三角形内外角平分线有关命题的证明及应用(1)
初中数学_三角形证明的复习教学设计学情分析教材分析课后反思

北师大版初中数学八下第一章《三角形的证明复习课》教学设计北师大版初中数学八年级下册第一章三角形的证明复习课第一课时一、学生学情分析学生在本章学习并证明完成了全部8条基本事实,并学习了三类特殊的三角形------等腰三角形,等边三角形,直角三角形。
通过对这三类三角形性质和判定的探索与证明积累了一定的探索经验,并继续深入学习证明的方法和格式;多数学生已经了解证明的必要性,具备了证明命题是否成立的探索经验的基础.同时已经具备了一定的合作学习的经验,具备了一定的合作与交流的能力.再将文字语言与图形语言,符号语言转换方面也有了很大提升。
八年级学生已有合情推理,慢慢的侧重于演绎推理,在经历了对八条基本事实时的探究,证明过程中,积累了更多的活动经验。
在学习了本章后,无论是对证明的必要性的体会,对证明严谨性以及证明思路的多样性上都有了长足的进步。
具备自己整理知识,进行知识梳理,逐渐将学习内容纳入知识体系的能力。
二、教学任务分析教科书要求教学活动中应注重让学生体会到证明是原有探索活动的自然延续和必要发展,引导学生从问题出发,根据观察、试验的结果,发现证明的思路.经过一个阶段的学习,有必要对有关知识进行回顾与思考,引导学生回顾总结本章学习的主要内容及其蕴含的数学思想,并思考这些内容获得的过程,帮助学生逐步构建知识体系,养成回顾与反思的学习习惯。
本节课的教学目标是:1.知识目标:在回顾与思考中建立本章的知识框架图,复习有关定理的探索与证明,证明的思路和方法,尺规作图等.2.能力目标:进一步体会证明的必要性,发展学生的初步的演绎推理能力;进一步掌握综合法的证明方法,结合实例体会反证法的含义;提高学生用规范的数学语言表达论证过程的能力.3.情感价值观要求通过积极参与数学学习活动,对数学的证明产生好奇心和求知欲,培养学生合作交流的能力,以及独立思考的良好学习习惯.4.重点与难点重点:1.构建本章知识内容框架,发现其中关联2.通过对典型例题的讲解和课堂练习对所学知识进行复习巩固难点:是本章知识的综合性应用对学生来讲是难点。
八年级数学角平分线的性质定理及其逆定理

4.全等三角形的对应角相等
5.等边对等角 6.角平分线的性质定理及其逆定理
证明线段相等的方法:
• • • • • 1.全等三角形的对应边相等. 2.角平分线的性质定理 3.等角对等边 4.等腰三角形的三线合一 5.垂直平分线的性质定理
(练习)已知:△MON中,MP平分∠OMN,OP平分 ∠MON,且PD⊥MN,PE⊥ON,垂足分别为点D、E
用
A M
小区C P
N O B
2:若已知超市P到道路OA 的距离为600 米, 求P到道路OB的距离。
A
M
D
P
N O B
做一做
1
三角形内角的角平 分线
剪一个三角形纸片通过折叠 找出每个角的平分线. 观察这三条角平分线, 你发现了什么? 结论:三角形三个角的平 分线相交于一点. 你能证明这个命题吗? 老师期望: 你能写出规范的证明过程.
驶向胜利 的彼岸
小结
拓展
回味无穷
一.定理 角平分线上的点到这个角的两边距 离相等. 二.逆定理 在一个角的内部,且到角的两边距 离相等的点,在这个角的平分线上.
三.遇到角平分线的问题,可以通过角平分线上的一 点向角的两边引垂线,以便充分运用角平分线定理
思考题:2、若要在△MON内部全部覆盖绿化, 已知△MON的周长为2000米,∠OMN、∠MON 的平分线交于点O,OD⊥MN,垂足为D,且 OD=2米
∵∠1= ∠2
PD ⊥OA ,PE ⊥OB ∴PD=PE.
O
B
交换定理的条件和结论得到的命题为:
合作探究
′
逆命题 到一个角的两边距离相等的点,在这个角的平 分线上. A 它是真命题吗? D 如果是.请你证明它. 已知:如图, ∠AOB, P PD⊥OA, PE⊥OB,且PD=PE,垂足分O C 别是D,E. E 求证:点P在∠AOB的平分线上. B 分析:要证明点P在∠AOB的平分线上,可 以先作出过点P的射线OC,然后证明 ∠AOC=∠BOC.
