实用现代试井解释方法
试井资料解释方法

4)施工设备的选择:根据测试目的、测试阶段,进行选取。
二、资料录取的基本要求
片面的做法:油田试井施工中,现场习惯了“孤立的压力恢复试井”, 也就是说缺失开井降压流动压力段的不稳定试井。
正确的做法:先在开井条件下,监测油气井的流动压力。监测时间
尽量长些,以记录开关井的压力历史,才能通过压力历史拟合检 验,确认模型分析的正确性。
一、试井每一阶段可以获取的信息 二、流动阶段的识别
三、均质储层的试解释
四、试井解释实例
第二节 试井资料解释
一、试井每一阶段可以获取的信息
把压力降低或压力恢复的压差数据投绘到双对数坐标系中, 可以得到双对数曲线。
1. 第一阶段
刚刚开井或刚刚关井的一段时间,在此阶段可以得到井筒 储集系数C。
2. 第二阶段
补心海拔与地面海拔关系示意图
二、试井设计的步骤
2)测试井基本地质参数 (1)测井解释成果表(附表) (2)测试层段井深 (3)测试层中部深度 (4)射孔层位:所属的地层单元 (5)射孔层段 (6)产层有效厚度、射开有效厚度
(7)产层岩性:煤层、砂岩等
(8)射孔密度:?孔/m (9)测试层平均孔隙度:由岩心数据获得
二、流动阶段的识别
在lgΔp-lgt双对数曲线上,不同流动阶段都有不同的形状。
窜流系数λ :表示双重孔隙储层中裂缝系统与基质系统间流体交换的难易程度 弹性储能比ω :是双重孔隙介质的一个重要表征参数,系指双重孔隙储层裂缝系统的孔隙 体积及综合压缩系数的乘积与岩石总孔隙体积及综合压缩系数的乘积之比。
二、流动阶段的识别
1. 早期阶段 1)井筒储集 在lgΔp-lgt双对数曲线上lgΔp与lgt成直线,且其斜率为1。 因此在纯井筒储集阶段,双对数曲线呈现斜率为1的直线。 如果井筒储集系数发生变化,双对数曲线将发生变化。
试井原理与解释

当油藏中流体的流动处于平衡状态(静止或 稳定状态)时,若改变其中某一口井的工作制度 ,即改变流量(或压力),则在井底将造成一个 压力扰动,此压力扰动将随着时间的不断推移而 不断向井壁四周地层径向扩展,最后达到一个新 的平衡状态。这种压力扰动的不稳定过程与油藏 、油井和流体的性质有关。 因此,在该井或其它井中用仪器将井底压力 随时间的变化规律测量出来,通过分析,就可以 判断井和油藏的性质。这就是不稳定试井的基本 原理。
不稳定试井分析的用途: 估算测试井的完井效率、井底污染情况 判断是否需要采取增产措施(如酸化、 压 裂) 分析增产措施的效果 估算测试井的控制储量、地层参数、 地层 压力 探测测试井附近的油(气)层边界和井 间 连通情况
结合ld10-1 昨天,中法地质对A2井进行变产量试井,电 潜泵在30Hz生产6小时,计量产量。同样测 量35Hz、40Hz、45Hz下6小时的产量。同时, 记录井底压力数值。
2、确定两井之间的连通性 、
1、干扰试井(Interference well test)A井施 加一信号,记录B井的井底压力变化,分析 判断A、B井是否处于同一水动力系统。 2、脉冲试井(Impulse well test) A井产量 以多脉冲的形式改变,记录B井的井底压力 随时间的变化信息。
不稳定试井的基本原理
试井研究的实质是:
试井中实际是:
–控制产量 产量Q 测量压力: 压力降
压力恢复
时间
时间
2、试井的种类
试井
产能试井
稳定试井 等时试井 修正等时试井
不稳定试井
单井井 探边测试 干扰试井 脉冲试井
(1)产能试井
产能试井是改变若干次油井、气井或水井的工
作制度,测量在各个不同工作制度下的稳定产 量及与之相对应的井底压力,从而确定测试井 (或测试层)的产能方程和 无阻流量
现代试井解释方法上机实习报告

学号: 201211111序号: 11班11号现代试井解释方法上机实习报告姓名王老吉所属院(系)石油工程学院班级油工指导教师程厚贤2013年11月01日试井解释报告一、测试目的:运用试井资料,即测试过程中的产量和井底压力资料,结合其他资料,可以识别测试层的类型,计算测试层和测试井的许多特性参数,从而估算测试井的完井效率、井底污染情况,判断是否采取增产措施(如酸化、压裂),分析增产措施的效果,估算测试井的地层压力、控制储量或原始地质储量、地层参数(有效渗透率等),判断测试井附近的油(气)层边界情况以及井(层)间的连通情况等。
