次循环,i=6,S=15,i=5;第五次循环,i=7,S=17,i=6;第六次循环,i=8,S=19,i=7;第七次循环,i=9,S=21,i=8.此时i=8,不满足i<8,故退出循环结构,输出S=21,结束.7.用秦九韶算法求多项式f(x)=208+9x2+6x4+x6在x=-4时,v2的值为()A.-4 B.1C.17 D.22[答案] D[解析]v0=a6=1;v1=v0x+a5=x+0=-4;v2=v1x+a4=-4x+6=22.8.(2011~2012·辽宁抚顺模拟)下图给出的是计算1+2+4+…+219的值的一个程序框图,则其中判断框内应填入的是()A .i =19?B .i ≥20?C .i ≤19?D .i ≤20?[答案] B[解析] 计算S =1+2+4+…+219的值,所使用的循环结构是直到型循环结构,循环应在i ≥20时退出,并输出S .故填“i ≥20?”.9.(2011~2012·山东日照模拟)如下图,程序框图所进行的求和运算是( )A .1+12+13+…+110B .1+13+15+…+119C.12+14+16+…+120 D.12+122+123+…+1210 [答案] C[解析] 第一次循环后,S =0+12=12,i =2;第二次循环后,S =12+14,i =3;第三次循环后,S =12+14+16,i =4;……第十次循环后,S =12+14+16+…+120,i =11,i >10,退出循环并输出S .10.(2011~2012·浙江衢州模拟)下列程序框图运行后,输出的结果最小是( )A .2 012B .2 011C .64D .63[答案] D[解析] 由题图知,若使n (n +1)2>2 012,n 最小为63.11.(2011~2012·北京怀柔模拟)右图是计算函数y =⎩⎪⎨⎪⎧-x , x ≤-1,0, -1<x ≤2,x 2, x >2的值的程序框图,则在①、②和③处应分别填入的是( )A .y =-x ,y =0,y =x 2B .y =-x ,y =x 2,y =0C .y =0,y =x 2,y =-xD .y =0,y =-x ,y =x 2 [答案] B[解析] 当x >-1不成立时,y =-x ,故①处应填“y =-x ”;当x >-1成立时,若x >2,则y =x 2,即②处应填“y =x 2”,否则y =0,即③处应填“y =0”.故选B.12.(2011~2012·山东滨州模拟)对于任意函数f (x ),x ∈D ,可按下图所示构造一个数字发生器,其工作原理如下:①输入数据x0∈D,经过数字发生器,输出x1=f(x0);②若x1∉D,则数字发生器结束工作;若x1∈D,则将x1反馈回输入端,再输出x2=f(x1),并依此规律继续下去.现定义f(x)=2x+1,D=(0,1 000).若输入x0=0,当发生器结束工作时,输出数据的总个数为() A.8 B.9C.10 D.11[答案] C[解析]依题中规律,当输入x0=0时,可依次输出1,3,7,15,31,63,127,255,511,1 023,共10个数据,故选C.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.459与357的最大公约数是________.[答案]51[解析]459=357×1+102,357=102×3+51,102=51×2,所以459与357的最大公约数为51.14.用秦九韶算法计算多项式f(x)=x6-12x5+60x4-160x3+240x2-192x+64当x=2时的值时,v4的值为________.[答案]80[解析]v0=1,v1=v0x+a5=1×2-12=-10,v2=v1x+a4=-10×2+60=40,v3=v2x+a3=40×2-160=-80,v4=v3x+a2=-80×2+240=80.15.(2012·江苏高考卷)下图是一个算法流程图,则输出的k的值是________.[答案] 5[解析]将k=1带入0=0不满足,将k=2带入-4<0不满足,将k=3带入-2<0不满足,将k=4带入0=0不满足,将k=5带入4>0满足,所以k=5.16.某城市缺水问题比较突出,为了制定水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为x 1,…,x 4(单位:吨).根据如图所示的程序框图,若x 1,x 2,x 3,x 4分别为1,1.5,1.5,2,则输出的结果s 为________.[答案] 32[解析] i =1时,s 1=0+x 1=0+1=1,s =11·s 1=1;i =2时,s 1=1+x 2=1+1.5=52,s =12·s 1=54;i =3时,s 1=52x 3=52+32=4,s =13·s 1=43;i =4时,s 1=4+x 4=4+2=6,s =14·s 1=32.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知一个正三角形的周长为a ,求这个正三角形的面积,设计一个算法解决这个问题.[解析] 算法步骤如下:第一步,输入a 的值.第二步,计算l =a 3的值. 第三步,计算S =34l 2的值. 第四步,输出S 的值.18.(本小题满分12分)(1)用辗转相除法求567与405的最大公约数.(2)用更相减损术求2 004与4 509的最大公约数.[解析] (1)∵567=405×1+162,405=162×2+81,162=81×2.∴567与405的最大公约数为81.(2)∵4 509-2 004=2 505,2 505-2 004=501,2 004-501=1 503,1 503-501=1 002,1 002-501=501.∴2 004与4 509的最大公约数为501.19.(本小题满分12分)已知函数y =⎩⎪⎨⎪⎧ x 2-1,x <-1,|x |+1,-1≤x ≤1,3x +2,x >1,编写一个程序求函数值.[解析] 程序如下:20.(本小题满分12分)利用秦九韶算法判断方程x5+x3+x2-1=0在[0,2]上是否存在实根.[解析]利用秦九韶算法求出当x=0及x=2时,f(x)=x5+x3+x2-1的值,f(x)=x5+x3+x2-1可改写成如下形式:f(x)=((((x+0)x +1)x+1)x+0)x-1.当x=0时,v0=1,v1=0,v2=1,v3=1,v4=0,v5=-1,即f(0)=-1.当x=2时,v0=1,v1=2,v2=5,v3=11,v4=22,v5=43,即f(2)=43.由f(0)f(2)<0知f(x)在[0,2]上存在零点,即方程x5+x3+x2-1=0在[0,2]上存在实根.21.(本小题满分12分)如图,在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由点B(起点)向点A(终点)运动.设点P 运动的路程为x,△APB的面积为y,求y与x之间的函数关系式,并画出程序框图.[解析] 由题意可得y =⎩⎪⎨⎪⎧ 2x , 0≤x ≤4,8, 4<x ≤8,2(12-x ), 8<x ≤12.程序框图如图:22.(本小题满分12分)假定在银行中存款10 000元,按2.5%的年利率,一年后连本带息将变为10 250元,若将此款继续存入银行,试问多长时间就会连本带利翻一番?请用直到型和当型两种语句写出程序.[解析] 用“当型”循环用“直到型”循环。
长郡中学2024-2025学年高一上学期综合能力检测(入学分班考试)数学试卷(解析版)

长郡中学2024级高一综合能力检测试卷数学时量:90分钟 满分100分一、选择题:本题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个选项是符题目要求的.1. 《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿日兆.”说明了大数之间的关系:1亿1=万1万,1兆1=万1×万1×亿.若1兆10m=,则m 的值为( ) A. 4 B. 8C. 12D. 16【答案】D 【解析】【分析】由指数幂的运算性质即可求解. 【详解】1万=410,所以1亿=810, 所以1兆=8816101010×=, 所以16m =. 故选:D2. 二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒大寒),若从二十四个节气中随机抽取一个节气,则抽到的节气在夏季的概率为( ) A.12B.112C.16D.14【答案】D 【解析】【分析】根据概率的计算公式即可求解.【详解】从二十四个节气中随机抽取一个节气,则抽到的节气在夏季的概率为61244=, 故选:D3. 如图,矩形ABCD 中,3AB =,1AD =,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 所表示的数为( )A. 2B.1−C.D.1【答案】B 【解析】【分析】利用勾股定理和数轴的知识求得正确答案.【详解】由于AC =,所以点M所表示的数为)231+−=−.故选:B4. 若关于x 的不等式组()532223x x x x a + ≥−+<+恰好只有四个整数解,则a 的取值范围是( )A. 53a <−B. 5433a −≤<− C. 523a −<−≤D. 523a −<<−【答案】C 【解析】【分析】化简不等式组,由条件列不等式求a 的取值范围. 【详解】解不等式532x x +≥−,得11x ≤, 解不等式()223x x a +<+,得23x a >−, 由已知可得7238a ≤−<, 所以523a −<−≤.故选:C.5. 在ABC ,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A ,B ,P 为圆心画圆,圆A 的半径为1,圆B 的半径为2,圆P 的半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( ) A. 内含 B. 相交 C. 外切 D. 相离【答案】B 【解析】【分析】由题意条件分析两圆圆心距与两半径和差的大小关系即可得. 【详解】由圆A 与圆P 内切,则312PA =−=,5AB =, 又点P 在ABC 内,则PA PB AB +>,且PB AB <, 所以523PB AB PA >−=−=,且5PB <, 则3232PB −<<+,由圆B 的半径为2,圆P 的半径为3, 所以圆P 与圆B 相交. 故选:B.6. 对于正整数k 定义一种运算:1()[][]44k k f k +=−,例:313(3)[][]44f +=−,[]x 表示不超过x 的最大整数,例:[3.9]3=,[ 1.8]2−=−.则下列结论错误的是( ) A. ()10f =B. ()0f k =或1C. ()()4f k f k +=D. ()()1f k f k +≥【答案】D 【解析】【分析】根据给定的定义,逐项计算判断即可.【详解】对于A ,11(1)[][]00024f =−=−=,A 正确; 对于B ,取4,1,2,3,4k n i i =+=,n 为自然数, 当4i =时,1()[1][1][1]044f k n n ++−+,当3i =时,33()[1][]1([])144f k n n n n =+−+=+−+=,当1,2i =时,11()[][][]([])04444i i i if k n n n n ++=+−+=+−+=,B 正确; 对于C ,11(4)[1][1]1[](1[])()4444k k k kf k f k +++=+−+=+−+=,C 正确; 对于D ,414313(31)[][]0,(3)[][]14444f f +++=−==−=,即(31)(3)f f +<,D 错误.故选:D7. 如图,点A 为反比例函数()10y x x=−<图象上的一点,连接AO ,过点O 作OA 的垂线与反比例函数()40yx x=>的图象交于点B ,则AO BO 的值( )A.12B.14C.D.13【答案】A 【解析】【分析】设121214,,,A x B x x x −,由,A B 两点分别做x 轴的垂线,垂足分别为,E F ,由AO BO ⊥,得∽∠ AOE OBF ,由==AEEO AO OFBF BO,可得答案. 【详解】设AA �xx 1,−1xx 1�,BB �xx 2,4xx 2�(xx <0,xx 2>0),由,A B 两点分别做x 轴的垂线,垂足分别为,E F , 且()()12,0,,0E x F x ,因为AO BO ⊥,所以,∠=∠∠=∠AOE OBF OAE BOF , 所以∽∠ AOE OBF ,所以AE EO OF BF =,可得112214−−=x x x x ,即22124x x =,所以122x x =−, 所以12121211==−==−=A Ex x x OA BO OFx.