12.3《角平分线的判定》教学设计

《角平分线的判定》教学设计丰台八中王晓颖一、教材分析(一)、教材内容的地位和作用《角平分线的判定》选自北京市义务教育课程改革实验教材八年级数学(上)第十三章,是我个人根据学生的知识基础较差、认知能力不强以及思维品质不够活跃等实际情况而在教学中加以补充的一节课。
代数学作为一门学科,它的课题首要的就是研究用字母表示式子的变形规则和解方程的方法。
因此,本节课既是算术知识的延续,又为后面知识的学习起着导航作用,即:对于代数我们研究什么?如何研究?(二)、教学目标根据新《课标》要求和上述教材分析,结合学生的情况,我制定了以下教学目标:知识、能力目标:了解代数式的值的概念,知道代数式求值的书写格式,能区分易混淆语言,清楚代数式求值过程中易出错的地方,会解决简单的问题,并在此基础上应用变式训练进行拔高。
情感目标:使学生明白数学来源于生活,学习数学是为了解决实际问题,,培养学生科学的学习态度,同时通过多媒体演示激发学生探究数学问题的兴趣。
(三)、教学重点、难点教学重点:掌握角平分线的判定定理。
教学难点:角平分线判定定理的灵活应用。
二:教法、学法分析本节课涉及的知识点不多,根据课标要求,学生只需探索并证明角平分线的判定定理:角的内部到角两边距离相等的点在角的平分线上。
所以本节课主要有两个主要内容一个是角平分线判定定理的探索和证明,另一个就是角平分线判定定理的应用。
教师通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果。
而学生在教师的鼓励引导下小结方法,克服思维定势,增强学习的成就感及自信心,从而培养浓厚的学习兴趣。
(一)复习引入 1.如图,若OP 平分∠AOB,PC ⊥OA,PD ⊥OB,垂足分别是C,D ,则下列结论错误的是( )(A )PC=PD (B)OC=OD (B) OC=OD (D)OC=PC分析:此题让学生独立完成,说明理由,并板书:PD=PC (角平分线上的点到角两边距离相等)(二)探索交流,获得新知思考:点P 是∠AOB 中一点,PC ⊥OA 于C,PD ⊥OB 与D ,且PC=PD.点P 在什么位置上?能证明你的猜想吗? 猜想:点P 在角平分线上.已知:点P 为错误!未找到引用源。
角平分线的性质(共三课时)

角平分线的性质(共三课时)教学目标:知识与技能(1)掌握角平分线的性质定理和逆定理;(2)能够运用性质定理和逆定理证明两个角相等或两条线段相等;(3)能够判定两个命题是否为互逆命题,并能写出一个命题的逆命题.过程与方法:在探索问题的过程中体会知识间的关系,能够进行有条理的思考,并进行简单的推理.情感、态度与价值观:使学生在自主探索角平分线的过程中,经历画图、观察、比较、推理、交流等环节,从而获得正确的学习方式和良好的情感体验;教学重点:角平分线的性质定理,逆定理及它们的应用。
教学难点:a、角平分线定理和逆定理的应用;b、这两个定理的区别;c、写命题的逆命题。
教学过程角平分线的性质(第一课时)1、新课引入(1)如右图,是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分县.你能.说明它的道理吗?(2)你能用⑴的类似方法说明⑵画法的道理吗?2 .做一做由上面的探究可以得出作已知角的方法. 已知:∠AOB.(1)求作:∠AOB 的平分线. 作法:⑴:以O 为圆心,适当长为半径作弧, 交OA 于M,交OB 于N.⑵分别以M,N 为圆心,大于 1/2MN 的长为半径作弧,两弧在∠AOB 的内部交于点C.⑶作射线OC,射线OC 即为所求.(2)在这条平分线上任取一点P ,标出P 点到角两边的距离。
(3)说出这两段距离的关系并证明。
(三)讲解新课ADCB定理1 在角的平分线上的点到这个角的两边的距离相等.要向学生讲明,证明这个定理,首先要分清题设和结论,既为写已知、求证做准备,又为引入逆命题及讨论原、逆命题的关系打基础,然后把条件和结论具体化,符号化,写出已知、求证和证明.题设:一个点在一个角的平分线上.结论:它到角的两边的距离相等.已知:OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别是D、E,如图.求证:PD=PE.证明:∵PD⊥OA,PE⊥OB(已知),∴∠PDO=∠PEO=90°(垂直的定义).在△PDO和△PEO中,∴△PDO≌△PEO(AA S).∴PD =PE (全等三角形的对应边相等). 课堂练习已知:如图3,PB ⊥AB ,PC ⊥AC ,PB =PC ,D 是AP 上一点 求证:∠BDP =∠CDP6、课堂小结:教师引导学生总结 (1) 角平分线的性质定理 (2) 一般解题方法让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。
11.3角平分线的性质(第二课时)

2008年下期八年一期数学师生共用讲学稿(NO:10)
执笔:刘伟平审核:吴光丁姓名
学习课题:11.3角的平分线的性质(第二课时)
学习内容:教材P21
学习目标:1、进一步熟练角平分线的画法,证明几何命题的步骤
2、进一步理解角平分线的性质及运用
学习重点:角平分线的性质及运用
学习难点:角平分线的性质的灵活运用
学习方法:探究、交流、练习
学习过程:
一、课前巩固
1、画出三角形三个内角的平分线
你发现了什么特点吗?