二、基础数据我的序号是2班4号,所以可算出:油层厚度:h=7.8+4/10=8.2m孔隙度:ø=0.2-4/10000=0.196油的粘度:u=1.6+4/100=1.64mpa.s关井前产量:q=2.84+4/10=3.24油藏和井的基本参数见表2-1。
表2-1油藏和井的基本参数定油的属性见下图:转化后的数据见下表:在试井解释软件中将上表中的数据输入到软件中,见图2-1,图2-2,图2-3,图2-4,图2-5。
图2-1图2-2图2-3图2-4图2-5三、解释结果1.常规方法①压力恢复阶段条形散点图(见下图)②早期纯井筒储集阶段(见下图)由上图知,无量纲井筒储集系数C D=304.880。
③径向流动阶段(见下图)由径向流动阶段可知:P=15941.07KPa ,渗透率K =4.959MD ,地层系数Kh =40.664mD.m ,表皮系数S =38.272。
2. 典型曲线拟合①根据常规解释方法(K=4.959mD ,S=38.272,CD=304.880)中确定的参数范围,设定相应参数,,D k S C 值进行模拟检验,其中参数的值见下图:③典型曲线拟合结果:压力、压力导数与无量纲时间曲线见下图:图3-2-1 无因次霍拉曲线拟合图,见下图:历史拟合曲线图,见下图:样板曲线拟合结果见图3-2-4:图3-2-43、一致性检验由常规分析方法和图版拟合方法计算的参数值见表2-3-1表3-3-1结果比较四、结论1、常规分析方法主要以均质各向同性介质油藏的渗流理论为基础,方法的优点是理论完善,原理简单,易于应用。
试井测试工艺及解释方法的研究

试井测试工艺及解释方法的研究摘要:油气田生产过程中,应用试井测试的技术措施,获得井筒的地质数据信息资料,为油气田生产提供最佳的技术支持。
对测井数据的解释方式进行优化,保证试井测试资料的精准度,使其更好地为油气田生产提供帮助。
关键词:试井;测试工艺;解释方法;研究前言:试井测试是对油气田生产现场的测试,应用各种现代化的试井测试技术措施,获得高品质的测井曲线及资料,通过高科技的解释技术措施,评价油气田开发方案的有效性。
有助于提高油气田的生产效率,降低生产的成本,不断提高油气田的生产能力,满足油气田勘探开发的技术要求。
1、试井测试工艺技术措施试井测试技术成为油气田勘探开发的重要组成部分,应用各种试井测试的仪器仪表设备,对油气水井的生产动态进行测试,获得真实的生产动态资料,确定井筒产物的性能参数,得到井筒的产能资料,并获得油水井的连通关系,为提高单井的产量提供依据。
1.1试井测试技术的基本类型稳定试井和不稳定试井技术的应用,得到相关的测试信息资料,为油气田的开发提供最佳的数据,为油气田的生产动态分析,提供真实的数据资料。
稳定试井属于系统试井技术措施,主要应用于对气井的测试,获得气井的产气量、流动压力、地层压力的资料。
为合理确定气井的开发方案,提供最直接的信息,保证气井生产的顺利进行,获得最佳的天然气产量,达到气田生产的产能指标。
不稳定系统试井方式的应用,当油藏处于流动状态时,当一口井的工作制度发生改变后,在井底会产生一定的压力波动,会对周围的井筒产生不同程度的影响。
针对压力不稳定的扰动过程进行测试,并建立完善的井底的动态环境,通过对测试数据的分析,获得油藏的动态数据资料,判断油藏的性质,为合理开发油气藏奠定基础。
1.2常见的试井测试技术措施油气田生产中最常用的试井测试的技术措施的选择和应用,直接影响到油气井的试井测试的效果。
启泵测试技术的应用,将井下的抽油泵起出到地面,之后对油井实施测试施工,获得井筒的数据资料,为油井的高效生产提供数据资料。
试井曲线分析应用(共25张PPT)

9
无限作用径向流动阶段
这个阶段时半对数曲线呈直线的阶段。压降实验中,在这一阶段,压降漏斗径向地 向外扩大,边界的影响还非常小,可以忽略,流动形态与无限大地层径向流动毫无 两样,所以称为无限作用径向流动阶段。在这一阶段如果油藏是均质的,双对数曲 线呈下图中左图所示;如果油藏是非均质的,则呈现下图中右图所示。