故选:A.8. 若二次函数的解析式为()()()2215y x m x m =−−≤≤,且函数图象过点(),p q 和点()4,p q +,则q 的取值范围是( ) A. 124q −≤≤ B. 50q −≤≤C. 54q −≤≤D. 123q −≤≤【答案】A 【解析】【分析】由二次函数解析式可求得对称轴为1x m =+,进而可得412p p m ++=+,由函数图象过点(),p q ,可得2(1)4q m =−−+,可求q 的取值范围.【详解】因为二次函数解析式为()()()2215y x m x m =−−≤≤, 所以二次函数的对称轴为1x m =+,函数图象过点(),p q 和点()4,p q +,故点(),p q 和点()4,p q +关于直线1x m =+对称, 所以412p p m ++=+,所以1[0,4]p m −∈, 又()()()()2222121223(1)4q p m p m m m m m m =−−=−−−−=−++=−−+, 当1m =,max 4q =,当5m =,min 12q =−,所以124q −≤≤. 故选:A.二、填空题:本题共4小题,每小题4分,共16分.9. 分解因式:432449a a a −+−=______. 【答案】2(23)(1)(3)a a a a −++− 【解析】【分析】根据给定条件,利用公式法及十字相乘法分解因式即可得解.【详解】43222222449(2)9(23)(23)(23)(1)(3)a a a a a a a a a a a a a −+−=−−=−+−−=−++−. 故答案为:2(23)(1)(3)a a a a −++−的10. 直线1:1l y x =−与x 轴交于点A ,将直线1l 绕点A 逆时针旋转15°,得到直线2l ,则直线2l 对应的函数表达式是______.【答案】y =【解析】【分析】先求得2l 的倾斜角,进而求得直线2l 对应的函数表达式. 【详解】直线1:1l y x =−与x 轴交于点 1,0A , 直线1:1l y x =−的斜率为1,倾斜角为45°,所以2l 的倾斜角为60°所以直线2l 对应的函数表达式是)1y x =−=.故答案为:y=−11. 若关于x 的分式方程22411x ax a x x −−+−=−+的解为整数,则整数a =______. 【答案】1± 【解析】【分析】由分式方程有意义可知1x ≠且1x ≠−,再化简方程求解2x a=,由,a x 均为整数可求.【详解】则方程241x a x −−−1x ≠且1x ≠−. 方程可化为222211x a x ax x −−+−=+−+,即2211a a x x −+=−+, 解得2x a=,由1x ≠且1x ≠−,所以2a ≠且2a ≠−.由a 为整数,且x 为整数,则当1a =−,2x =−,或当1a =,2x =时满足题意. 所以1a =±. 故答案为:1±.12. 如图,已知两条平行线1l ,2l ,点A 是1l 上的定点,2AB l ⊥于点B ,点C ,D 分别是1l ,2l 上的动点,且满足AC BD =,连接CD 交线段AB 于点E ,BH CD ⊥于点H ,则当BAH ∠最大时,sin BAH ∠的值为______.【答案】13【解析】【分析】因为BH CD ⊥于点H ,所以点 H 在以BE 为直径的圆上运动, 当 AH 与圆 O 相切时, BAH ∠ 最大,据此在OHA 求解即可. 【详解】12//,//,AC BD l l∴ 四边形 ACBD 是平行四边形 12AE BE AB ∴==A 为定点, 且 2//AB l AE ∴ 为定值,BH CD ⊥ 90BHE ∠∴=, 如图,取BE 的中点O ,则点 H 在以BE 为直径的圆上运动,此时 1123OE BE OA ==, 当 AH 与圆 O 相切时, BAH ∠ 最大1sin 3OH BAH OA ∠∴==故答案为:13.三、解答题:本题共4小题,共52分.应写出文字说明、证明过程或演算步骤.13. 某学校举办的“青春飞扬”主题演讲比赛分为初赛和决赛两个阶段.(1)初赛由10名教师评委和45名学生评委给每位选手打分(百分制),对评委给某位选手的打分进行整理、描述和分析下面给出了部分信息.a .教师评委打分:86 88 90 91 91 91 91 92 92 98b .学生评委打分的频数分布直方图如下(数据分6组:第1组8285x ≤<,第2组8588x ≤<,第3组8891x ≤<,第4组9194x ≤<,第5组9497x ≤<,第6组97100x ≤≤);平均数中位数众数教师评委 91 91 m 学生评委90.8n93c .评委打分的平均数、中位数、众数如上: 根据以上信息,回答下列问题:①m 的值为______,n 的值位于学生评委打分数据分组的第______组;②若去掉教师评委打分中的最高分和最低分,记其余8名教师评委打分的平均数为x ,则x ______91(填“>”“=”或“<”);(2)决赛由5名专业评委给每位选手打分(百分制).对每位选手,计算5名专业评委给其打分的平均数和方差.平均数较大的选手排序靠前,若平均数相同,则方差较小的选手排序靠前,5名专业评委给进入决赛的甲、乙、丙三位选手的打分如下:评1评委2评委3评委4评委5甲 93 90 92 93 92 乙9192929292丙 90 94 90 94 k若丙在甲、乙、丙三位选手中的排序居中,则这三位选手中排序最靠前的是______,表中k (k 为整数)的值为______.【答案】(1)①91;4;②< (2)甲;92 【解析】【分析】(1)①根据众数以及中位数的定义解答即可;②根据算术平均数的定义求出8名教师评委打分的平均数,即可得出答案; (2)根据方差的定义和平均数的意义求解即可. 【小问1详解】①由题意得,教师评委打分中91出现次数最多,故众数91m =;45名学生评委打分数据的中位数是第23个数,故n 的值位于学生评委打分数据分组的第4组; ②若去掉教师评委打分中的最高分和最低分,记其余8名教师评委打分的平均数为x , 则1(8890919191919292)90.758x =×+++++++=,91x ∴<.【小问2详解】甲选手的平均数为1(9390929392)925×+++=, 乙选手的平均数为1(9192929292)91.85×++++=, 因为丙在甲、乙、丙三位选手中的排序居中,所以三位选手中排序最靠前的是甲,且丙的平均数大于或等于乙的平均数, 因为5名专业评委给乙选手的打分为91,92,92,92,92, 乙选手的方差2221[4(9291.8)(9191.8)]0.165S =××−+−=乙, 5名专业评委给丙选手的打分为90,94,90,94,k , 所以乙选手的方差小于丙选手的方差,所以丙选手的平均数大于乙选手的平均数,小于或等于甲选手的平均数,∴9390929392909490949192929292k ++++≥++++>++++,9291k ∴≥>, k 为整数,的k ∴的值为92.14. 根据以下素材,探索完成任务——如何设计摇椅的椅背和坐垫长度?素材一:某公司设计制作一款摇椅,图1为效果图,图2为其侧面设计图,其中FC 为椅背,EC 为坐垫,C ,D 为焊接点,且CD 与AB 平行,支架AC ,BD 所在直线交于圆弧形底座所在圆的圆心O .设计方案中,要求A ,B 两点离地面高度均为5厘米,A ,B 两点之间距离为70厘米;素材二:经研究,53OCF ∠=°时,舒适感最佳.现用来制作椅背FC 和坐垫EC 的材料总长度为160厘米,设计时有以下要求: (1)椅背长度小于坐垫长度;(2)为安全起见,摇椅后摇至底座与地面相切于点A 时(如图3),F 点比E 点在竖直方向上至少高出12厘米.(sin530.8°≈,cos530.6°≈,tan53 1.3°≈)任务:(1)根据素材求底座半径OA ; (2)计算图3中点B 距离地面的高度;(3)①求椅背FC 的长度范围;(结果精确到0.1m ) ②设计一种符合要求的方案. 【答案】(1)125厘米;(2)19.6厘米 (3)①64.580FC ≤<;②70cm ,90cm (答案不唯一). 【解析】【分析】(1)根据四边形AHNB 为矩形,35AG BG ==厘米,5AH GM ==厘米,设底座半径OA r =厘米,则OM OA r ==厘米,由勾股定理求出r 即可得出答案;(2)由四边形ANBK 为矩形,进而得AK BN h ==,()125cm,125cm OK h OB =−=,然后在直角三角形中由勾股定理列出关于h 的方程,解方程求出h 即可得出答案;(3)①过F 作FP OA ⊥于P ,过点E 作EQ OA ⊥于Q ,先求出cos cos 0.28QCD OAB ∠=∠=,设椅背FC x =厘米,则坐垫(160)EC x =−,即可得0.60.28(160)12x x −−≥,由此解得64.5x ≥,据此可得椅背FC 的长度范围;②在①中椅背FC 的长度范围任取一个FC 的值,再计算出EC 的值即可,例如取70FC =厘米,则1607090EC =−=(厘米);(答案不唯一,只要在FC 的长度范围内即可). 【小问1详解】过点A 作AH 垂直地面于H ,过点O 作OG AB ⊥于G ,OG 的延长线于地面交于点M ,如图所示:AB 平行于地面,∴四边形AHNB 为矩形,1352AG BG AB ===厘米, 5AH GM ==厘米,设底座半径OA r =厘米,则OM OA r ==厘米,(5)OG OM GM r ∴=−=−厘米,在Rt OAG ∆中,OA r =厘米,35AG =厘米,(5)OGr =−厘米, 由勾股定理得:222OA OG AG =+,即:222(5)35r r =−+, 解得:125r =,∴底座半径OA 的长度为125厘米;【小问2详解】过点B 作BN 垂直地面于N ,BK OA ⊥于K ,如图所示:设BN h =,底座与地面相切于点A ,OA ∴垂直地面于点A ,∴四边形ANBK 为矩形,AK BN h ∴==,由任务一可知:125cm,125OA OB OK OA AK h ==∴==--, 在Rt ABK △中,cm,=70cm AK h AB =, 由勾股定理得:2222270BK AB AK h =−=−,在Rt OBK 中,()125cm,125cm OK h OB =−=, 由勾股定理得:22222125(125)BK OB OK h =−=−−,222270125(125)h h ∴−=−−,解得:19.6h =,∴点B 距离地面的高度为19.6厘米;【小问3详解】①过F 作FP OA ⊥于P ,过点E 作EQ OA ⊥于Q ,如图所示://CD AB ,QCD OAB ∴∠=∠,由任务②可知:19.6AK h ==厘米,70AB =厘米, 在Rt ABK △中,19.6cos 0.2870AK OAB AB ∠===, cos cos 0.28QCD OAB ∴∠=∠=,椅背FC 和坐垫EC 的材料总长度为160厘米, ∴设椅背FC x =厘米,则坐垫(160)EC x =−, 椅背长度小于坐垫长度,160x x ∴<−,解得:80x <,在Rt CQE △中,cos 0.28CQQCD CE∠==, 0.280.28(160)CQ CE x ∴==−厘米,在Rt CFP △中,cos CPOCF CF∠=, cos cos530.6CP CF OCF x x ∴=⋅∠=⋅°≈(厘米), F 点比E 点在竖直方向上至少高出12厘米,12AP AN ∴−≥,即:()12AC CP AC CQ +−+≥,12CP CQ ∴−≥,0.60.28(160)12x x ∴−−≥,解得:64.5x ≥, 又80x < ,64.580x ∴≤≤,即:64.580FC ≤≤,∴椅背FC 的长度范围是:64.580FC ≤<;②由于64.580FC ≤<,故取70cm FC =,则1607090cm EC ==-.15. 定义:在平面直角坐标系中,直线x m =与某函数图象交点记为点P ,作该函数图象中点P 及点P 右侧部分关于直线x m =的轴对称图形,与原函数图象上的点P 及点P 右侧部分共同构成一个新函数的图象,称这个新函数为原函数关于直线x m =的“迭代函数”.例如:图1是函数1y x =+的图象,则它关于直线0x =的“迭代函数”的图象如图2所示,可以得出它的“迭代函数”的解析式为()()10,10.x x y x x +≥ =−+<(1)函数1y x =+关于直线1x =的“迭代函数”的解析式为______.(2)若函数243y x x =−++关于直线x m =的“迭代函数”图象经过()1,0−,则m =______.