2、如图,△ABC的角平分线BM,CN相交于点P,求证:点P到三边AB,BC,CA的距离相等
二、学习新知
(一)思考:教材P21
1、求证:到角的两边的距离相等的点在角的平分线上
2、完成思考中的问题(完成于书上)
(二)应用
1、如图,CD⊥AB,BE⊥AC,垂足分别为D,E,BE,CD相交于点O,OB=OC,求
证∠1=∠2
三、总结
四、作业
1、如图,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA交OA于D,PE⊥OB 交OB于E,F是OC上的另一点,连接DF,EF,
求证DF=EF
2、如图,△ABC中,AD是它的角平分线,P是AD上的一点,PE∥AB交BC于E,PF∥AC交BC于F,求证:D到PE的距离与D到PF的距离相等。
八年级上册数学 三角形三边关系-命题与证明

三角形中的边角关系、命题与证明【学习目的】①理解与三角形有关的基本概念②命题与证明考点一:三角形中的边角关系►知识点拨:1.三角形中的有关概念(1)三角形的概念:由不在同一直线上的三条线段首尾依次相接所组成的封闭图形叫做三角形.用符号“△”表示.(2)三角形的顶点、边和角:①边的表示;②角的表示;③对边、对角的概念.2.三角形按边的关系分类(1)不等边三角形:三条边互不相等;②等腰三角形:有两条边相等的三角形;(2)等边三角形:三条边都相等的三角形(等腰三角形的特例)3.三角形的三边关系:三角形中任何两条边的和大于第三边,两边的差(绝对值)小于第三边.4.三角形中角的关系(1)按角分类:①直角三角形;②斜三角形:锐角三角形和钝角三角形.(2)三角形的内角和等于180 .注意:①用Rt△ABC表示直角三角形;②任意一个三角形最多有三个锐角;最少有两个锐角;最多有一个钝角;最多有一个直角;③任何三角的最大内角不能小于60 ,最小内角不能大于60 .5.三角形中的几条重要线段(1)角平分线:角平分线把角分成两个相等的角.(三条角平分线的交点就是三角形的外心)(2)中线:三角形一顶点与它对边中点的线段叫中线.(三条中线的交点就是三角形的重心)(3)高线:三角形一顶点与它对边所在直线的垂线段叫三角形的高线.注意:三角形的中线所分得的两个三角形的面积相等.6.定义:能明确界定某个对象含义的语句叫做定义.例1:如图所示,以点A为顶点的三角形共有()A.6个B.7个C.8个D.9个A.20或16B.20C.60D.以上都不对例3:若四条线段的长分别为2cm、3cm、4cm、5cm,以其中的三条线段为边长,则可以构成三角形的个数有()A.1 B.2 C.3 D.4A.锐角三角形B.钝角三角形C.直角三角形D.无法确定例5:如图,CD、CE、CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.BA=2BFB.2∠ACE=∠ACBC.AE=BED.CD⊥BE例6:下列属于定义的是()A.两点确定一条直线B.两直线平行,同位角相等C.三角形的高、角平分线和中线都是线段D.有一个角是直角的三角形叫做直角三角形基础训练1、如图所示,AB=AC,BE=CD,AD=BD=DE=AE=CE,则图中共有个等腰三角形,有个等边三角形.第1题图第3题图第4题图2、一个等腰三角形中,一边长为9cm,另一边长为5cm,则等腰三角形的周长是.3、如图,AD、BE、CF分别是△ABC的高、中线、角平分线.则△ADC的高、中线、角平分线分别是.4、如图,图中以AB为边的三角形的个数是()A.3B.4C.5D.6A.等腰三角形B.等边三角形C.直角三角形D.不能确定6、三角形的两边长分别为3,8,则第三边长为()A.5B.6C.3D.117、以下各组长度的线段为边,组成的三角形是()A.2、3、5B.3、3、6C.5、8、2D.4、5、68、设三角形的三边长分别为2,9,1-2a,则a的取值范围是()A.3<a<5B.-5<a<3C.-5<a<-3D.不能确定9、三角形的内角和等于()A.90B.180C.300D.36010、在△ABC中,若∠A=54 ,∠B=36 ,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形11、当三角形中一个内角α是另一个内角β的2倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为()A.30°B.50°C.80°D.100°12、三角形的角平分线、中线和高()A.都是射线B.都是直线C.都是线段D.都在三角形内13、如图所示,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为()①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.A.②和③B.③和④C.①和④D.仅有③14、下面四个命题中属于定义的是()A.两点之间线段最短B.对顶角相等C.有两条边相等的三角形叫等腰三角形D.