把诊断曲线各个阶段的特征、对应的特种识别曲线及可求得的参数在一张图上标出,得 示意图。
第四章
双重孔隙介质油藏的试井解释
一 压力动态
一开井,裂缝系统中的原油流入井筒,但基质岩块系统仍保持原来的状态,尚 没有流动发生。这时井底压力所反映的是裂缝系统的特性,并且恰与均质:油藏相 同,因此可以拟合均质油藏模型的某一条样板曲线。这是裂缝系统流动阶段,称 为第一阶段。
不1(同1的)运流用油动了阶藏系段统在可分以平析求的面出概部上念分和是特数性无值参模限数拟。大方法的,;使试井解释从理论上大大前进了一步。 把第现((诊二代23断 章 试))曲井油开线解各释藏井个方上阶法生段下产的均特前征具油、有对藏应不的具渗特有种透识相隔别同曲层线的;及可压求力得的。参数在一张图上标出,得示意图。 半无在2(对限这内1数 导 种)边曲流情井线性形界呈垂,筒条现直其件存两裂双个缝对储直是数效线指曲段具线应,有一;它一开们条始(的垂就2斜直沿)率裂着之缝一表比的条皮为模曲型线1效:2,,,应这然由条后;两裂转条(缝到直的一3线)宽条段度曲的水为线交,0力点,如所压沿下对着图裂应裂左的缝裂所时没示缝间有。任;,何可压以力计损算失测。试井到直线断层的距离d
此时半对数曲线只出现一条直线段,如图所示。 这个阶段时半对数曲线呈直线的阶段。
(二)无限导流性垂直裂缝切割井筒的情形
无限导流性垂直裂缝是指具有一条垂直裂缝的模型,这条裂缝的宽度为0,沿着 裂缝没有任何压力损失。在这一情形,在早期,压差与时间的平方根成正比。
现代试井解释报告-Saphir软件使用-注水井实例

压降试井解释报告(作业2)姓名:学号:井压降试井解释报告(水井测试)目 录一、测压设计二、概述三、测试工艺过程四、分析基本数据五、解释成果六、分析与评价附图:1、测试压力曲线2、压力及压力导数双对数曲线3、压力半对数曲线4、霍纳曲线5、MDH曲线6、工作历史曲线附表:测试数据一、测压设计油田 **** 区块 *452 人工井底(m)2151.5套补距(m)/油层中深(m) 2110套管下深(m)/水泥返深(m)/完钻井深(m)/基础数据 层 位 油 层 段(斜/垂)有效厚度(m)综合解释射 孔 段 长632087.5-2090.0 2.5干层2090.0-2094.04油层2090.0-2094.02094.0-2095.1 1.1差油层2098.5-2100.0 1.5差油层2100.0-2104.6 4.6油层2101.0-2104.52107.1-2120.213.1油层2108.0-2116.02120.2-2126.1 5.9差油层2127.0-2130.3 3.3差油层压缩系数(1/Mpa) 11.78*10-4孔隙度(%) 14.83水的粘度(Pa·s) 0.55*10-3体积系数 1.0日注水量(m3/d) 30 综合含水(%) /测试目的 测压力分布情况测试方法 压降测试二、生产概述该井为***油田白452区一口注水井,注水层位长6,测试前注水情况:油压16.5MPa,套压16.9MPa,日注水量30方。
三、测试工艺过程该井2011年5月11日18:05分装压力计装电池, 18:25仪器下井,22:30仪器下至1765m,5月27日9:52起出仪器;仪器编号:STC0086,有效测试时间376小时,油层中部测试压力36.389—33.428MPa。
四、分析基本数据1、油层有效厚度 33.5 m2、有效孔隙度 14.83 %3、综合压缩系数 11.78×10-41/MPa4、体积系数 1.05、水的粘度 0.55×10-3 Pa.s6、日注水量30 m3/d7、折算生产时间 2000 d8、井径 0.108 m五、解释成果(一)模型选择1、井的模型:裂缝-有限传导2、油藏模型:径向复合3、边界模型:无限大(二)恢复曲线拟合结果项目流动系数Kh/u(mD.m/ mPa.s)地层系数kh(md.m)渗透率k(md)平稳压力P(MPa)井筒储集系数C流度K/μ(mD/ mPa.s)拟合法 9.31 5.1260.15329.49921.37 0.278项目外推压力(MPa)表皮系数S裂缝半长(m)油层温度(℃)压降起点(MPa)压降末点(MPa)拟合法26.3277 -3.75 18.0155 50.4 32.95938 29.978六、分析与评价1、该井油层中部的平稳地层压力29.4992 MPa,外推压力26.3277MPa,压力保持水平较好;2、该井地层系数5.126,渗透率0.153mD,说明储层渗透率较低,属低渗地层。