(3)已知正方形ABCD 的顶点分别为:(),A a a ,(),B a a −,(),C a a −−,(),D a a −,其中0a >.①若函数6y x=关于直线2x =−的“迭代函数”的图象与正方形ABCD 的边有3个公共点,求a 的值; ②若6a =,函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,求n 的取值范围.【答案】(1)1,13,1x x y x x +≥ =−+<(2)m =m =,(3)①3;②()5,1,12−∞−∪−. 【解析】【分析】(1)取点()2,3M ,()3,4N ,求两点关于1x =的对称点,利用待定系数法求左侧图象的解析式,由此可得结论;(2)判断点()1,0−与函数243y x x =−++的图象的关系,再求()1,0−关于直线x m =的对称点,由条件列方程求m 即可;(3)①求函数6y x=关于直线2x =−的“迭代函数”的解析式,作函数图象,观察图象确定a 的值; ②分别在0n >,0n =,0n <时求函数6y x=关于直线x n =的“迭代函数”解析式,讨论n ,由条件确定n 的范围.小问1详解】在函数1y x =+的图象上位于1x =右侧的部分上取点()2,3M ,()3,4N , 点()2,3M 关于直线1x =对称点为(0,3), 点()3,4N 关于直线1x =的对称点为()1,4−,设函数1y x =+,1x >的图象关于1x =对称的图象的解析式为,1y kx b x =+<, 则34b k b = −+=,解得13k b =− = ,所以函数1y x =+关于直线1x =的“迭代函数”的解析式为1,13,1x x y x x +≥ =−+<;【的【小问2详解】取1x =−可得,2431432y x x =−++=−−+=−, 故函数243y x x =−++的图象不过点()1,0−, 又点()1,0−关于直线x m =的对称点为()21,0m +, 由已知可得()()20214213m m =−++++,1m >−,所以m =或m =,【小问3详解】①当0x >或20x −≤<时,函数6y x =关于直线2x =−的“迭代函数”的图象的解析式为6y x =, 当2x <−时,设点EE (xx ,yy )在函数6y x=关于直线2x =−的“迭代函数”的图象上,则点()4,x y −−在函数6y x=的图象上,所以64y x=−−, 所以函数6y x =关于直线2x =−的“迭代函数”的解析式为[)()()6,2,00,6,,24x xy x x∞∞ ∈−∪+ =∈−− −− , 作函数6y x=关于直线2x =−的“迭代函数”的图象如下:观察图象可得3a =时,函数6y x=关于直线2x =−的“迭代函数”的图象与正方形ABCD 的边有3个公共点,②若0n >,当x n ≥时,函数6y x =关于直线x n =的“迭代函数”的图象的解析式为6y x=, 当0x <或0x n <<时,设点EE (xx ,yy )在函数6y x=关于直线x n =的“迭代函数”的图象上,则点()2,n x y −在函数6y x=的图象上,所以62y n x=−, 所以函数6y x =关于直线x n =“迭代函数”的解析式为()()()6,,6,,00,2x n xy x n n x∞∞ ∈+ =∈−∪ − , 当6n >时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有2个公共点,的当6n =时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有2个公共点,当16n <<时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有2个公共点,当1n =时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有3个公共点,当01n <<时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当0n =时,函数6y x =关于直线xx =0的“迭代函数”的解析式为6,06,0x xy x x> =−< , 作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,若0n <,当0n x ≤<或0x >时,函数6y x =关于直线x n =的“迭代函数”的图象的解析式为6y x=, 当x n <时,设点EE (xx ,yy )在函数6y x=关于直线x n =的“迭代函数”的图象上, 则点()2,n x y −在函数6y x=的图象上, 所以62y n x=−,所以函数6y x =关于直线x n =的“迭代函数”的解析式为[)()()6,,00,6,,2x n xy x n n x∞∞ ∈∪+ = ∈− − ,当10n −<<时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当1n =−时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有5个公共点,当512n−<<−时,作函数6yx=关于直线x n=的“迭代函数”的图象可得,函数6yx=关于直线x n=的“迭代函数”的图象与正方形ABCD有6个公共点,当52n=−时,作函数6yx=关于直线x n=的“迭代函数”的图象可得,函数6yx=关于直线x n=的“迭代函数”的图象与正方形ABCD有5个公共点,当7522n−<<−时,作函数6yx=关于直线x n=的“迭代函数”的图象可得,函数6yx=关于直线x n=的“迭代函数”的图象与正方形ABCD有4个公共点,当72n=−时,作函数6yx=关于直线x n=的“迭代函数”的图象可得,函数6yx=关于直线x n=的“迭代函数”的图象与正方形ABCD有4个公共点,当762n −<<−时,作函数6y x =关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当6n =−时,作函数6y x =关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当6n <−时,作函数6y x =关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,综上,n 的取值范围为()51,12∞−−∪−,. 【点睛】方法点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.16. 已知抛物线2y x bx c =−++与x 轴交于点()1,0A −,()3,0B .(1)如图1,抛物线与y 轴交于点C ,点P 为线段OC 上一点(不与端点重合),直线PA ,PB 分别交抛物线于点E ,D ,设PAD △面积为1S ,PBE △面积为2S ,求12S S 的值; (2)如图2,点K 是抛物线的对称轴与x 轴的交点,过点K 的直线(不与对称轴重合)与抛物线交于点M ,N ,过抛物线顶点G 作直线//l x 轴,点Q 是直线l 上一动点求QM QN +的最小值.【答案】(1)19(2)【解析】【分析】(1)把点()1,0A −,()3,0B 代入抛物线方程,解出抛物线的解析式,设(0,)P p ,求出直线AP 解析式为y px p =+,联立方程223y px p y x x =+ =−++, 可得2(3,4)E p p p −−+,同理可得234(,)393p p p D −−+,即可得1S ,2S ,化简可得结果; (2)作点N 关于直线l 的对称点N ′,连接MN ′,过M 点作MF NN ′⊥于F ,求出(1,0)K ,设直线MN解析式为y kx d =+,把点K 坐标代入即可知直线MN 的解析式y kx k =−,设2(,23)M m m m −++,2(,23)N n n n −++,求出2(,25)N n n n ′−+,可得QM QN QM QN MN ′′+=+≥,结合2(,23)F n m m −++,可得222421780MN MF N F k k =+=++′′,从而得到QM QN +的最小值. 【小问1详解】把点()1,0A −,()3,0B 代入抛物线方程2y x bx c =−++得:10930b c b c −−+= −++=, 解得:23b c = =, 所以抛物线方程为:223y x x =−++, 设(0,)P p ,直线AP 解析式为11y k x b =+, 把点()1,0A −,(0,)P p 代入得:1110k b b p −+= = , 所以线AP 解析式为y px p =+,联立223y px p y x x =+ =−++ ,解得:10x y =−=或234x p y p p =− =−+ , 所以2(3,4)E p p p −−+,设直线BP 解析式为22y k x b =+ 把点()3,0B ,(0,)P p 代入得:22230k b b p+= = , 直线BP 解析式为3py x p =−+ 联立2323p y x p y x x =−+ =−++ ,解得:30x y = = 或233493p x p p y − = =−+可得234(,)393p p p D −−+, 所以221142()2(3)2939ABD ABP D P p p S S S AB y y p p p =−=⋅−=−+−=− , ()2221()242(3)2ABE ABP E P S S S AB y y p p p p p =−=⋅−=−+−=− , 所以2122192(3)92(3)S p p S p p −=−= 【小问2详解】作点N 关于直线l 的对称点N ′,连接MN ′,过M 点作MF NN ′⊥于F ,如图:因为2223(1)4y x x x =−++=−−+,所以抛物线223y x x =−++的对称轴为1x =, 所以(1,0)K ,设直线MN 解析式为y kx d =+, 把点(1,0)K 代入得:=0k d +,所以=d k −,所以直线MN 的解析式为y kx k =− 设2(,23)M m m m −++,2(,23)N n n n −++,联立223y x x y kx k =−++ =−,可得2(2)30x k x k +−−−= 则2m n k +=−,3mn k =−−,因为N ,N ′关于直线l :4y =对称,所以2(,25)N n n n ′−+,则QM QN QM QN MN ′′+=+≥,又2(,23)F n m m −++, 所以222()2N F m n m n +−++′,FM m n =−, 在Rt MFN ′ 中,2222222()2()2MN MF N F m n m n m n =+=−++−++ ′ ′,222()4()22()2m n mn m n mn m n =+−++−−++222(2)4(3)(2)2(3)2(2)2k k k k k =−−−−+−−−−−−+ 421780k k =++所以当0k =时,2MN ′最小为80,此时MN ′=所以QM QN +≥,即QM QN +的最小值为。
高一数学必修3综合素能检测