内错角相等强化训练1.在△ABC中,如果∠A:∠B:∠C=1:2:3,则△ABC一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.如图,AE是△ABC的中线,D是BE上一点,若BE=5,DE=2,则CD的长为()A.7B.6C.5D.43.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()4.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cmB.8cm ,7cm,15cmC.5cm ,5cm,11cmD.13cm ,12cm,20cm5.如图,在△ABC中,点D是边AB上的一点,点E是边AC上一点,且DE∥BC,∠B=40 ,∠AED=60 ,则∠A的度数是()A.100 B.90 C.80 D.70第5题图第7题图第8题图6.一个三角形的两边长为8和10,则它的最短边a的取值范围是.7.如图,AD是△ABC的BC边上的高,AE是∠BAC的平分线.(1)若∠B=47°,∠C=53°,则∠DAE=度;(2)若∠B=α,∠C=β(α<β),则∠DAE=度.(用α、β含的代数式表示)8.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是.9.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是_____.10.如图,在△ABC中,∠A=40 ,D点是∠ABC和∠ACB角平分线的交点,则∠BDC=_____.11.如图,AD为△ABC的中线,BE为△ABD的中线.(1)若∠ABE=15 ,∠BAD=40 ,求∠BED的度数;(2)在△BED 中,作BD 边上的高;(3)若△ABC 的面积为40,BD=5,求△BDE 中BD 边上的高为多少?12.如图,在△ABC 中,AD 是BC 边上的高,AE 、BF 是角平分线,它们相交于点O ,∠BAC =50°,∠C =70°,求∠DAC ,∠BOA.能力提升1.各边长度都是正整数且最大边长为8的三角形共有个.2.三角形的三边长分别为a 、b 、c ,且(a -b-c)∙(b-c)=0,则此三角形为________三角形.3.如图所示,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12=∆ABC S ,则图中阴影部分面积是_____.4.如图所示,在△ABC 中,已知点D 、E 、F 分别为边BC 、AD 、CE 的中点,且24cm S ABC =∆,则阴影S 等于 ( )5.如图,用钢筋做支架,要求BA 、DC 相交所成的锐角为32 ,现测得∠BAC=∠DCA=115 ,则这个支架符合设计要求吗?为什么?6.设三角形的三条边为整数a 、b 、c 且c b a ≤≤,当b=4时,符合条件的a 、b 、c 的取值若下表:(1)将表格补充完整;(2)满足条件的三角形共有多少个?其中等腰三角形有多少个?等边三角形又有多少个? 考点二:命题与证明例1:下列语句不是命题的是()A.直角都等于90 B.对顶角相等 C.互补的两个角不相等 D.作线段AB例2:把下例命题改写成“如果......那么.....”的形式,并分别指出它们的题设和结论.(1)整数一定是有理数;(2)同角的补角相等;(3)两个锐角互余.例3:写出下列命题的逆命题,并判断真假(1)两直线平行,同位角相等;(2)若a=0,则a b=0;(3)对顶角相等.例4:请举反例说明命题“对于任意实数x ,552++x x 的值总是正数”是假命题,你举的反例是_____(写出一个的值即可).例5:在下列证明中,填上推理依据:如图,CD ∥EF ,∠1=∠2,求证:∠3=∠ACB.例6:如图,在△ABC 中,∠ABC=66 ,∠ACB=54 ,BE 、CF 是两边AC 、AB 上的高,它们交于点H.求∠ABE 和∠BHC 的度数.基础训练1、下列语句中,不是命题的是 ( ) A.两点之间线段最短B.对顶角相等C.不是对顶角的两个角不相等D.过直线AB 外一点P 作直线AB 的垂线2、下列命题中,是真命题的是 ( ) A.三角形的一个外角大于任何一个内角 B.三角形的一个外角等于两个内角之和 C.三角形的两边之和一定不小于第三边D.三角形的三条中线交于一点,这个交点就是三角形的重心3、“两条直线相交只有一个交点”的题设是 ( )A.两条直线B.相交C.只有一个交点D.两条直线相交4、已知命题A:“任何偶数都是8的整数倍”.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2kB.15C.24D.425、如图,下列说法中错误的是()A.∠1不是△ABC的外角B.∠B<∠1+∠2C.∠ACD是△ABC的外角D.