现代试井解释报告-典型试井曲线应用

序号 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
时间 (h) 0.134 0.174 0.225 0.292 0.378 0.49 0.635 0.823 1.067 1.383 1.793 2.324 3.012 3.904 5.06 6.559 8.502 11.02 14.284 18.516 24 24.013 24.018 24.023 24.031 24.041 24.054 24.072 24.096 24.127 24.169 24.224 24.297 24.394 24.522 24.693 24.919 25.219 25.6 17.8188
1.3235 1.2184
-13.0884 -13.9174
3.2 压力恢复试井解释 采用 Horner 方法,井底压力随时间的变化为:
pws pi
其中:
2.12 10-3 qB t p t lg Kh t
(7)
pws ————关井时间为 t 时的井底压力, MPa ;
3.1 定产量压降试井分析 先分析第一段定产量压降过程。 半对数直线方程为:
pi - pwf
2.12 10-3 qB K (lgt lg 0.9077 0.87 S ) Ct rw2 Kh
(1)
图 1 第一段压降试井半对数曲线
图 2 第二段压降试井半对数曲线 对压降试井半对数曲线的直线段进行拟合,得到直线斜率的绝对值:
试井解释报告
(作业 1)
姓名: 学号:
试井资料

地层压力:
p ws
m=
2.121 × 10 −3 qµB kh
lg
t p + ∆t ∆t
例子:
某井的压力下降测试数据如表,其他参数如下:
q = 40 m 3 / d , B = 1.136 , µ = 0.8mp a ⋅ s , rw = 0.06 m , h = 21m, φ = 0.039 , C t = 1.2 × 10 − 3 MPa −1
本学院:
在国内试井领域占有一席之地。八十年代~ 九十年代初,为石油工业界培养试井分析人员共 举办了7期试井解释培训班和3期油气井测试英语 培训班,可谓桃李满天下。科研方面,承担了国 家75、85、95攻关项目,横向项目遍布许多油田。 出国访问共五人次,请外国专家来学院讲课1次; 发表的专著2部,论文近百篇;试井分析的特点: 非自喷、低孔低渗、复杂油藏的解释。
2.121×10 −3 qµB 2.121×10 −3 qµB k lg lgt + ∆p = pi − pwf (t ) = + 0.9077 + 0.8686S φµC r 2 kh kh t w
补充内容 试井解释理论基础
压力恢复公式:
∆t 2.121×10 −3 qµB t p + ∆t 2.121×10 −3 qµB pws (∆t ) = pi − lg = pi + lg kh ∆t kh t p + ∆t
三、试井与其它学科的关系
试井作为一门边缘学科,正处于形成和发展阶段。试井与数学、物理、 化学和地质等许多基础学科密切相关,还与石油地质工程、钻井工程、采 油工程和油藏工程等紧密联系。试井分析理论主要是在多孔介质渗流物理 和地下流体力学的基础上建立起来的,贯穿于许多石油工程学科之中。试 井是一门使用数学知识最多的学科之一。包括微积分、复变函数、数学物 理方程、偏微分方程数值解和数理统计等。试井分析及其研究中最常用的 数学工具有拉普拉斯(Laplace)变换、瞬时源函数与格林(Green)函数 和各种数值模拟算法等。此外,试井分析与研究中,还有一个重要工具就 是计算机软件技术,以至于没有计算机试井分析就无法正常进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用现代试井解释方法