本册综合素能检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.某学校高一年级有35个班,每个班有56名同学都是从1到56编的号码.为了交流学习经验,要求每班号码为14的同学留下进行交流,这里运用的是( )A .分层抽样B .抽签抽样C .随机抽样D .系统抽样[答案] D[解析] 由于分段间隔相等,是系统抽样.2.已知函数y =⎩⎪⎨⎪⎧lg x ,x>0,2x ,x ≤0,输入自变量x 的值,输出对应函数值的算法中所用到的基本逻辑结构是( )A .顺序结构B .顺序结构、条件结构C .条件结构D .顺序结构、条件结构、循环结构 [答案] B3.用秦九韶算法计算当x =0.4时,多项式f(x)=3x 6+4x 5+6x 3+7x 2+1的值时,需要做乘法运算的次数是( )A .6B .5C .4D .3 [答案] A4.下列说法正确的是( )A .一个人打靶,打了10发子弹,有7发子弹中靶,因此这个人中靶的概率为710B .一个同学做掷硬币试验,掷了6次,一定有3次“正面朝上”C .某地发行福利彩票,其回报率为47%,有个人花了100元钱买彩票,一定会有47元的回报D .大量试验后,可以用频率近似估计概率 [答案] D5.已知五个数据3,5,7,4,6,则该样本标准差为( ) A .1 B . 2 C . 3 D .2[答案] B[解析] ∵x =15×(3+5+7+4+6)=5,∴s =15×[(3-5)2+…+(6-5)2] =15×(4+0+4+1+1)= 2. 6.如图所示是一容量为100的样本的频率分布直方图,则由图形中的数据,样本落在[15,20]内的频数为( )A .20B .30C .40D .50[答案] B[解析] 样本落在[15,20]内的频率是1-5(0.04+0.1)=0.3,则样本落在[15,20]内的频数为0.3×100=30.7.某林场有树苗30 000棵,其中松树苗4 000棵,为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( )A .30B .25C .20D .15[答案] C[解析] 抽样比是15030 000=1200,则样本中松树苗的数量为1200×4000=20.8.(2011~2012·合肥第二次质检)扇形AOB 的半径为1,圆心角为90°.点C ,D ,E 将弧AB 等分成四份.连接OC ,OD ,OE ,从图中所有的扇形中随机取出一个,面积恰为π8的概率是( )A .310B .15C .25D .12[答案] A[命题立意] 本题考查扇形面积公式及古典概型概率求解,难度中等.[解题思路] 据题意若扇形面积为π8,据扇形面积公式π8=12×α×1⇒α=π4,即只需扇形中心角为π4即可,列举可得这种情况共有3种,而整个基本事件个数共有10种,故其概率为310.9.阅读下列程序: INPUT x IF x <0 THENA .0B .-1C .-2D .9[答案] B[解析] 输入x =-2,则x =-2<0成立,则y =2×(-2)+3=-1,则输出-1.10.(2011~2012·广东佛山高三教学质量检测(一))某程序框图如下图所示,该程序运行后输出的S 的值是( )A .-3B .-12C.13 D .2[答案] B[解析] 该程序框图的运行过程是: S =2,i =1,i =1≤2 010成立, S =1+21-2=-3; i =1+1=2,i =2≤2 010成立, S =1+(-3)1-(-3)=-12;i =2+1=3,i =3≤2010成立, S =1+(-12)1-(-12)=13i =3+1=4,i =4≤2 010成立; S =1+131-13=2;i =4+1=5, …….对于判断框内i 的值,n ∈N ,当i =4n +1时,S =2;当i =4n +2时,S =-3;当i =4n +3时,S =-12;当i =4n +4时,S =13.由于2011=4×502+3,则S =-12.该程序框图中含有当型循环结构,判断框内的条件不成立时循环终止,即i =2 011时开始不成立,输出S =-12. 11.如图是某年青年歌手大奖赛中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个).去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别a 1,a 2,则一定有()A .a 1>a 2B .a 1<a 2C .a 1=a 2D .a 1,a 2的大小与m 的值有关[答案] B[解析] 去掉一个最高分和一个最低分后,甲选手得分是81,85,85,84,85,则平均数是a 1=15(81+85+85+84+85)=84;乙选后得分是84,84,86,84,87,则平均数是a 2=15(84+84+86+84+87)=85>84,所以a 1<a 2.12.某工厂对一批产品进行了抽样检测.下图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( )A .90B .75C .60D .45[答案] A[解析] 设样本容量是n ,产品净重小于100克的概率为(0.050+0.100)×2=0.300,已知样本中产品净重小于100克的个数是36,则36n =0.300,所以n =120.净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75.所以样本中净重大于或等于98克并且小于104克的产品的个数是120×0.75=90.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.(2012·江苏高考卷)某学校高一、高二、高三年级的学生人数之比为3 3 4,现用分层抽样的方法从该校高中三个年极的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.[答案] 15[解析] 由已知,高二人数占总人数的310,所以抽取人数为310×50=15.14.102,238的最大公约数是________. [答案] 34[解析] 利用辗转相除法或更相减损术可得最大公约数是34. 15.假设学生在初中的英语成绩和高一英语成绩是线性相关的.现有10名学生的初中英语成绩(x )和高一英语成绩(y )如下:第4位)[答案] 1.218 2[解析] 求斜率即求回归方程中的b ^,按照公式进行即可,即需要依次计算出x=71,∑i =110x 2i =50 520,y =72.3,∑i =110x i y i =51 467,所以b ^=51 467-10×71×72.350 520-10×712≈1.218 2,所以斜率为1.218 2. 16.如图所示,在半径为1的半圆内,放置一个边长为12的正方形ABCD ,向半圆内任投一点,则该点落在正方形内的概率是________.[答案] 12π[解析] 由题设可知,该事件符合几何概型.正方形的面积为(122=14,半圆的面积为12×π=π2,故点落在正方形内的概率是14π2=12π. 三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)有一段长为11米的木棍,现要折成两段,每段不小于3米的概率有多大?[分析] 从第一个位置折断都是一个基本事件,基本事件有无限多个.但在每一处折断的可能性相等,故是几何概型.[解析] 记“折得两段都不小于3米”为事件A ,从木棍的两端各度量出3米,这样中间就有11-3-3=5(米),在间的5米长的木棍上任何一个位置折都能满足条件,所以P (A )=11-3-311=511.18.(本小题满分12分)某班50名同学参加数学测验,成绩的分组及各组的频数如下:[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100),8.(1)列出样本的频率分布表; (2)画出频率分布直方图. [解析] (1)频率分布表如下:(2)19.(本小题满分12分)对某400件元件进行寿命追求调查,情况分布如下:(1)(2)计算元件寿命在500 h~800 h以内的频率.[分析](1)频率×400=对应寿命组的频数;(2)转化为求互斥事件的频率.[解析](1)由于频率=频数样本容量,每组的频数=频率×400,计算得寿命与频数对应表:600~700 h以内”为事件B,“元件寿命在700~800 h以内”为事件C,“元件寿命在500~800 h以内”为事件D,则事件A,B,C两两互斥,且D=A+B+C,由题意,得P(A)=0.10,P(B)=0.15,P(C)=0.40,则P(D)=P(A)+P(B)+P(C)=0.10+0.15+0.40=0.65,即元件寿命在500~800 h 以内的频率为0.65.20.(2011~2012·北京西城二模)(本小题满分12分)由世界自然基金会发起的“地球1小时”活动,已发展成为最有影响力的环保活动之一,今年的参与人数再创新高.然而也有部分公众对该活动的实际效果与负面影响提出了疑问,对此,某新闻媒体进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:知从“支持”态度的人中抽取了45人,求n 的值;(2)在持“不支持”态度的人中,用分层抽样的方法抽取5人看成一个总体,从这5人中任意选取2人,求至少有1人20岁以下的概率;(3)在接受调查的人中,有8人给这项活动打出的分数如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8个人打出的分数看作一个总体,从中任取1个数,求该数与总体平均数之差的绝对值超过0.6的概率.[解析] (1)由题意得800+10045=800+450+200+100+150+300n,所以n =100.(2)设所选取的人中,有m 人20岁以下,则200200+300=m5,解得m =2.也就是20岁以下抽取了2人,另一部分抽取了3人,分别记作A 1,A 2;B 1,B 2,B 3,则从中任取2人的所有基本事件为(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 1,A 2),(B 1,B 2),(B 2,B 3),(B 1,B 3)共10个.其中至少有1人20岁以下的基本事件有7个:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 1,A 2),所以从中任意抽取2人,至少有1人20岁以下的概率为710.(3)总体的平均数为x =18(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9,那以与总体平均数之差的绝对值超过0.6的数只有8.2, 所以该数与总体平均数之差的绝对值超过0.6的概率为18.21.(2011~2012·沈阳质量监测一)(本小题满分12分)某校高三某班的一次测试成绩的茎叶图、频率分布直方图以及频率分布表中的部分数据如下,请据此解答如下问题:(1)(2)将频率分布表及频率分布直方图的空余位置补充完整; (3)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100)之间的概率.[解析] (1)由茎叶图知分数在[900,100)之间的频数为2.由频率分布直方图知分数在[900,100)之间的频率为0.008×10=0.08.所以,全班人数为20.08=25人.(2)直方图如下.频率分布表如下2个分数编号为5,6.则在[80,100)之间的试卷中任取两份的基本事件为(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15个.其中,至少有一个在[90,100)之间的基本事件有(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6),共9个,故至少有一个分数在[90,100)之间的概率是915=35.22.(2011~2012·湖南师大附中第七次月考)(本小题满分12分)2009年年底,某商业集团根据相关评分标准,对所属100家商业连锁店进行了年度考核评估,并依据考核评估得分(最低分60分,最高分100分)将这些连锁店分别评定为A ,B ,C ,D 四个类型,其考核评估标准如下表:布直方图如下:(1)估计该商业集团各连锁店评估得分的中位数;(2)假设该商业集团所有商业连锁店的评估得分互不相同,将所有A 类型连锁店按评估得分从高到低依次编号为A 1,A 2,A 3,…;所有D 类型连锁店按评估得分从高到低依次编号为D 1,D 2,D 3,…,现从A ,D 两类型连锁店中各随机抽取1家对各项评估指标进行比较分析,记被抽取的两家连锁店分别为A i ,D j ,求i +j ≥35的概率.[解析](1)因为0.015×10=0.15,0.04×10=0,4,在频率分布直方图中,中位数左边和右边的面积相等,所以中位数在区间[70,80)内.设中位数为70+x,则x10=0.5-0.150.4,解得x=8.75.估计该商业集团各连锁店评估得分的中位数是78.75分.(2)由直方图可知,A类型连锁店的频数是0.025×10×100=25,D类型连锁店的频数是0.015×10×100=15,所以该商业集团A类型连锁店共有25家,D类型连锁店共有15家.所以i∈{1,2,3,…,25},j∈{1,2,3,…,15}.若i+j≥35,则20≤i≤25,j≤15.当i=20时,j=15,有1种抽取方法;当i=21时,j=14,15,有2种抽取方法;当i=22时,j=13,14,15,有3种抽取方法;当i=23时,i=12,13,14,15,有4种抽取方法;当i=24时,j=11,12,13,14,15,有5种抽取方法;当i=25时,j=10,11,12,13,14,15,有6种抽取方法.记“i+j≥35”为事件A,则事件A包含的基本事件数为1+2+3+4+5+6=21.又从A,D两类型连锁店中各随机抽取1家的方法总数为25×15=375.所以P(A)=21375=7125,故i+j≥35的概率是7125.。