∠ACD>∠A+∠B第5题图第6题图第7题图6、一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165B.120C.150D.1357、如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°8、命题“有两边相等的三角形是等腰三角形”的题设是,结论是,它的逆命题是.9、完成以下证明,并在括号内填写理由:已知:如图所示∠1=∠2,∠A=∠3.求证:AC∥DE.证明:因为∠1=∠2,所以AB∥.()所以∠A=∠4.()又因为∠A=∠3,所以∠3=.()所以AC∥DE. ()10、将下列命题改写成“如果......那么......”的形式,并分别指出命题的题设与结论:(1)直角都相等;(2)末位数字是5的整数能被5整除;(3)同角的余角相等.11、分析下列所举反例的正确性,若不正确,请写出正确的反例.(1)若|x|=|y|,则x=y;反例:取x=3,y=-3,则|x|=|y|,所以此命题是假命题;(2)两个锐角的和一定是钝角;反例:取∠1=30°,∠2=100°,则∠1+∠2=130°,不符合命题的结论,所以此命题是假命题;(3)若|a|=a,则a>0.12、如图,已知AC∥DE,∠1=∠2.求证:AB∥CD.13、如图,在△ABC中,∠A=62°,∠ABD=∠DCE=36°,求∠BEC的度数.14、如图,点E是△ABC中AC边上的一点,过E作ED⊥AB,垂足为D,若∠1=∠2,,则△ABC 是直角三角形吗?为什么?强化训练1.如图,在锐角三角形ABC中,CD、BE分别是AB、AC边上的高,且CD、BE相交于点P.若∠A =50°,则∠BPC的度数是()A.150B.130C.120D.1002.如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0 B.1 C.2 D.3第2题图第6题图3.一个三角形的三个外角之比为3:4:5,则这个三角形三个内角之比是()A.5:4:3B.4:3:2C.3:2:1D.5:3:14.能说明命题“对于任何实数a ,a a ->”是假命题的一个反例可以是 ( )A.a =-2B.31=a C. a =1 D.2=a 5.下列命题:①对顶角相等;②同位角相等,两直线平行;③若b a =,则b a =;④若0=x ,则022=-x x .它们的逆命题一定成立的有 ( )A.①②③④B.①④C.②④D.②6.如图,CE 是△ABC 的外角∠ACD 的平分线,若∠B=35 ,∠ACE=60 ,则∠A= ( )A.35B.95C.85D.757.如图,在△ABC 中,∠B=40 ,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC=.8.直角三角形中两个锐角的平分线相交所成的锐角的度数是.9.写出命题“如果b a =,那么b a 33=”的逆命题:.10.如图,AD 是△ABC 的高,BE 平分∠ABC 交AD 于E.若∠C =60°,∠BED =54°,求∠BAC 的度数.11.如图,AD 是△ABC 的外角平分线,交BC 的延长线于D 点,若∠B=30°,∠ACD=100°, 求∠DAE 的度数.12.如图,D是△ABC内的任意一点.求证:∠BDC=∠1+∠A+∠2.13.用两种方法证明“三角形的外角和等于360 ”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证:∠BAE+∠CBF+∠ACD=360 .证法1: ,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180⨯ 3=540 .∴∠BAE+∠CBF+∠ACD=540 -(∠1+∠2+∠3).,∴∠BAE+∠CBF+∠ACD=540 -180 =360 .请把证法1补充完整,并用不同的方法完成证法2.能力提升1.如图,∠A+∠B+∠C+∠D=.2.观察下列各式:想一想:什么样的两个数之积等于这两个数的和?设n 表示正整数,用关于n 的代数式表示这个规律:_______×_______=_______+________.3.如图,在△ABC 中,AD 是BC 边上的中线,且AD=12BC .2224,24;1139393,3;22224164164,4;33335255255,5.4444⨯=+=⨯=+=⨯=+=⨯=+=(1)求证:∠BAC=90°;(2)直接运用这个结论解答题目:一个三角形一边长为2,这边上的中线长为1,另两边之和为4.如图在△ABC中AB=AC,∠BAC=900,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于E、F.(1)求证:AE=CF(2)是否还有其他结论,不要求证明(至少2个)。
角平分线性质与判定
课题:12.3角平分线的性质
主备人:范维青
组长:
课改领导:
学习目标:1、会证明角的平分线的性质,会简单运用角的平分线的性质
2、培养推理能力和应用意识.