1. 试井是一种常用的地下水、石油和天然气勘探方法,旨在获取地下岩层中的水或
油气信息。
详细描述:试井通常通过在井眼中注入液体或气体,并监测返回的压力和流量数据来
获取岩层的物理性质和流体特征。
这些数据可以帮助研究人员判断地下岩层的含水或含油
气情况,从而进行资源开采或工程设计。
2. 试井常用的方法包括注水试井、注气试井和抽水试井等。
详细描述:注水试井是通过在井眼中注入水来观测地下岩层对水的响应,从而了解岩
层的渗透性、孔隙度和含水层位置等信息。
注气试井则是通过注入气体,如氮气或甲烷,
在井眼中观测压力和流量变化,以研究地下岩层的气体储存和渗透性。
抽水试井是将水从
井中抽出并观测流量和压力变化,以测量地下水位和水的渗透性。
3. 试井的目的是为了获取地下岩层的物理性质和流体特征,以指导资源开采和地质
工程设计。
详细描述:通过试井可以得知岩石的孔隙度、渗透率、饱和度等物理性质,以及地下
水或油气的产量、压力和渗透性等流体特征。
这些信息对于确定合适的开采方法、控制开
采效果和预测地下水或油气储量都至关重要。
4. 试井需要借助一系列的仪器设备和技术手段来完成,如测压仪、流量计、渗透性
测试仪器等。
详细描述:试井过程中需要使用测压仪来测量井内外的压力差异,流量计来测量液体
或气体的流量,以及渗透性测试仪器来确定岩石的渗透性。
这些仪器设备和技术手段在试
井过程中起到了至关重要的作用,可以准确、快速地获取数据。
5. 实用现代试井方法包括多井平差法、动态试井分析法和地层流体模型分析法等。
详细描述:多井平差法是一种通过多口试井数据的比较和统计分析,来推断地下岩层
性质和油气储量的方法。
动态试井分析法则是通过模拟试井过程,建立动态地质流体模型,从而更准确地计算地下岩层的物理性质。
地层流体模型分析法是根据地层流体模型来计算
地井底流体压力变化的方法,能够准确推测地下岩层的渗透性和孔隙度。
6. 试井需要考虑的因素包括井斜、井深和采集数据的精度等。
详细描述:井斜是指试井井筒的倾斜程度,井深是指试井井眼的深度。
试井过程中需
要考虑井斜和井深对仪器设备的影响,以确保采集到的数据准确可靠。
试井数据的精度也
是一个需要注意的因素,必须确保数据的精确度能够满足研究或设计的要求。
7. 试井数据的解释需要结合地质背景和先前的研究结果进行。
详细描述:试井数据的解释不能脱离地质背景和先前的研究结果。
地质背景可以提供
对地下岩层的基本认识和特征,而先前的研究结果可以为数据的解释和分析提供参考。
只
有将试井数据与地质背景和研究成果相结合,才能更准确地解读试井数据。
8. 试井结果的分析可以为资源开采提供指导和预测,也可以用于地质工程设计的评
估和优化。
详细描述:试井结果能够帮助研究人员判断地下岩层的物理性质和流体特征,进一步
指导资源开采的方法和步骤。
确定油气层的渗透性和储量,可以帮助优化开井井位和开采
计划。
试井结果还可以用于地质工程设计,如地下水源开发、环境调查和地下水位监测等,从而对工程的可行性和安全性进行评估和优化。
9. 现代试井方法结合了多学科的知识和技术,如地球物理学、岩石力学和流体力学等。
详细描述:现代试井方法不再局限于传统的地质学知识和技术,而是融合了多个学科
的知识和技术。
地球物理学可以提供地下岩层的性质和特征的探测手段,岩石力学可以提
供岩石的物理性质和力学行为的理论依据,而流体力学可以模拟地下岩层中的流体流动行为。
这些学科的综合应用使现代试井方法更加准确和可靠。
10. 现代试井方法在勘探和工程领域的应用越来越广泛,不仅改进了资源开采效率,
还提高了地下工程施工的质量和安全性。
详细描述:现代试井方法的发展和应用使得勘探人员能够更准确地判断地下岩层中的
水或油气情况,从而提高资源开采的效率和效果。
与此适用的现代试井方法也为地下工程
施工提供了更多的信息和依据,可以更好地评估地层稳定性和地下水位变化,从而提高工
程的质量和安全性。