高一数学必修一综合测试题附答案

高一数学必修一综合测试题附答案高中数学必修1检测题【附答案】本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共120分,考试时间90分钟。
第Ⅰ卷(选择题,共48分)一、选择题:本大题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集 $U=\{1,2,3,4,5,6,7\}$,$A=\{2,4,6\}$,$B=\{1,3,5,7\}$,则 $A\cap(C\cup B)$ 等于A。
$\{2,4,6\}$ B。
$\{1,3,5\}$ C。
$\{2,4,5\}$ D。
$\{2,5\}$2.已知集合 $A=\{x|x^2-1=0\}$,则下列式子表示正确的有()① $1\in A$② $\{-1\}\in A$③ XXX④ $\{1,-1\}\subseteq A$A。
1个 B。
2个 C。
3个 D。
4个3.若 $f:A\to B$ 能构成映射,下列说法正确的有()1)$A$ 中的任一元素在 $B$ 中必须有像且唯一;2)$A$ 中的多个元素可以在 $B$ 中有相同的像;3)$B$ 中的多个元素可以在 $A$ 中有相同的原像;4)像的集合就是集合 $B$。
A。
1个 B。
2个 C。
3个 D。
4个4.如果函数 $f(x)=x^2+2(a-1)x+2$ 在区间 $(-\infty,4]$ 上单调递减,那么实数 $a$ 的取值范围是()A。
$a\leq-3$ B。
$a\geq-3$ C。
$a\leq5$ D。
$a\geq5$5.下列各组函数是同一函数的是()① $f(x)=-2x^3$ 与 $g(x)=x-2x$;② $f(x)=x$ 与 $g(x)=x^2$;③ $f(x)=x$ 与 $g(x)=\dfrac{x-2}{x-1}$;④ $f(x)=x-2x-1$ 与 $g(t)=t-2t-1$。
A。
①② B。
①③ C。
③④ D。
①④6.根据表格中的数据,可以断定方程 $e^x-x-2=0$ 的一个根所在的区间是()begin{tabular}{|c|c|c|c|c|c|c|}XXXx$ & $-1$ & $1$ & $2$ & $3$ & $4$ & $5$ \\XXXe^x$ & $0.371$ & $2.718$ & $7.389$ & $20.086$ & $54.598$ & $148.413$ \\XXXx+1$ & $0$ & $2$ & $3$ & $4$ & $5$ & $6$ \\XXXend{tabular}A。
高中数学 综合检测 新人教A版必修1

综合检测时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集I ={x |-3<x <3,x ∈Z},A ={1,2},B ={-2,-1,2}, 则A ∪∁I B 等于( ) A .{1} B .{1,2} C .{2}D .{0,1,2}解析:∵x ∈Z ,∴I ={-2,-1,0,1,2} ∴∁I B ={0,1} ∴A ∪∁I B ={0,1,2}. 答案:D2.函数y =1x+log 2(x +3)的定义域是( )A .RB .(-3,+∞)C .(-∞,-3)D .(-3,0)∪(0,+∞)解析:函数定义域⎩⎪⎨⎪⎧x ≠0x +3>0∴-3<x <0或x >0.答案:D3.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .y =1xB .y =e -xC .y =-x 2+1 D .y =lg |x |解析:偶函数的有C 、D 两项,当x >0时,y =lg |x |单调递增,故选C. 答案:C4.设x 0是方程ln x +x =4的解,则x 0属于区间( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)解析:设f (x )=ln x +x -4,则有f (1)=ln 1+1-4=-3<0.f (2)=ln 2+2-4= ln 2-2<1-2=-1<0,f (3)=ln 3+3-4=ln 3-1>1-1=0. ∴x 0∈(2,3). 答案:C5.3log 34-2723-lg 0.01+ln e 3=( ) A .14B .0C .1D .6解析:原式=4-3272-lg 0.01+3=7-323-lg 10-2=9-9=0.答案:B6.若y =log 3x 的反函数是y =g (x ),则g (-1)=( ) A .3 B .-3 C.13D .-13解析:由题设可知g (x )=3x ,∴g (-1)=3-1=13.答案:C7.若实数x ,y 满足|x |-ln 1y=0,则y 关于x 的函数的图象大致是( )解析:由|x |=ln 1y,则y =⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫1e x ,x ≥0e x ,x <0.答案:B8.已知f (x )=log 12x ,g (x )=2x-1,则函数y =f (x )-g (x )的零点个数为( )A .0B .1C .2D .不确定解析:在同一坐标系中作函数f (x ),g (x )的图象(图略),从而判断两函数交点个数. 答案:B 9.函数f (x )=-1x -3的零点的个数为( )A .0B .1C .2D .3解析:函数的定义域为{x |x ≠1},当x >1时f (x )<0,当x <1时f (x )>0,所以函数没有零点,故选A. 答案:A10.某新品牌电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售700台,则下列函数模型中能较好地反映销量y 与投放市场月数x 之间的关系的是( )A.y=100x B.y=50x2-50x+100C.y=50×2x D.y=100log2x+100解析:代入验证即可.答案:B11.若f(x)=ax3+ax+2(a≠0)在[-6,6]上满足f(-6)>1,f(6)<1,则方程f(x)=1在[-6,6]内的解的个数为( )A.1 B.2C.3 D.4解析:设g(x)=f(x)-1,则由f(-6)>1,f(6)<1得[f(-6)-1][f(6)-1]<0,即g(-6)g(6)<0.因此g(x)=f(x)-1在(-6,6)有一个零点.由于g(x)=ax3+ax+1(a≠0),易知当a>0时g(x)单调递增;当a<0时,g(x)单调递减,即函数g(x)为单调函数,故g(x)仅有一个零点.因此方程f(x)=1仅有一个根.故选A.答案:A12.某公司在甲、乙两地销售一种品牌车,利润(单价:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆),若该公司在两地共销售15辆车,则能获得的最大利润为( )A.45.666万元B.45.6万元C.45.56万元D.45.51万元解析:设在甲地销售x辆,在乙地则销售(15-x)辆,∴总利润S=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30(0≤x≤15)∴当x=10时,S有最大值45.6万元.答案:B二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上)13.已知f(x)是定义在R上的偶函数,且当x>0时,f(x)=2x-3,则f(-2)=________.解析:∵f(x)为定义在R上的偶函数,∴f(-x)=f(x),∴f(-2)=f(2)=22-3=1.答案:114.已知集合A={x|ax2-3x+2=0}至多有一个元素,则a的取值范围为________.解析:集合A 有为∅和A 中只有一个元素两种情况,a =0时,A ={23}满足题意,a ≠0时,则由Δ=9-8a ≤0得a ≥98.答案:a ≥98或a =015.用二分法求方程ln x =1x在[1,2]上的近似解时,取中点c =1.5,则下一个有根区间为________.解析:令f (x )=ln x -1x ,则f (1)=-1<0,f (2)=ln 2-12=ln 2-ln e 12>0,f (1.5)=f (32)=ln 32-23=ln 32-ln e 23e 23=3e 2>32,∴ln e 23>ln 32,即f (1.5)<0. ∴下一个有根区间为(1.5,2). 答案:(1.5,2)16. 给出下列四个命题:①a >0且a ≠1时函数y =log a a x与函数y =a log a x 表示同一个函数. ②奇函数的图象一定通过直角坐标系的原点.③函数y =3(x -1)2的图象可由y =3x 2的图象向右平移1个单位得到. ④若函数f (x )的定义域为[0,2],则函数f (2x )定义域为[0,4]. 其中正确命题的序号是________(填上所有正确命题的序号)解析:①两函数定义域不同,y =log a a x定义域为R ,y =a log a x 定义域(0,+∞). ②如果函数在x =0处没有定义,图象就不过原点,如y =1x.③正确.④f (x )定义域[0,2]∴f (2x )定义域0≤2x ≤2即0≤x ≤1, ∴f (2x )定义域为[0,1]. 答案:③三、解答题(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知A ={x |x 2+2x -8=0},B ={x |log 2(x 2-5x +8)=1},C ={x |x 2-ax +a 2-19=0}.若A ∩C =∅,B ∩C ≠∅,求a 的值.解析:A ={2,-4},B ={2,3}, 由A ∩C =∅知2∉C ,-4∉C , 又由B ∩C ≠∅知3∈C ,∴32-3a +a 2-19=0解得a =-2或a =5, 当a =-2时,C ={3,-5},满足A ∩C =∅, 当a =5时,C ={3,2},A ∩C ={2}≠∅,(舍去), ∴a =-2.18.(本小题满分12分)已知函数f (x )=ax 2+bx +1(a ,b 为实数,a ≠0,x ∈R)(1)当函数f (x )的图象过点(-1,0),且方程f (x )=0有且只有一个根,求f (x )的表达式. (2)在(1)的条件下,当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围. 解析:(1)因为f (-1)=0,所以a -b +1=0 因为方程f (x )=0有且只有一个根, ∴Δ=b 2-4a =0, ∴b 2-4(b -1)=0, 即b =2,a =1, ∴f (x )=(x +1)2.(2)∵g (x )=f (x )-kx =x 2+2x +1-kx =x 2-(k -2)x +1 =(x -k -22)2+1-k -24∴当k -22≥2或k -22≤-2时即k ≥6或k ≤-2时,g (x )是单调函数.19.(本小题满分12分)已知f (x )是定义在(0,+∞)上的增函数, 且对任意x ,y ∈(0,+∞),都有f (xy)=f (x )-f (y ). (1)求f (1)的值;(2)若f (6)=1,解不等式f (x +3)+f ⎝ ⎛⎭⎪⎫1x ≤2.解析:(1)∵f (x )是(0,+∞)上的增函数,且对任意x ,y ∈(0,+∞),都有f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y ),∴f (1)=f (11)=f (1)-f (1)=0.(2)若f (6)=1,则f (x +3)+f ⎝ ⎛⎭⎪⎫1x ≤2=1+1=f (6)+f (6),∴f (x +3)-f (6)≤f (6)-f ⎝ ⎛⎭⎪⎫1x ,即f ⎝ ⎛⎭⎪⎫x +36≤f (6x ), ∴0<x +36≤6x ,解得x ≥335.∴原不等式的解集为{x |x ≥335}. 20.(本小题满分12分)已知函数f (x )=mx +n 1+x 2是定义在(-1,1)上的奇函数,且f (12)=25. (1)求实数m ,n 的值;(2)用定义证明f (x )在(-1,1)上为增函数; (3)解关于t 的不等式f (t -1)+f (t )<0. 解析:(1)∵f (x )为奇函数,∴f (-x )=-f (x ), 即m -x +n 1+-x 2=-mx +n1+x2.∴n =0.又∵f ⎝ ⎛⎭⎪⎫12=12m 1+⎝ ⎛⎭⎪⎫122=25,∴m =1.(2)由(1)得,f (x )=x1+x2.