重点:角的平分线性质的探究、证明和运用.
难点:利用角的平分线的性质解决问题.
一、复习
问题:(口答)我们学过那些判断三角形全等的方法?
2、结论:角的内部到角的_______________________________,(此命题可用来判定______ ___)
证明此命题(画出图形,写出已知、求证和证明过程)
已知:
求证:
证明:
五、目标检测
1、到三角形三边距离相等的点是三角形( )
A、三条边上的高的交点B、三个内角平分线的交点
C、三边上的中线的交点D、以上结论都不对
2、如图,∠1=∠2,PD⊥OA,PE⊥OB.
求证:DF=EF.
3、已知:如图,在Rt△ABC中,∠C=90°,
DE⊥AB,∠1=∠2,BD=FD.
求证:BE=FC.
_______________________________________________________________
1题图
三、运用新知
1、填空:如图,∠C=90°,∠1=∠2,
BC=7,BD=4,则
(1)D点到AC的距离=.
(2)D点到AB的距离=.
2、填空:如图,CD⊥AB,得=.
E
3题图
3、如图所示,在△ABC中,AD平分∠BAC,DE⊥AB于E,且
2题图
DE=5.8cm,BC=11.2cm,则BD=_______
4题图
4、已知:如图,CD⊥AB,BE⊥AC,∠1=∠2.
角平分线的性质(1)
角平分线的性质》 说课我从教材分析、教法与学法、教学过程、设计说明四个方面对我的教学设计加以说明.、教材分析一)地位和作用:本节课选自湘教版教材 《数学》 八年级下册第一章, 本节课的教学内容包括 探索并证明 角平分线性质定理的逆定理, 会用角平分线性质定理的逆定理解决问题。
是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的. 判定为证明线段或角相等开辟了新的途径, 简化了证明过程, 同时也是全等三角形知识的延 续,又为后面的学习奠定基础. 因此,本节内容在数学知识体系中起到了承上启下的作用.时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律.二)教学目标1、知识目标 :(1)探索并证明角平分线性质定理的逆定理 . (2)会用角平分线性质定理的逆定理解决问题了解尺规作图的原理及 角的平分线的性质 .2、基本 技能让学生通过自主探索, 运用逻辑推理的方法证明关于角平分线的判定, 与理性认识之间的联系与区别。
3、数学思想方法 : 从特殊到一般4、基本活动经验 : 体验从操作、测量、猜想、验证的过程,获得验证几何命题正确性 的一般过程的活动经验设计意图:通过让学生经历动手操作, 合作交流, 自主探究等过程, 培养学生用数学知识解决问题 的能力 和 数学建模能力了解角的平分线的性质在生产, 生活中的应用培养学生探究问题的兴 趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情角平分线的性质和 并体会感性认识三)教学重难点进入八年级的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导.根据学生的认知特点和接受水平,我把本节课的教学重点定为:理解角的平分线的性质并能初步运用,难点是:(1)对角平分线性质定理中点到角两边的距离的正确理解;2)对于性质定理的运用(学生习惯找三角形全等的方法解决问题而不注重利用刚学过的定理来解决,结果相当于对定理的重复证明)教学难点突破方法:1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;(2)通过对比教学让学生选择简单的方法解决问题;3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习.二、教法和学法本节课我坚持“教与学、知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则,采用引导式探索发现法、主动式探究法、讲授教学法,引导学生自主学习、合作学习和探究学习,指导学生“动手操作,合作交流,自主探究”.鼓励学生多思、多说、多练,坚持师生间的多向交流,努力做到教法、学法的最优组合.教学辅助手段:根据本节课的实际教学需要,我选择多媒体PPT 课件,几何画板软件教学,将有关教学内容用动态的方式展示出来,让学生能够进行直观地观察,并留下清晰的印象,从而发现变化之中的不变.这样,吸引了学生的注意力,激发了学生学习数学的兴趣,有利于学生对知识点的理解和掌握.三.教学过程一)创设情景引出课题出示生活中的数学问题:问题1如图,要在S区建一个广告牌P,使它到两条高速公路的距离相等,离两条公路交叉处500 m请你帮忙设计一下,这个广告牌P 应建于何处(在图上标出它的位置,比例尺为1:20000)?设计意图]利用多媒体渲染气氛,激发情感.教师利用多媒体展示,引领学生进入实际问题情景中,利用信息技术既生动展示问题,同时又通过图片让学生身临其境般感受生活。
角的平分线的性质
“角的平分线的性质”教学案例实录与评析教学内容解析:本节课是人教版义务教育课程标准实验教科书八年级数学上册第十一章“全等三角形”第3节“角平分线的性质”第2课时的内容。
在此之前第1课时学习的角平分线的尺规作图,这为本节课学习角平分线的性质做好了铺垫;本章前面学习的全等三角形的有关知识,为本节课证明角平分线的性质创造了条件;本节课对角平分线性质的探究为今后学习图形对称、等腰三角形奠定了基础;对角平分线性质的证明为学生学会思考问题,注重书写格式,清楚地表达思考的过程提供了方法,使学生体会证明的必要性;角平分线性质的应用为证明线段相等、角相等开辟了新的途径。
教学重、难点基于对本节课教学内容的分析,本节课的重点定为:角平分线性质的理解和应用;难点是:探究角平分线的性质及文字命题的论证。
学习目标知识与技能:1.掌握“角平分线线上的点到角的两边距离相等”这一的性质;2.能运用“角平分线线上的点到角的两边距离相等”这一性质解决简单的几何问题;3.初步学会将文字语言转化为图形和符号语言并按步骤进而证明,提高分析问题及逻辑推理能力。
过程与方法:通过实验探究活动,经历“角平分线上的点到角的两边距离相”这一性质的发现和证明过程。
情感态度与价值观:通过学习,体验获取数学知识的成就感;渗透从不同的侧面认识事物的辩证思维方法。
教学过程实录及评析:一、创设情境、导入新课师(多媒体展示)问题情境:如图1,在公路和铁路交叉所成的角平分线上有一空旷场地,市政府决定利用此空旷地投资修建一个批发市场,那么这个批发市场到公路和铁路的距离哪个更近?生:有的回答“一样近”。
师:为什么会“一样近”?本节课我们就带着这个问题走进今天的学习内容。
板书:角平分线的性质。
评析:教师试图通过创设确定在公路和铁路交叉所成的角平分线上有一空旷场地批发市场(点)到公路和铁路(角的两边)的距离关系为问题情境引出“角平分线上的点到角的两边距离相等”(“一样近”)的结论,使学生体验到理论来自实际的需要,从而引导学生对学习本课新知识产生强烈的求知欲。
角平分线
知识分析:①重点:掌握角的平分线的性质定理②难点:角平分线定理的应用教学目标:1、初步掌握角的平分线的性质定理.2、尺规作图:作已知角的平分线3、能运用角的平分线性质定理解决简单的几何问题.4、经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理.5、通过测量操作,发现角的平分线的性质定理6、培养学生严谨的逻辑思维能力。
1、知识点详细内容一、创设情境独立思考(1)如何作已知角的平分线?(尺规作图)(2)角平分线有什么性质?(3)如何证明角平分线的性质定理?(4)证明一个几何命题时具体步骤是什么?(1)如图,AB=AD,BC=DC,求证:AC是∠DAB的平分线(2)用尺规作一个角的平分线◆已知:∠AOB,求作:∠AOB的平分线OC作法:(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.(2)分别以M、N为圆心,大于12MN的长为半径作弧.两弧在∠AOB内部交于点C.(3)作射线OC,射线OC即为所求.◆练习,画出下列角的平分线◆角平分线的性质①思考,教材P48②命题:角平分线上的点到这个角的两边距离相等. 题设:一个点在一个角的平分线上◆角平分线的性质②命题:角平分线上的点到这个角的两边距离相等. 题设:一个点在一个角的平分线上结论:它到这个角的两边的距离相等.◆结合图形请你写出已知和求证,并证明命题的正确性已知AO平分∠BAC,OE⊥AB,OD⊥AC。
求证:OE=OD。
四、归纳总结巩固新知1、知识点的归纳总结:(1)角平分线上的到角两边的相等。
(2)证明命题的步骤:①画图②已知,求证③证明(4.如图,已知AD是△ABC的角平分线,且D为BC的中点,DE⊥AB,DF⊥AC,求证:BE=CF5.如图,△ABC的角平分线BM、CN相交于点P。
求证:点P到三边AB、BC、CA的距离相等。
探究:点P在∠A的平分线上吗?为什么?证明:1)角的平分线的性质定理的内容是什么?用数学语言如何表示?(2)画出三角形三个内角的平分线你发现了什么特点吗?(3)求证:到角的两边的距离相等的点在角的平分线上1、知识点的归纳总结:◆到角的两边的距离相等的点在角的平分线上AB D CFE2、运用新知解决问题(1)例题:如图,△ABC的角平分线BM,CN相交于点P,求证:点P到三边AB,BC,CA的距离相等证明:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形内外角平分线有关命题的证明及应用
东光县第三中学高金清
在中考或平时的练习中目中,常有与三角形内外角平分线有关的题目,如何举一反三事半功倍。
与平时的积累训练有很大的关系,一分耕耘一分收获。
命题1 如图1,点D是△ABC两个内角平分线的交点,则∠D=90°+∠A.