设-1<x 1<x 2<1, 则f (x 1)-f (x 2) =x 11+x 21-x 21+x 22=x 1+x 22-x 2+x 21+x 21+x 22=x 1-x 2-x 1x 2+x 21+x 22. ∵-1<x 1<x 2<1,∴x 1-x 2<0,1-x 1x 2>0,1+x 21>0,1+x 22>0, ∴f (x 1)-f (x 2)<0.∴f (x )在(-1,1)上为增函数.(3)∵f (x )是定义在(-1,1)上的奇函数,由f (t -1)+f (t )<0,得f (t )<-f (t -1)=f (1-t ). 又∵f (x )在(-1,1)上为增函数, ∴⎩⎪⎨⎪⎧-1<t <1,-1<1-t <1,t <1-t ,解得0<t <12.21.(本小题满分13分)某医疗研究所开发了一种新药,如果成人按规定的剂量服用,则服药后每毫升血液中的含药量y 与时间t 之间近似满足如图所示的曲线.(1)写出服药后y 与t 之间的函数关系式;(2)据测定,每毫升血液中含药量不少于4μg 时治疗痢疾有效.假设某病人一天中第一次服药时间为上午7:00,问一天中怎样安排服药时间(共4次)效果更佳? 解析:(1)依题意,得y =⎩⎪⎨⎪⎧6t ,0≤t ≤1,-23t +203,1<t ≤10.(2)设第二次服药在第一次服药后t 1小时, 则-23t 1+203=4.解得t 1=4,因而第二次服药应在11:00.设第三次服药在第一次服药后t 2小时,则此时血液中含药量应为前两次服药后的含药量的和,即-23t 2+203-23(t 2-4)+203=4.解得t 2=9小时,故第三次服药应在16:00.设第四次服药在第一次服药后t 3小时(t 3>10),则此时第一次服进的药已吸收完,血液中含药量为第二、三次的和,即-23(t 3-4)+203-23(t 3-9)+203=4.解得t 3=13.5小时,故第四次服药应在20:30.22.(本小题满分13分)已知函数f (x )定义域为[-1,1],若对于任意的x ,y ∈[-1,1],都有f (x +y )=f (x )+f (y ),且x >0时,有f (x )>0,(1)证明: f (x )为奇函数;(2)证明:f (x )在[-1,1]上是增加的.(3)设f (1)=1,若f (x )<m -2am +2,对所有x ∈[-1,1],a ∈[-1,1]恒成立,求实数m 的取值范围.解析:(1)令x =y =0,∴f (0)=0 令y =-x ,f (x )+f (-x )=0∴f (-x )=-f (x ),∴f (x )为奇函数. (2)∵f (x )是定义在[-1,1]上的奇函数, 令-1≤x 1<x 2≤1,则f (x 2)-f (x 1)=f (x 2-x 1)>0, ∴f (x )在[-1,1]上是增加的.(3)f (x )在[-1,1]上是增加的,f (x )max =f (1)=1,使f (x )<m -2am +2对所有x ∈[-1,1]恒成立,只要m -2am +2>1,即m -2am +1>0, 令g (a )=m -2am +1=-2am +m +1, 要使g (a )>0时,a ∈[-1,1]恒成立,则⎩⎪⎨⎪⎧g -,g ,即⎩⎪⎨⎪⎧1+3m >0,1-m >0,∴-13<m <1.∴实数m 的取值范围是(-13,1).。
高一数学综合检测试卷 必修4 试题
高一数学综合检测试卷一、选择题,本大题一一共12小题,每一小题5分,满分是60分,在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的. 1.98απ=,那么角α的终边所在的象限是〔 〕A .第一象限B .第二象限C .第三象限D .第四象限 2.cos75·cos15的值是〔 〕A .12 B .14C 3.与向量a =〔12,5〕平行的单位向量为〔 〕A .125,1313⎛⎫-⎪⎝⎭ B .125,1313⎛⎫-- ⎪⎝⎭ C .125125,,13131313⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭或 D .125125,,13131313⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭或 4.以下函数中,在区间02π⎛⎫⎪⎝⎭,上为增函数且以π为周期的函数是〔 〕A .sin2xy = B .sin y x = C .tan y x =- D .cos 2y x =-5.假设向量a =〔1,1〕,b =〔1,-1〕,c =〔-1,-2〕,那么c =〔 〕 A .1322a b -- B .1322a b -+ C .3122a b - D .3122a b -+ 6.a =8,e 是单位向量,当它们之间的夹角为6π时,a 有e 方向上的投影长度为 〔 〕 A .43 B .4 C .42 D .8+23 7. △ABC 中三个内角为A 、B 、C ,假设关于x 的方程22cos cos cos 02Cx x A B --=有一根为1,那么△ABC 一定是A. 直角三角形B. 等腰三角形C. 锐角三角形D. 钝角三角形 8.sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值是〔 〕A .-2B .2C .2316D .-23169.设OA =a ,OB =b ,OC =c ,当(),λμλμ=+∈R c a b ,且1λμ+=时,点C 在 〔 〕A .线段AB 上 B .直线AB 上C .直线AB 上,但除去A 点D .直线AB 上,但除去B 点10.函数y =cos(4π-2x )的单调递增区间是 〔 〕 A .[k π+8π,k π+85π] B .[k π-83π,k π+8π]C .[2k π+8π,2k π+85π] D.[2k π-83π,2k π+8π]〔以上k ∈Z 〕11.把函数y =sin2x 的图象按向量a 平移后得到函数sin 236y x π=++⎛⎫⎪⎝⎭的图象,那么向量a 可以是〔 〕A .,36π⎛⎫⎪⎝⎭ B .,36π⎛⎫- ⎪⎝⎭ C .,312π⎛⎫-- ⎪⎝⎭ D .,312π⎛⎫- ⎪⎝⎭y =f (x )在[-1,0]上为单调递减函数,又α、β为锐角三角形的两内角,那么〔 〕A.)(cos )(sin βαf f >B.)(cos )(sin βαf f <C.)(sin )(sin βαf f >D.)(cos )(cos βαf f >二、填空题,本大题一一共6小题,每一小题4分,满分是24分,把正确之答案写在题中横线上.13.假设)30(sin ,3cos )(cos f x x f 则==_______________.14. 33cos ,,tan 524πθπθπθ⎛⎫=-<<- ⎪⎝⎭且则= .15.在△ABC 中,15,3,5,4AB CA AB AC BAC ⋅===∠则= .16. 向量a =〔2,-1〕与向量b 一共线,且满足a ·b =-10,那么向量b =_______________ 17. 如以下图,一个人在地面上某处用测量仪测得一铁塔顶的仰角为θ,由此处向铁塔的方向前进30m ,测得铁塔顶的仰角为2θ,再向铁塔的方向前进103m ,又测得铁塔顶的仰角为4θ.假如测量仪的高为1.5m ,那么铁塔的高为 m .18. 给出以下四个命题:①存在实数α,使sin α·cos α=1;②)227cos(2)(x x f --=π是奇函数; ③83π-=x 是函数)432sin(3π-=x y 的图象的一条对称轴;④函数)cos(sin x y =的值域为]1cos ,0[. 其中正确命题的序号是 .三、解答题, 本大题一一共5小题,一共66分,解容许写出必要的文字说明、证明过程和演算步骤.19.(此题满分是12分)〔1〕2tan -=α,且α是第二象限的角,求αsin 和αcos ; 〔2〕044513<<-⎛⎝ ⎫⎭⎪=x x ππ,sin ,求cos cos 24xx π+⎛⎝ ⎫⎭⎪的值.20. (此题满分是12分)向量a =(cos ,sin αα),b =(cos ,sin ββ). (1)求(2)+a a b 的取值范围;(2)假设3παβ-=,求2a b +.21. (此题满分是14分)tan ,tan αβ是方程2430x px --=( p 为常数)的两个根.(1)求tan(αβ+);(2)求()22cos 2cos 22sin αβαβ+-.(可利用的结论:2222tan 1tan sin 2,cos 21tan 1tan θθθθθθ-==++)22. (此题满分是14分)△ABC 的顶点坐标为A (1,0),B (5,8),C (7, —4),在边AB 上有一点P ,其横坐标为4.(1)设AB AP λ=,务实数λ;(2)在边AC 上求一点Q ,使线段PQ 把△ABC 分成面积相等的两局部.23.(此题满分是14分)设函数()()sin 0,22f x x ππωϕωϕ⎛⎫=+>-<<⎪⎝⎭,给出以下三个论断: ①()f x 的图象关于直线6x π=-对称;②()f x 的周期为π; ③()f x 的图象关于点,012π⎛⎫⎪⎝⎭对称. 以其中的两个论断为条件,余下的一个论断作为结论,写出你认为正确的一个命题,并对该命题加以证明.[参考答案]一、选择题二、填空题13. -1 14. 17 15. 23π16. (-4,2) 18. ②③三、解答题19.(1)sin cos αα== (2)241320.(1)[-.(1)p (2)221p + 22.(1)43 (2)Q 85,3⎛⎫- ⎪⎝⎭ 23.⎫⇒⎬⎭①③②或者⎫⇒⎬⎭①②③,证明略. 励志赠言经典语录精选句;挥动**,放飞梦想。
{高中试卷}高一数学新课程检测卷必修1[仅供参考]
20XX年高中测试高中试题试卷科目:年级:考点:监考老师:日期:高一数学新课程检测卷必修1(人教A 版) 集合(1)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .约等于2的数 C .接近于0的数D .不等于0的偶数 2.已知集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( )A .1B .—1C .1或—1D .1或—1或03.设集合},3|{Z k k x x M ∈==,},13|{Z k k x x P ∈+==,},13|{Z k k x x Q ∈-==,若Q c P b M a ∈∈∈,,,则∈-+c b a( )A .MB . PC .QD .P M ⋃4.设U ={1,2,3,4} ,若B A ⋂={2},}4{)(=⋂B A C U ,}5,1{)()(=⋂B C A C U U ,则下列结论正确的是( )A .A ∉3且B ∉3B .A ∈3且B ∉3C .A ∉3且B ∈3D .A ∈3且B ∈35.5.以下四个关系:φ}0{∈,∈0φ,{φ}}0{⊆,φ}0{,其中正确的个数是 ( )A .1B .2C .3D .46. 设U 为全集,Q P ,为非空集合,且P QU ,下面结论中不正确...的是 ( )A .U Q P C U =⋃)(B .=⋂Q PC U )(φ C .Q Q P =⋃D .=⋂P Q C U )(φ 7.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x xD .}01|{2=+-x x x8.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则( )A .N M =B .MN C .N M D .φ=⋂N M9.表示图形中的阴影部分( )A .)()(CBC A ⋃⋂⋃B .)()(C A B A ⋃⋂⋃ C .)()(C B B A ⋃⋂⋃D .C B A ⋂⋃)(10.已知集合A 、B 、C 为非空集合,M=A ∩C ,N=B ∩C ,P=M ∪N ,则 ( )A .C ∩P=CB .C ∩P=PC .C ∩P=C ∪PD .C ∩P=φA BC二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.若集合}3|),{(}04202|),{(b x y y x y x y x y x +=⊂=+-=-+且,则_____=b . 12.设集合}0|),{(111=++=c x b x a y x A ,}0|),{(222=++=c x b x a y x B ,则方程)(111c x b x a ++0)(222=++c x b x a 的解集为.13.已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围. 14.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B =. 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)已知集合A ={x |x =m 2-n 2,m ∈Z ,n ∈Z}求证:(1)3∈A ;(2)偶数4k —2(k ∈Z)不属于A.16.(12分)(1)P ={x |x 2-2x -3=0},S ={x |a x +2=0},S ⊆P ,求a 取值?(2)A ={-2≤x ≤5} ,B ={x |m +1≤x ≤2m -1},B ⊆A,求m ?17.(12分)在1到100的自然数中有多少个能被2或3整除的数?18.(12分)已知方程02=++q px x 的两个不相等实根为βα,。
高中数学 综合测试卷 新人教A版必修1高一
高中数学 综合测试卷 新人教A 版必修1高一第一部分 选择题(共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中只有一个是符合题目要求的,多选、错选、漏选均不得分. 1. 若{|02}Ax x,{|12}Bx x ,则A BA .{|0}x xB .{|2}x xC .{|02}x xD .{|02}x x2. 与函数yx 有相同图象的一个函数是A .2y xB .2x y xC .log (0,1)a y x a a 且D .log (0,1)x a ya aa且3. 某程序框图如图所示,该程序运行后输出的k 的值是A .3B .4C .5D .64. 已知函数e 1,1,()ln , 1.x x f x x x ,那么(ln 2)f 的值是A .0B .1C .ln(ln 2)D .25. 根据表中的数据,可以判定方程e 2x x 的一个解所在的区间是10.37 21A .(1,0)B .(0,1)C .(1,2)D .(2,3)6. 函数||12x y的图象大致是7. 设2log 0.3a,0.12b , 1.30.2c ,则A .a bcB .a c bC .c a bD .b c a8. 函数22(13)yx x x的值域是A .[1,1]B .[1,3]C .[1,5]D .[1,3] 9. 若函数()yf x 是奇函数,(2)1f ,(2)()(2)f xf x f ,则(3)fA .2B .12C .1D .3210. 用min{,,}a b c 表示a ,b ,c 三个数中的较小者,设()min{2,2,10}x f x x x ,则()f x 的最大值是 A .4B .5C .6D .7选择题答题卡0k 0S100?S2S S S1k k是第3页 共8页 第4页 共8页第二部分 (非选择题 共100分)二.填空题:本大题共7小题,每小题4分,共28分. 11.233log 24831ln elog 64.12.幂函数()yf x 的图象过点(4,2),则(16)f .13. 若3log 14a ,则a 的取值范围是 .14. 228与1995的最大公约数是 .15. 小吴的计算机有256M 的内存,因不慎中了一种专门占据计算机内存的病毒,该病毒随计算机开机启动,刚开始占据内存1KB ,然后每3min 自我复制一次,复制后所占据内存是原来的2倍,那么开机后经过 min ,该计算机的内存将被耗尽(101M 2KB )16. 若函数()yf x 满足下列性质:(1)定义域为R ,值域为[0,);(2)图象关于直线2x 对称;(3)对任意的1x ,2(,0)x ,且12x x ,都有1212()()0f x f x x x .请写出函数()f x 的一个解析式 (只要写出一个即可). 17. 已知函数2()3f x x axa ,若[2,2]x 时,()0f x 恒成立,则实数a 的取值范围.三.解答题:本大题共5小题,满分72分.解答时须写出必要的文字说明、证明过程或演算步骤.18. (本小题满分14分)设全集UR ,集合214x yAx ,{|13}B x x x 或(1)若不等式220x mxn 的解集是A ,求m ,n 的值;(2)求()U A B .19. (本小题满分14分)设函数2()log ()xx f x a b ,且(1)1f ,2(2)log 12f(1)求a ,b 的值; (2)求函数()f x 的零点.20. (本小题满分14分)某桶装水经营部每天的房租、人员工资等固定成本是400元,每桶水的进价是4元,销售单价与日均销售量的关系如下表所示.根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?第7页 共8页 第8页 共8页21. (本小题满分15分)已知函数1,0,()2,0.x f x x ,3(1)(2)()2f x f xg x(1)求()yg x 的解析式,并画出其图象;(2)写出方程[()]2[()]f g x x g f x 的解集.22. (本小题满分15分)已知函数()y f x (xD ,D 是此函数的定义域)同时满足下列两个条件:①函数()yf x 在D 上是单调的;②如果存在区间[,]a b D ,使函数()yf x 在区间[,]a b 上的值域为[,]a b .那么称()yf x ,xD 为闭函数.(1)求闭函数3y x 符合条件②的区间[,]a b ;(2)判断函数22()2()x x f x x R 是否为闭函数,并说明理由;(3)若(0)ykx k是闭函数,求实数k 的取值范围.y。
高一数学 必修一 综合质量检测 01
高一数学 必修一 综合质量检测 01本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟. 第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.全集U =R ,A ={x |x <-3,或x ≥2},B ={x |-1<x <5},则集合{x |-1<x <2}是( )A .(∁U A )∪(∁UB ) B .∁U (A ∪B )C .(∁U A )∩BD .A ∩B[解析] 由题意知,∁U A =[-3,2),又因为B =(-1,5),所以(∁U A )∩B =(-1,2).故选C.[答案] C2.函数f (x )=x 2x -1+lg(10-x )的定义域为( )A .RB .[1,10]C .(-∞,-1)∪(1,10)D .(1,10)[解析] 要使函数f (x )有意义,需使⎩⎪⎨⎪⎧x -1>0,10-x >0,解得1<x <10.故选D.[答案] D3.已知f (x )=x 2-ax 在[0,1]上是单调函数,则实数a 的取值范围是( )A .(-∞,0]B .[1,+∞)C .[2,+∞)D .(-∞,0]∪[2,+∞)[解析] 函数f (x )=x 2-ax 图象的对称轴为直线x =a2,根据二次函数的性质可知a 2≤0或a2≥1,解得a ≤0或a ≥2.故选D.[答案] D4.设函数f (2x)的定义域是[2,4],则函数f ⎝ ⎛⎭⎪⎫x 2的定义域为( )A .[1,2] B.⎣⎢⎡⎦⎥⎤12,1 C .[2,8]D .[8,32][解析] 因为f (2x)的定义域为[2,4],所以4≤2x≤16,对于f ⎝ ⎛⎭⎪⎫x 2,有4≤x2≤16,所以8≤x ≤32.故选D.[答案] D5.下列函数是偶函数且值域为[0,+∞)的是( ) ①y =|x |;②y =x 3;③y =2|x |;④y =x 2+|x |. A .①② B .②③ C .①④D .③④[解析] 对于①,y =|x |是偶函数,且值域为[0,+∞);对于②,y =x 3是奇函数;对于③,y =2|x |是偶函数,但值域为[1,+∞);对于④,y =x 2+|x |是偶函数,且值域为[0,+∞),所以符合题意的有①④,故选C.[答案] C6.已知a =log 20.3,b =20.3,c =0.30.2,则a ,b ,c 三者的大小关系是( )A .b >c >aB .c >b >aC .a >b >cD .b >a >c[解析] a =log 20.3<log 21=0,b =20.3>20=1,0<c =0.30.2<0.30=1,所以b >c >a .故选A.[答案] A7.若f (x )=a x +log a (x +1)在[0,1]上的最大值与最小值之和为a ,则a 的值是( )A.14B.12 C .2 D .4[解析] 当a >1时,f (x )max =f (1)=a +log a 2,f (x )min =f (0)=a 0+log a 1=1,所以a +log a 2+1=a ,所以a =12,不合题意,舍去;当0<a <1时,f (x )max =f (0)=a 0+log a 1=1,f (x )min =f (1)=a +log a 2,所以a +log a 2+1=a ,所以a =12,故选B.[答案] B8.已知lg a +lg b =0,函数f (x )=a x 与函数g (x )=-log b x 的图象可能是( )[解析] ∵lg a +lg b =0,∴ab =1,则b =1a ,从而g (x )=-logb x =log a x ,故g (x )与f (x )=a x 互为反函数,图象关于直线y =x 对称.故选B.[答案] B9.下列函数f (x )与g (x )是相同函数的是( ) A .f (x )=(x -1)2;g (x )=x -1 B .f (x )=x 2-1x -1;g (x )=x +1C .f (x )=lg(x +1)+lg(x -1);g (x )=lg(x 2-1)D .f (x )=e x +1·e x -1;g (x )=e 2x[解析] 对于A ,f (x )=(x -1)2=|x -1|,g (x )=x -1,解析式不同;对于B ,f (x )=x 2-1x -1,x ≠1,g (x )=x +1,x ∈R ,定义域不同;对于C ,f (x )=lg(x +1)+lg(x -1),x >1,g (x )=lg(x 2-1),x >1或x <-1,定义域不同;对于D ,f (x )和g (x )的定义域均为R ,且解析式相同,故选D.[答案] D10.函数f (x )=log 2(x 2-ax +3a )在[2,+∞)上是增函数,则实数a 的取值范围是( )A .(-∞,2]B .(-∞,4]C .[-2,4]D .(-4,4][解析] 因为f (x )在[2,+∞)上是增函数,所以y =x 2-ax +3a 在[2,+∞)上单调递增且恒为正,所以⎩⎨⎧a 2≤2,22-2a +3a >0,即-4<a ≤4,故选D.[答案] D11.函数f (x )=⎩⎪⎨⎪⎧x 2-1,x ≤0,x -2+ln x ,x >0的零点个数为( )A .3B .2C .1D .4[解析]令f (x )=0,得到⎩⎪⎨⎪⎧x 2-1=0,x ≤0,解得x =-1;或⎩⎪⎨⎪⎧x -2+ln x =0,x >0,在同一个直角坐标系中画出y =2-x 和y =ln x 的图象,观察交点个数,如图所示.函数y =2-x 和y =ln x ,x >0,在同一个直角坐标系中交点个数是1,所以函数f (x )在x <0时的零点有一个,在x >0时零点有一个,所以f (x )的零点个数为2.[答案] B12.已知函数f (x )=⎩⎪⎨⎪⎧a x ,x ≤0,(a -3)x +4a ,x >0,对任意x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<0成立,则a 的取值范围是( )A .(0,1)B .(0,3)C.⎝ ⎛⎦⎥⎤0,14 D.⎣⎢⎡⎭⎪⎫14,1 [解析] 由题意可知函数f (x )在整个定义域上单调递减,则⎩⎪⎨⎪⎧0<a <1,a -3<0,a 0≥4a ,解得0<a ≤14,故选C.[答案] C第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知幂函数y =f (x )的图象过点(3,3),则f (8)=________. [解析] 设幂函数f (x )=x α,由f (x )的图象过点(3,3),得3=3α,α=12,所以f (x )=x 12,故f (8)=812=2 2.[答案] 2214.若函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤0,-2-x,x >0,则函数y =f [f (x )]的值域是________.[解析] 当x ≤0时,f (x )=3x ∈(0,1],∴y =f [f (x )]=f (3x )=-2-3x∈⎝ ⎛⎦⎥⎤-1,-12; 当x >0时,f (x )=-2-x ∈(-1,0),y =f [f (x )]=f (-2-x)=3-2-x∈⎝ ⎛⎭⎪⎫13,1.