证明:如图1:
∵∠1=∠,∠2=∠,
∴2∠1+2∠2+∠A=180°①
∠1+∠2+∠D=180°②
①-②得:
∠1+∠2+∠A=∠D③
由②得:
∠1+∠2=180°-∠D④
把③代入④得:
∴180°-∠D+∠A=∠D
∠D=90°+∠A.
点评利用角平分线的定义和三角形的内角和等于180°,不难证明.
命题2 如图2,点D是△ABC两个内角平分线的交点,则∠D=90°-∠A.
证明:如图2:
∵DB和DC是△ABC的两条外角平分线,
∴∠D=180°-∠1-∠2
=180°-(∠DBE+∠DCF)
=180°-(∠A+∠4+∠A+∠3)
=180°-(∠A+180°)
=180°-∠A-90°
=90°-∠A;
点评利用角平分线的定义和三角形的一个外角等于与它不相邻两外角的和以及三角形的内角和等于180°,可以证明.
命题3 如图3,点E是△ABC一个内角平分线与一个外角平分线的交点,则∠E=∠
A.
证明:如图3:
∵∠1=∠2,∠3=∠4,
∠A+2∠1=2∠4①
∠1+∠E=∠4②
①×代入②得:
∠E=∠A.
点评利用角平分线的定义和三角形的一个外角等于与它不相邻两外角的和,很容易证明.
命题4如图4,点E是△ABC一个内角平分线BE与一个外角平分线CE的交点,证明:AE是△ABC的外角平分线.
证明:如图3:
∵BE是∠ABC的平分线,可得:EH=EF
CE是∠ACD的平分线, 可得:EG=EF
∴过点E分别向AB、AC、BC所在的直线引垂线,所得的垂线段相等.
即EF=EG=EH
∵EG=EH
∴AE是△ABC的外角平分线.
点评利用角平分线的性质和判定能够证明.
应用上面的结论能轻松地解答一些相关的比较复杂的问题,下面来一起看.
例1如图5,PB和PC是△ABC的两条外角平分线.
①已知∠A=60°,请直接写出∠P的度数.
②三角形的三条外角平分线所在的直线形成的三角形按角分类属于什么三角形?
解析:①由命题2的结论直接得:∠P=90°-∠A=90°-×60°=60°
②根据命题2的结论∠P=90°-∠A,知三角形的三条外角平分线所在的直线形成的三角形的三个角都是锐角,则该三角形是锐角三角形.
点评此题直接运用命题2的结论很简单.同时要知道三角形按角分为锐角三角形、直角三角形和钝角三角形.
例2如图6,在△ABC中,延长BC到D,∠ABC与∠ACD的角平分线相较于点,∠BC与∠CD的平分线交与点,以此类推,…,若∠A=96°,则∠= 度.
解析:由命题③的结论不难发现规律∠∠A.
可以直接得:∠=×96°=3°.
点评此题是要找出规律的但对要有命题③的结论作为基础知识.
例3(2011湖北鄂州市中考第一大题填空题第八小题,此题3分)如图7,△ABC的外角∠ACD的平分线CP的内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠CAP=_______________.
解析:此题直接运用命题4的结论可以知道AP是△ABC的一个外角平分线,结合命
题3的结论知道∠BAC=2∠BPC, CAP=(180°-∠BAC )= (180°-2∠BPC )=50°.点评对命题3、4研究过的读者此题不难,否则将是一道在考试的时候花时间也不一定做的出来的题目.
例4(2003年山东省“KLT快乐灵通杯”初中数学竞赛试题)如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,∠ACB的平分线与∠ABC的外角平分线交与E点,连接AE,则∠AEB= 度.
解析:有题目和命题4的结论可以知道AE是△ABC的一个外角平分线, 结合命题2的
结论知道∠AEB=∠ACB -∠ACB=90°-×90°=45°
点评从上面的做题过程来看题目中给出的“∠A=30°”这个条件是可以不用的.
拓展练习:
1 如图所示,D、E、F分别是∠△ABC,△ABD,△
BDF的内心,如果∠BFE的度数为整数,请同学们计算一
下,∠BFE的度数最小是多少?
第3题图
2如图,在△ABC中,∠A=96 。
,延长BC到D,∠ABC与∠ACD
的平分线相交于A1点,∠A1BC与∠A1CD 的平分线相交于A2点,
依次类推,∠A4BC与∠A4CD的平分线相交于A5,求∠A5的度数。
第4题图。