综上所述,y =f [f (x )]的值域是 ⎝ ⎛⎦⎥⎤-1,-12∪⎝ ⎛⎭⎪⎫13,1.[答案] ⎝ ⎛⎦⎥⎤-1,-12∪⎝ ⎛⎭⎪⎫13,115.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,且函数h (x )=f (x )+x -a 有且只有一个零点,则实数a 的取值范围是________.[解析]由题意可画出函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0的图象,如右图所示,函数h (x )=f (x )+x -a 有且只有一个零点,即y =f (x )的图象与y =a -x 的图象有且只有一个交点,显然当a >1时满足条件.[答案] (1,+∞) 16.给出下列四个命题:①函数f (x )=log a (2x -1)-1的图象过定点(1,0);②已知函数f (x )是定义在R 上的偶函数,当x ≤0时,f (x )=x (x +1),则f (x )的解析式为f (x )=x 2-|x |;③若log a 12>1,则a 的取值范围是⎝ ⎛⎭⎪⎫12,1;④若2-x -2y >ln x -ln(-y )(x >0,y <0),则x +y <0.其中所有正确命题的序号是________.[解析] ①函数的图象过定点(1,-1),不正确;②设x >0,-x <0,则f (x )=f (-x )=(-x )(-x +1)=x 2-x ,所以函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x ≤0,x 2-x ,x >0,即f (x )=x 2-|x |,正确;③由log a 12>1可知,0<a <1,又1=log a a <log a 12,根据单调性可得12<a <1,正确;④原不等式可化为2-x -ln x >2y -ln(-y )(x >0,y <0),因为函数y =2-x -ln x 在定义域内是减函数,所以x <-y ,即x +y <0,正确.[答案] ②③④三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)计算:18.(本小题满分12分)设集合A ={x |x 2+4x =0,x ∈R },B ={x |x 2+2(a +1)x +a 2-1=0,x ∈R },若B ⊆A ,求实数a 的值.[解] A ={x |x 2+4x =0}={-4,0}. ∵B ⊆A ,∴分B =A ,B A 两种情况讨论. ①当A =B 时,B ={-4,0}.即-4,0是方程x 2+2(a +1)x +a 2-1=0的两根,于是得a =1. ②当B A 时,若B =∅,则Δ=4(a +1)2-4(a 2-1)<0, 解得a <-1.若B ≠∅,则B ={-4}或{0},Δ=4(a +1)2-4(a 2-1)=0,解得a =-1, 验证知B ={0}满足条件.综上可知,所求实数a 的值为a =1或a ≤-1.19.(本小题满分12分)已知指数函数f (x )=a x (a >0,且a ≠1). (1)求f (x )的反函数g (x )的解析式; (2)解不等式:g (x )≤log a (2-3x ).[解] (1)由题意知g (x )=log a x (a >0,且a ≠1). (2)由(1)知g (x )=log a x (a >0,且a ≠1), 下面对a 进行分类讨论:当a >1时,由log a x ≤log a (2-3x ),即⎩⎪⎨⎪⎧x >0,2-3x >0,x ≤2-3x ,解得0<x ≤12;当0<a <1时,log a x ≤log a (2-3x ),即⎩⎪⎨⎪⎧x >0,2-3x >0,x ≥2-3x ,解得12≤x <23.综上,当a >1时,不等式的解集为⎝⎛⎦⎥⎤0,12;当0<a <1时,不等式的解集为⎣⎢⎡⎭⎪⎫12,23.20.(本小题满分12分)m 为何值时,f (x )=x 2+2mx +3m +4. (1)有且仅有一个零点;(2)有两个零点且均比-1大.[解] (1)f (x )=x 2+2mx +3m +4有且仅有一个零点⇔方程f (x )=0有两个相等实根⇔Δ=0,即4m 2-4(3m +4)=0,即m 2-3m -4=0,∴m =4或m =-1.(2)由题意知⎩⎪⎨⎪⎧Δ>0,-m >-1,f (-1)>0,即⎩⎪⎨⎪⎧m 2-3m -4>0,m <1,1-2m +3m +4>0.∴-5<m <-1,∴m 的取值范围为(-5,-1).21.(本小题满分12分)已知函数f (x )是定义在区间[-1,1]上的奇函数,对于任意的m ,n ∈[-1,1]有f (m )+f (n )m +n>0(m +n ≠0).(1)判断函数f (x )的单调性; (2)解不等式f ⎝ ⎛⎭⎪⎫x +12<f (1-x ).[解] (1)设x 1=m ,x 2=-n ,由已知可得f (x 1)-f (x 2)x 1-x 2>0,不妨设x 1<x 2,则f (x 1)<f (x 2),由函数单调性的定义可得函数f (x )在区间[-1,1]上是增函数.(2)由(1)知函数在区间[-1,1]上是增函数.又由f ⎝ ⎛⎭⎪⎫x +12<f (1-x ),得⎩⎪⎨⎪⎧-1≤x +12≤1,-1≤1-x ≤1,x +12<1-x ,解得0≤x <14.所以不等式f ⎝⎛⎭⎪⎫x +12<f (1-x )的解集为⎩⎨⎧⎭⎬⎫x |0≤x <14.22.(本小题满分12分)已知f (x )是定义在(-1,1)上的奇函数,当x∈(0,1)时,f (x )=2x4x +1.(1)求f (x )在(-1,1)上的解析式;(2)判断f (x )在(0,1)上的单调性,并说明理由; (3)求函数f (x )的值域.[解] (1)当x ∈(-1,0)时,-x ∈(0,1). ∵函数f (x )为奇函数,∴f (x )=-f (-x )=-2-x 4-x +1=-2x1+4x .又f (0)=f (-0)=-f (0), ∴2f (0)=0,f (0)=0.故当x ∈(-1,1)时,f (x )的解析式为f (x )=⎩⎪⎨⎪⎧2x4x +1,x ∈(0,1),0,x =0,-2x 4x+1,x ∈(-1,0).(2)当x ∈(0,1)时,f (x )是减函数.证明如下: 设0<x 1<x 2<1,(3)由(2)知f (x )=2x4x +1在(0,1)上递减,从而由奇函数的对称性知f (x )在(-1,0)上递减.∴当0<x <1时,f (x )∈⎝ ⎛⎭⎪⎫2141+1,2040+1,即f (x )∈⎝ ⎛⎭⎪⎫25,12; 当-1<x <0时,f (x )∈⎝ ⎛⎭⎪⎫-2040+1,-2-14-1+1,即f (x )∈⎝ ⎛⎭⎪⎫-12,-25; 当x =0时,f (x )=f (0)=0.故函数f (x )在(-1,1)上的值域为 ⎝ ⎛⎭⎪⎫25,12∪{0}∪⎝ ⎛⎭⎪⎫-12,-25.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标高一数学综合检测题(必修一)
第Ⅰ卷(选择题,共60分)
一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,
只有一项是符合题目要求的)
1. 函数2134yxx的定义域为( )
A )43,21( B ]43,21[ C ),43[]21,( D ),0()0,21(
2. 二次函数2yaxbxc中,0ac,则函数的零点个数是( )
A 0个 B 1个 C 2个 D 无法确定
3. 若函数2()2(1)2fxxax在区间,4上是减少的,那么实数a的取值范围
是( )A 3a B 3a C 5a D 5a
4. 设833xxfx,用二分法求方程2,10833xxx在内近似解的过中
得,025.1,05.1,01fff则方程的根落在区间( )
A.(1,1.25) B.(1.25,1.5) C.(1.5,2) D.不能确定
5. 方程05log2xx在下列哪个区间必有实数解( )
A (1,2) B (2,3) C (3,4) D (4,5)
6. 设a>1,则xay图像大致为( )
y y y y
A B C D
x x x x
7.角的终边过点P(4,-3),则cos的值为( )
A.4 B.-3 C.54 D.53
8.向量(,2),(2,2)akb且//ab,则k的值为( )
A.2 B.2 C.-2 D.-2
9.oooosin71cos26-sin19sin26的值为( )A.12 B.1 C.-22 D.22
10.若函数baxxxf2的两个零点是2和3,则函数12axbxxg的零点是()
A.1 和2 B.1 和2 C.21和31 D.21和31
11.下述函数中,在]0,(内为增函数的是( )
A y=x2-2 B y=x3 C y=12x D 2)2(xy
12.下面四个结论:①偶函数的图象一定与y轴相交;②奇函数的图象一定通过原点;③偶
函数的图象关于y轴对称;④既是奇函数又是偶函数的函数一定是()fx=0(x∈R),
其中正确命题的个数是( )A 4 B 3 C 2 D 1
二、填空题
13.函数53log221axxy在,1上是减函数,则实数a的取值范围
是___________.
14.幂函数xfy的图象经过点81,2,则满足27xf的x的值为
15. 已知集合}023|{2xaxxA.若A中至多有一个元素,则a的取值范围是
16. 函数21)(xaxxf在区间),2(上为增函数,则a的取值范围是______________。
三、解答题
(本大题共44分,17—18题每题10分,19--20题12分,解答应写出文字说明、
演算步骤或推证过程)
17. 已知函数f(x)=x2+2ax+2, x5,5.(1)当a=-1时,求函数的最大值和最小值;
(2) 若y=f(x)在区间5,5 上是单调 函数,求实数 a的取值范围。
18.已知关于x的二次方程x2+2mx+2m+1=0.(Ⅰ)若方程有两根,其中一根在区间(-
1,0)内,另一根在区间(1,2)内,求m 的取值范围.(Ⅱ)若方程两根均在区间(0,1)
内,求m的取值范围.
19.已知函数y=Asin(ωx+φ) (A>0,ω>0,|φ|<π)的 一段图象(如图)所示.
(1)求函数的解析式;(2)求这个函数的单调增区间。
20.已知1,011logaaxxxfa且(1)求xf的定义域;(2)证明xf为奇函数;
(3)求使xf>0成立的x的取值范围.
x
y
-3
3
π/3
5π/6
-π/6
O
新课标高一数学综合检测题(必修一)
高中数学函数测试题(必修一)参考答案
一、选择题:
1.B 2.C 3.A 4.B 5.C 6.B 7.C 8.D 9.D 10.D 11.C 12.D
二、填空题:
13. 6,8 14.31 15.9|,08aaa或 16.21a
三、解答题
17.解:(1)最大值 37, 最小值 1 (2)a5或a5
18.(Ⅰ)设()fx=x2+2mx+2m+1,问题转化为抛物线()fx=x2+2mx+2m+1与x轴
的交点分别在区间(-1,0)和(1,2)内,则
1
,2(0)210,,(1)20,1(1)420,,2(2)650.5.6mfmmffmmfmm
R
解得2165m. ∴ 51,62m.
(Ⅱ)若抛物线与x轴交点均落在区间(0,1)内,则有
(0)0,(1)0,0,01.ffm
即.01,2121,21,21mmmmm或解得1122m.
∴ 1,122m.
19、(本小题10分)
解:(1)由图可知A=3
T=5()66=π,又2T,故ω=2
所以y=3sin(2x+φ),把(,0)6代入得:03sin()3
故23k,∴23k,k∈Z
∵|φ|<π,故k=1,3 ∴3sin(2)3yx
(2)由题知222232kxk
x
y
-3
3
π/3
5π/6
-π/6
O
解得:51212kxk
故这个函数的单调增区间为5[,]1212kk,k∈Z
20.;解:(1).011,011,011xxxxxx即
11,11,xfx的定义域为
(2)证明:
xfxxxxxxxfxxxfaaaa11log11log11log,11log
1
xf
中为奇函数.
(3)解:当a>1时, xf>0,则111xx,则012,0111xxxx
10,012xxx
因此当a>1时,使0xf的x的取值范围为(0,1).
10a当
时, 1110,0xxxf则
则,011,0111xxxx 解得01x
因此10a当时, 使0xf的x的取值范围为(-1,0).